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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements
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Putting it All Together

When we design a computational system, we would like to be sure that it will
satisfy all requirements, including safety requirements

Now we can treat the safety problem as a logical problem.
We can

e formally represent our system as a transition system
® express the desired properties of the system in temporal logic

What is missing?

4/28



The Model Checking Problem

Given
1. asymbolic representation of a transition system
2. atemporal formula F

check if every (some) execution of the system satisfies this formula,
preferably fully automatically
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Symbolic Representation and Transition Systems

Consider the transition systems 7; and T,:

T

N $2
T

T; and T, have the same symbolic representation but satisfy different LTL formulas
(e.g., O—)

D

6/28



Symbolic Representation and Transition Systems

Consider the transition systems 7; and T,:
[P

N $2
T

T; and T, have the same symbolic representation but satisfy different LTL formulas

D

(e.g., O—x)
This happens only if one of the transition systems has two states with the same
labelling function (e.g., so and s;in T5)

6/28



Symbolic Representation and Transition Systems

Consider the transition systems 7; and T,:

T

N $2
T

T; and T, have the same symbolic representation but satisfy different LTL formulas
(e.g., O—)

D

This happens only if one of the transition systems has two states with the same
labelling function (e.g., so and s;in T5)

Such symbolic representations are inadequate: one cannot distinguish two
different states by a state formula
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Making an Adequate Representation

If a transition system has different states labeled by the same interpretation,
introduce a new state variable to distinguish any such pair of states
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Example: One can add a current state variable cs with a unique value for each state
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Making an Adequate Representation

If a transition system has different states labeled by the same interpretation,
introduce a new state variable to distinguish any such pair of states

Example: One can add a current state variable cs with a unique value for each state

o D

[ We will assume that different states always have different labelings j
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Reachability and Safety Properties
Reachability property: expressed by a formula for the form

OF

where F is a propositional formula'

Could be a PLFD. Restriction to PL is for simplicity.
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Reachability and Safety Properties
Reachability property: expressed by a formula for the form

OF

where F is a propositional formula'
Safety/invariance property: expressed by a formula of the form

LIF

where F is a propositional formula

Most common problems arising in model checking. They are dual to each other:

DFEﬁQﬁF QFEﬁDﬁF

Cannot reach an unsafe state iff all reachable states are safe

Could be a PLFD. Restriction to PL is for simplicity.
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Reachability

Fix a transition system S with transition relation T over states S
We write so — s if (s, 51) € T, i.e., if there is a transition from state s, to state s,

Lets e S
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Reachability

Fix a transition system S with transition relation T over states S
We write so — s if (s, 51) € T, i.e., if there is a transition from state s, to state s,

Lets e S

® sisreachablein n steps from a state sy < S if there exist statess;....,s, € S
suchthats, =sandsy — s — -+ — s,

® s c Sisreachable from a state s, € S ifsis reachable from sy inn > 0 steps
® s c Sisreachablein S if sis reachable from some initial state of S
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Reachability Properties and Graph Reachability

Theorem 1
Areachability property {F holds on some computation path iff s = F for some
reachable state s.
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Reformulation of Reachability

Given
1. An initial condition | denoting the set of initial states of a transition system S
2. Afinal condition F denoting a set of final states
3. Atransition formula Tr denoting the transition relation of S

is any final state reachable from an initial state?
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Reformulation of Reachability

Given
1. An initial condition | denoting the set of initial states of a transition system S
2. Afinal condition F denoting a set of final states
3. Atransition formula Tr denoting the transition relation of S

is any final state reachable from an initial state?

Note: this reformulation does not use temporal logic

11/28



Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states
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Symbolic Reachability Checking

Main Idea: build a symbolic representation of the set of reachable
states

Two main kinds of algorithm:
e forward reachability
® backward reachability
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Reachability as a Decision Problem

Letx = xq, ..., X, be state variables

Given
1. aformula /(x), the initial condition
2. aformula F(x), the final condition
3. formula T(x, x"), the transition formula

is there a sequence of states s, . . ., s, such that
1. So = 1(x)
2. (si—1,si) = Tx,x") foralli=0,...,n—1
3. 5, = F(x)
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Reachability as a Decision Problem

Letx = xq, ..., X, be state variables

Given
1. aformula /(x), the initial condition
2. aformula F(x), the final condition
3. formula T(x, x"), the transition formula

is there a sequence of states s, . . ., s, such that
1. So = 1(x)
2. (si—1,si) = Tx,x") foralli=0,...,n—1
3. sp | F(x)

Note that in this case s, is reachable from s, in 1 steps
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Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps
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Idea of Reachability-Checking Algorithms

Note: If a final state is reachable from an initial state, it is reachable (from an initial
state) in some number n of steps

Approach: For given number n > 0, find a formula denoting the set of states
reachable in n steps

If this formula is not satisfied in a final state, increase n and start again

When does this process terminate?
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Reachability in n steps
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Reachability in n steps

Number of steps: 0

So S$2

Se
( )\z S7 5
S5

©

S4 S3

15/28



Reachability in n steps

Number of steps: 1
) CCD\ 52
Se S7 N
Ss

©

S4 S3

15/28



Reachability in n steps

Number of steps: 2

So $2

. : ; /
S7 5,
S5

© = o

S4 S3

15/28



Reachability in n steps

Number of steps: 3

So S$2
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Reachability in n steps

Number of steps: 4

Se
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Simple Logical Analysis

Notation Ifz = (7, .. ., z,) is a tuple of variables, 5zF abbreviates 9z, - - - 3z,F

Lemma 2
Let C(x) symbolically represent a set of states Sc. The formula

FR(x) ' 3z(C(z) A T(z,x))

represents the set of states reachable from S¢ in one step.
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Simple Logical Analysis

Notation If z = (7, .. .. z,) is a tuple of variables, JzF abbreviates 3z, - - - 97, F

Lemma 2
Let C(x) symbolically represent a set of states Sc. The formula

FR(x) ' 3z(C(z) A T(z,x))

represents the set of states reachable from S¢ in one step.

