CS:4350 Logic in Computer Science

Linear Temporal Logic

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

Linear Temporal Logic

Computation Tree Linear Temporal Logic Using Temporal Formulas Equivalences of Temporal Formulas Expressing Transitions Full example

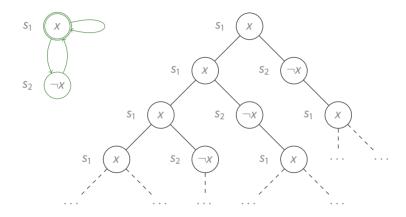
Computation Tree

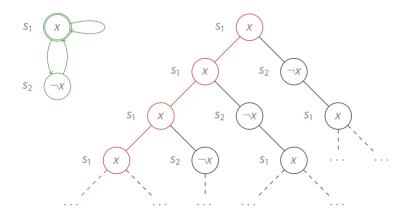
Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$ be a transition system and $s_0 \in S$ be a state

Computation tree for \mathbb{S} starting at s_0 :

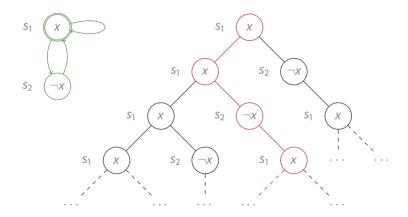
Defined as the (possibly infinite) tree C such that

- 1. every node of C is labeled by a state in S
- 2. the root of C is labeled by S_0
- 3. every node in the tree labeled by a state s has a child labeled by a state s' iff $(s,s') \in T$

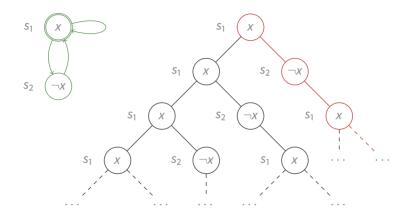




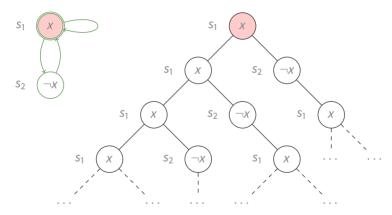
A *computation path* for \mathbb{S} any branch s_0, s_1, \ldots in the tree

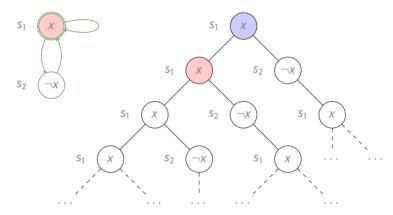


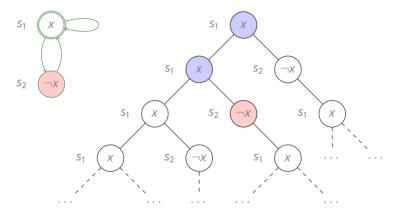
A *computation path* for \mathbb{S} any branch s_0, s_1, \ldots in the tree

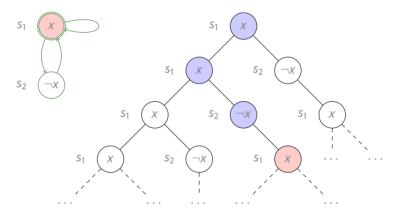


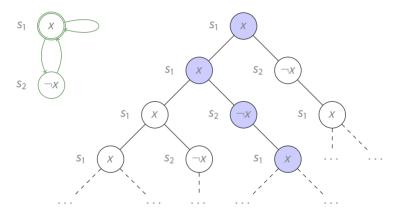
A *computation path* for \mathbb{S} any branch s_0, s_1, \ldots in the tree











Properties

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

- The computation paths of S are exactly the branches in the computation trees for S
- The subtree of C rooted at some node s is the computation tree for S starting at s
 (i.e., every subtree of a computation tree is itself a computation tree)
- 3. For all $s \in S$, there is a unique computation tree for S starting at s

Properties

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

- The computation paths of S are exactly the branches in the computation trees for S
- The subtree of C rooted at some node s is the computation tree for S starting at s
 (i.e., every subtree of a computation tree is itself a computation tree)
- 3. For all $s \in S$, there is a unique computation tree for $\mathbb S$ starting at s

Properties

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

- The computation paths of S are exactly the branches in the computation trees for S
- 2. The subtree of *C* rooted at some node *s* is the computation tree for *S* starting at *s* (i.e., every subtree of a computation tree is itself a computation tree)
- 3. For all $s \in S$, there is a unique computation tree for S starting at s