Each formula R, defined inductive as follows:

1

-

Ro(x) I(x)
Roi(x) = 3z(Ry(2) A T(x,2))

denotes the set of states reachable in 1 steps
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Simple Forward Reachability Algorithm

procedure FReach(/, T, F)
input: formulas/, T, F
output: “yes” or no output
begin
i =0
R := I(xo)
loop
if R A F(x;) is satisfiable then return “yes’
R :=RA 77()(jA)(L+1)
ioi=0+1
end loop
end

)
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Simple Forward Reachability Algorithm

procedure FReach(/, T, F)
input: formulas/, T, F
output: “yes” or no output
begin
i =0
R := I(xo)
loop
if R A\ F(x;) is satisfiable then return “yes”
R = RA 7-()(jA)(L+1)
ii= 0+
end loop
end

How do we check the satisfiability of R A F(x;)?

Using SAT solvers!
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Termination

Number of steps: 0

So S?
Se .‘ S7 3
BAD

S3
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Termination

Number of steps: 2
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Termination

Number of steps: 3
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Termination

Number of steps: 4
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Termination

Number of steps: 5
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Termination

Number of steps: 6
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Termination

Number of steps: 7

$2

-
. BAD
-@—@

Sy S3

[ When no final state is reachable, the algorithm does not terminate! ]
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Reachability in < 11 steps

Define a sequence of formulas R, for reachability in at most n states:

-

Reo(x) = I(x)
Renii(®) ' Rop(x) Vv 32(Ren(2) A T(2,))

-
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Reachability in < 11 steps
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Reachability in < 11 steps

Number of steps: 4

So $2

BAD
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Reachability in < 11 steps

Number of steps: 5

So $2
Se
BAD

S4 S3

( Full set of reachable states has been determined ]
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Termination

Let S, the set of states reachable in < n steps

Key properties for termination:
1. S, C S, foralli
2. the state space is finite
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Termination

Let S, the set of states reachable in < n steps

Key properties for termination:
1. S, C S, foralli
2. the state space is finite

Consequences:
® thereis k suchthatS, = S,
o forsuch k we have Ry (x) = R<j11(x)
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Forward Reachability Algorithm

procedure FReach(/, T, F)
input: formulas/, 7, F
output: “yes” or “no”
begin
R(x) := I(x)
loop
if R(x) A F(x) is satisfiable then return “yes
R'(x) := R(x)V 3z(R(z) A T(z,x))
if R(x) = R'(x) then return “no”
R(x) := R'(x)
end loop
end

»
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Forward Reachability Algorithm

procedure FReach(/, T, F)
input: formulas/, 7, F
output: “yes” or “no”
begin

R(x) := I(x)

loop

if R(x) A F(x) is satisfiable then return “yes”

R'(x) := R(x)V 3z(R(z) A T(z,x))
if R(x) = R'(x) then return “no”
R(x) := R'(x)

end loop

end

Implementation?
Use OBDDs and OBDD algorithms

Conjunction and disjunction
Quantification

Satisfiability checking
Equivalence checking
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Main Issues with Forward Reachability Algorithms

Forward reachability behaves in the same way, independently of the set of final
states

In other words, they are not goal oriented
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Backward Reachability

Idea:
* instead of going forward in the state transition graph, go backward
® swap initial and final states and invert the transition relation
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Backward Reachability in < 1 steps

Idea:
* instead of going forward in the state transition graph, go backward
® swap initial and final states and invert the transition relation

Number of backward steps: 1

Bad states unreachable!
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Backward Reachability in 1 steps

Number of backward steps: 0

S6
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Backward Reachability in 1 steps
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Backward Reachability in 1 steps
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Backward Reachability in 1 steps

Number of backward steps: 3

So
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Backward Reachability in n steps

Number of backward steps: 4

S6

Bad states reachable!
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Backward Reachability

So is backward reachable from F in n steps if F is reachable from S, in n steps
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Backward Reachability

So is backward reachable from F in n steps if F is reachable from S in n steps

Lemma 3
Let C(x) symbolically represent a set of states Sc. The formula

BR(x) Y 3z(T(x,2) A C(2))

denotes the set of states backward reachable from S¢ in one step.
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Backward Reachability Algorithm

Same as the forward reachability algorithms, but
® swap/with F
® use the inverse of the transition relation T
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Backward Reachability Algorithm

Same as the forward reachability algorithms, but

® swap/with F
® use the inverse of the transition relation T

procedure BReach(l, T, F)
input: formulas/, T, F
output: “yes” or “no”
begin
R(x) := F(x)
loop
if R(x) A I(x) is satisfiable then

return “yes”
R'(x) := R(x)V 3z(T(x,z) AR(z))

if R(x) = R'(x) then return “no”
R(x) := R'(x)
end loop

end
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Extensions of Model Checking

® There are model-checking algorithms for properties other than reachability
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Extensions of Model Checking

® There are model-checking algorithms for properties other than reachability
® thereis a general model-checking algorithm for arbitrary LTL properties

® there are extensions of model-checking techniques for infinite-state systems

they will not be considered in this course
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