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\Diamond F$ are formulas
- 2. If F and G are formulas, then $F \coprod G$ and $F \coprod G$ are formulas

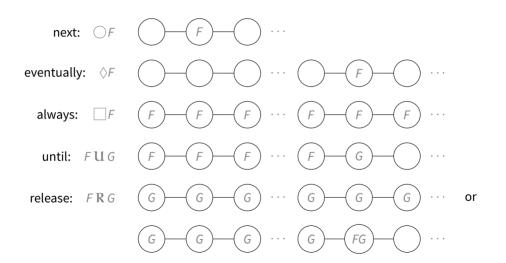
Linear Temporal Logic

Linear Temporal Logic (LTL) is a logic for reasoning about properties of computation paths

Formulas are built in the same way as in PLFD, with the following additions:

- 1. If F is a formula, then $\bigcirc F$, $\square F$, and $\Diamond F$ are formulas
- 2. If F and G are formulas, then $F \coprod G$ and $F \coprod G$ are formulas
- next
- always (in the future)
- sometimes/eventually (in the future)
- U until
- R release

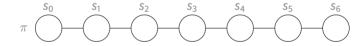
Semantics (intuitive)



LTL formulas express properties of computations or computation paths

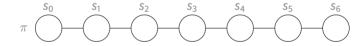
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



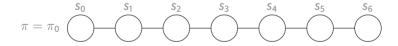
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



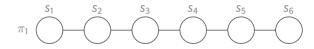
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



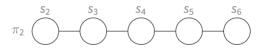
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



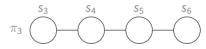
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



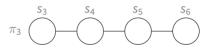
LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$



LTL formulas express properties of computations or computation paths

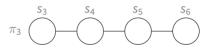
$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$ F , an LTL formula



F holds on π or π satisfies *F*, written $\pi \models F$, iff *F* holds on π_0 , written $\pi_0 \models F$, where $\pi_i \models F$ is defined for all $i \geq 0$ by induction on *F*

LTL formulas express properties of computations or computation paths

$$\pi=s_0,s_1,s_2,\ldots$$
, sequence of states $\pi_i=s_i,s_{i+1},s_{i+2},\ldots$, subsequence of π starting at $i\geq 0$ F , an LTL formula



F holds on π or π satisfies *F*, written $\pi \models F$, iff *F* holds on π_0 , written $\pi_0 \models F$, where $\pi_i \models F$ is defined for all $i \geq 0$ by induction on *F*

We will informally say that *F* holds in s_i to mean that *F* holds on π_i

$$\pi_i = s_i, s_{i+1}, s_{i+2}, \dots$$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

•

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_i \models \neg F \text{ if } \pi_i \not\models F$
- 4. $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_i \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi_i \models F_j$
- 5. $\pi_i \models F \to G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

$$\pi_i = S_i, S_{i+1}, S_{i+2}, \dots$$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_l \models \neg F$ if $\pi_l \not\models F$
- 4. $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_j \models F_1 \lor \ldots \lor F_n \text{ if for some } j = 1, \ldots, n \text{ we have } \pi_i \models F_n$
- 5. $\pi_i \models F \to G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

$$\pi_i = s_i, s_{i+1}, s_{i+2}, \dots$$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_i \models \neg F \text{ if } \pi_i \not\models F$
- 4. $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_i \models F_1 \lor \ldots \lor F_n \text{ if for some } j = 1, \ldots, n \text{ we have } \pi_i \models F_j$
- 5. $\pi_i \models F \to G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

$$\pi_i = s_i, s_{i+1}, s_{i+2}, \dots$$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_i \models \neg F \text{ if } \pi_i \not\models F$
- 4. $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_i \models F_1 \lor \ldots \lor F_n \text{ if for some } j = 1, \ldots, n \text{ we have } \pi_i \models F_j$
- 5. $\pi_i \models F \to G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

$$\pi_i = S_i, S_{i+1}, S_{i+2}, \dots$$

Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_i \models \neg F \text{ if } \pi_i \not\models F$
- 4. $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_i \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi_i \models F_j$
- 5. $\pi_i \models F \to G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$ or both $\pi_i \models F$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ and $\pi_i \models G$ or both $\pi_i \models G$ and $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ and $\pi_i \models G$ are both $\pi_i \models G$ are both

$$\pi_i = s_i, s_{i+1}, s_{i+2}, \dots$$

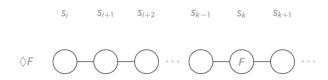
Atomic formulas hold on π_i iff they hold in s_i :

1.
$$\pi_i \models x = v \text{ if } s_i \models x = v$$

- 2. $\pi_i \models \top$ and $\pi_i \not\models \bot$
- 3. $\pi_i \models \neg F \text{ if } \pi_i \not\models F$
- **4.** $\pi_i \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi_i \models F_j$ $\pi_i \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi_i \models F_j$
- 5. $\pi_i \models F \rightarrow G$ if either $\pi_i \not\models F$ or $\pi_i \models G$ $\pi_i \models F \leftrightarrow G$ if either both $\pi_i \not\models F$ and $\pi_i \not\models G$ or both $\pi_i \models F$ and $\pi_i \models G$

6.
$$\pi_i \models \bigcirc F$$
 if $\pi_{i+1} \models F$

6.
$$\pi_i \models \bigcirc F$$
 if $\pi_{i+1} \models F$
 $\pi_i \models \lozenge F$ if for some $k \ge i$ we have $\pi_k \models F$



6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \lozenge F$ if for some $k \ge i$ we have $\pi_k \models F$ $\pi_i \models \bigcirc F$ if for all $k \ge i$ we have $\pi_k \models F$

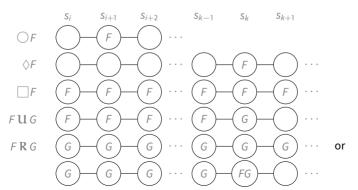
 S_i S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

- 6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \lozenge F$ if for some $k \ge i$ we have $\pi_k \models F$ $\pi_i \models \bigcirc F$ if for all $k \ge i$ we have $\pi_k \models F$
- 7. $\pi_i \models F \sqcup G$ if for some $k \geq i$ we have $\pi_k \models G$ and $\pi_i \models F, \ldots, \pi_{k-1} \models F$

 S_i S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

- 6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \lozenge F$ if for some $k \ge i$ we have $\pi_k \models F$ $\pi_i \models \bigcap F$ if for all k > i we have $\pi_k \models F$
- 7. $\pi_i \models F \sqcup G$ if for some $k \geq i$ we have $\pi_k \models G$ and $\pi_i \models F, \dots, \pi_{k-1} \models F$ $\pi_i \models F \sqcap G$ if either for all $k \geq i$ we have $\pi_i \models G$ or for some $k \geq i$ and all $j = i, \dots, k$ we have $\pi_j \models G$ and $\pi_k \models F$
 - S_i S_{i+1} S_{i+2} S_{k-1} S_k S_{k+1}

- 6. $\pi_i \models \bigcirc F$ if $\pi_{i+1} \models F$ $\pi_i \models \lozenge F$ if for some $k \ge i$ we have $\pi_k \models F$ $\pi_i \models \bigcap F$ if for all k > i we have $\pi_k \models F$
- 7. $\pi_i \models F \sqcup G$ if for some $k \geq i$ we have $\pi_k \models G$ and $\pi_i \models F, \dots, \pi_{k-1} \models F$ $\pi_i \models F \sqcap G$ if either for all $k \geq i$ we have $\pi_i \models G$ or for some $k \geq i$ and all $j = i, \dots, k$ we have $\pi_j \models G$ and $\pi_k \models F$



Example

	0	1	2	3	4	5	6	7	8			11	12	
р	1	1	1	1	1	1	1	1	0	0	1	1	1	1^{ω}
q	0	0	0	0	0	0	0	0	1	0	0	1	0	0^ω
$\bigcirc p$	1	1	1	1	1	1	1	0	0	1	1	1	1	1^{ω}
$\Diamond q$	1	1	1	1	1	1	1	1	1		1	1	0	0^ω
$\Box p$	0	0	0	0	0	0	0	0	0		1	1	1	1^{ω}
pUq	1	1	1	1	1	1	1	1	1	0	1	1	0	0^ω
а	0	0	1	0	0	1	0	0	1	0	1	0	0	0^ω
b	1	1	1	1	1	1	0	1	1	1	1	0	1	1^{ω}
a R b	1	1	1	1	1	1	0	1	1	1	1	0	0	0^ω

Notation: v^{ω} denotes the infinite repetition of v

Standard properties?

Two LTL formulas F and G are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

Standard properties?

Two LTL formulas F and G are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

We are not interested in satisfiability, validity etc. for temporal formulas

Standard properties?

Two LTL formulas F and G are *equivalent*, written $F \equiv G$, if for every path π we have $\pi \models F$ iff $\pi \models G$

We are not interested in satisfiability, validity etc. for temporal formulas

For an LTL formula F we can consider two kinds of properties of S:

- 1. does F hold on some computation path for S from an initial of S?
- 2. does F hold on all computation paths for S from an initial state of S?

Precedences of Connectives and Temporal Operators

Connective	Precedence
$\neg,\bigcirc,\Diamond,\Box$	5
U, R	4
\wedge, \vee	3
\rightarrow	2
\leftrightarrow	1

- unary temporal operators have the same precedence as ¬
- binary temporal operators have higher precedence than the binary Boolean connectives

- 1. F holds initially but not later:
- 2. F never holds in two consecutive states:
- 3. If F holds in a state s, it also holds in all states after s:
- F holds in at most one state:
- 5. F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \square \neg F$
- E never holds in two consecutive states:
- 3. If F holds in a state s, it also holds in all states after s:
- F holds in at most one state:
- 5. F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \wedge \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states:
- 3. If F holds in a state s, it also holds in all states after s:
- F holds in at most one state:
- F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\Box (F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s:
- F holds in at most one state:
- F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s:
- F holds in at most one state
- F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$
- F holds in at most one state
- F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\square(F \to \square F)$
- 4. F holds in at most one state:
- F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \to \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$
- 4. F holds in at most one state: $\square(F \to \bigcirc \square \neg F)$
- F holds in at least two states
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$
- 4. F holds in at most one state: $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states:
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \to \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$
- 4. F holds in at most one state: $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states: $\Diamond(F \land \bigcirc \Diamond F)$
- F happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \to \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$
- 4. F holds in at most one state: $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states: $\Diamond(F \land \bigcirc \Diamond F)$
- 6. *F* happens infinitely often:
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- 1. F holds initially but not later: $F \land \bigcirc \Box \neg F$
- 2. F never holds in two consecutive states: $\square(F \rightarrow \bigcirc \neg F)$
- 3. If F holds in a state s, it also holds in all states after s: $\square(F \to \square F)$
- 4. F holds in at most one state: $\square(F \rightarrow \bigcirc \square \neg F)$
- 5. F holds in at least two states: $\Diamond(F \land \bigcirc \Diamond F)$
- 6. F happens infinitely often: $\square \lozenge F$
- F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- F holds initially but not later: F ∧ □¬F
 F never holds in two consecutive states: □(F → ○¬F)
 If F holds in a state s, it also holds in all states after s: □(F → □F)
 F holds in at most one state: □(F → □¬F)
 F holds in at least two states: ◊(F ∧ ○◊F)
 F happens infinitely often: □◊F
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0):
- 8. Unless s_i is the first state of the path, if F holds in state s_i, then G must hold in at least one of the two states just before s_i, that is, s_{i-1} and s_{i-2}:

counted from 0): $F \wedge \bigcap (F \leftrightarrow \bigcirc \neg F)$

1. F holds initially but not later: $F \wedge \bigcirc \square \neg F$ 2. F never holds in two consecutive states: $\Box (F \rightarrow \bigcirc \neg F)$ 3. If F holds in a state s, it also holds in all states after s: $\Box (F \rightarrow \Box F)$ 4. F holds in at most one state: $\square(F \to \bigcirc \square \neg F)$ 5. F holds in at least two states: $\Diamond (F \land \bigcirc \Diamond F)$ 6. F happens infinitely often: $\square \lozenge F$

8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

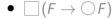
7. F holds in each even state and does not hold in each odd state (states are

counted from 0): $F \wedge \bigcap (F \leftrightarrow \bigcirc \neg F)$

- 1. F holds initially but not later: $F \wedge \bigcirc \square \neg F$ 2. F never holds in two consecutive states: $\Box (F \rightarrow \bigcirc \neg F)$ 3. If F holds in a state s, it also holds in all states after s: $\bigcap (F \to \bigcap F)$ 4. F holds in at most one state: $\square(F \to \bigcirc \square \neg F)$ 5. F holds in at least two states: $\Diamond (F \land \bigcirc \Diamond F)$ 6. F happens infinitely often: $\square \lozenge F$ 7. F holds in each even state and does not hold in each odd state (states are
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} :

- F holds initially but not later: F ∧ □¬F
 F never holds in two consecutive states: □(F → ○¬F)
 If F holds in a state s, it also holds in all states after s: □(F → □F)
 F holds in at most one state: □(F → □¬F)
 F holds in at least two states: ◊(F ∧ ○◊F)
 F happens infinitely often: □◊F
- 7. F holds in each even state and does not hold in each odd state (states are counted from 0): $F \land \Box (F \leftrightarrow \bigcirc \neg F)$
- 8. Unless s_i is the first state of the path, if F holds in state s_i , then G must hold in at least one of the two states just before s_i , that is, s_{i-1} and s_{i-2} : $(\bigcirc F \to G) \land \square(\bigcirc F \to \bigcirc G \lor G)$

♦ (eventually)	· · · · · · · · · · · · · · · · · · ·				
P (rologgo)		(a	lways)	_	, , ,



♦ (eventually)☐ (always)R (release)	○ (next) U (until)

- \(\backsigma \) F
- \Box $(F \rightarrow \bigcirc F)$
- ¬FU □F

♦ (eventually) □ (always)	○ (next) U (until)
R (release)	

- \(\bigcirc \)
- \Box $(F \rightarrow \bigcirc F)$
- $\bullet \neg F U \square F$
- \bullet $FU \neg F$

♦ (eventually) ☐ (always)	○ (next) U (until)
R (release)	

- \(\bar{1} \)
- \Box $(F \rightarrow \bigcirc F)$
- $\bullet \neg F U \square F$
- \bullet $FU \neg F$
- $\Diamond F \land \Box (F \rightarrow \bigcirc F)$

♦ (eventually) ☐ (always)	○ (next) U (until)
R (release)	

- ♦ □ F
- \Box $(F \rightarrow \bigcirc F)$
- $\bullet \neg F U \square F$
- \bullet $FU \neg F$
- $\Diamond F \land \Box (F \rightarrow \bigcirc F)$
- $\bullet \quad \Box \Diamond F$

♦ (eventually) ☐ (always)	○ (next) U (until)
R (release)	

- ♦ □ F
- \Box $(F \rightarrow \bigcirc F)$
- $\bullet \neg F U \square F$
- \bullet $FU \neg F$
- $\Diamond F \land \Box (F \rightarrow \bigcirc F)$
- □ ◊ F
- $F \land \Box (F \leftrightarrow \neg \bigcirc F)$

♦ (eventually) ☐ (always)	○ (next) U (until)
R (release)	

Expressiveness of LTL

Not all reasonable properties are expressible in LTL

Example: p holds in all even states

Equivalences: Unwinding Properties

♦ (eventually)☐ (always)R (release)	○ (next) U (until)
---	-----------------------

Equivalences: Negation of Temporal Operators

$$\neg \bigcirc F \equiv \bigcirc \neg F$$

$$\neg \Diamond F \equiv \bigcirc \neg F$$

$$\neg \bigcirc F \equiv \Diamond \neg F$$

$$\neg (F \cup G) \equiv \neg F \cup \neg G$$

$$\neg (F \cup G) \equiv \neg F \cup \neg G$$

Expressing Temporal Operators Using U

♦ (eventually)	(next)
(always)	U (until)
R (release)	

Hence, all operators can be expressed using \bigcirc and U

Further Equivalences

$$\Diamond (F \vee G) \equiv \Diamond F \vee \Diamond G$$

$$\Box (F \wedge G) \equiv \Box F \wedge \Box G$$

But

$$\Box (F \vee G) \not\equiv \Box F \vee \Box G$$

$$\Diamond(F \wedge G) \not\equiv \Diamond F \wedge \Diamond G$$

How to Show that Two Formulas are not Equivalent

Find a path that satisfies one of the formulas but not the other

Example: for $\Box (F \lor G)$ and $\Box F \lor \Box G$

Formalization: Variables and Domains

variable	domain	explanation
st_coffee	{ 0, 1 }	drink storage contains coffee
st_beer	{ 0, 1 }	drink storage contains beer
disp	{ none, beer, coffee }	content of drink dispenser
coins	{ 0, 1, 2, 3 }	number of coins in the slot
customer	{ none, student, prof }	customer

Transitions

- 1. Recharge which results in the drink storage having both beer and coffee.
- 2. Customer_arrives, after which a customer appears at the machine.
- 3. *Customer_leaves*, after which the customer leaves.
- 4. *Coin_insert*, when the customer inserts a coin in the machine.
- 5. Dispense_beer, when the customer presses the button to get a can of beer.
- 6. Dispense_coffee, when the customer presses the button to get a cup of coffee.
- 7. *Take_drink*, when the customer removes a drink from the dispenser.

Consider the following properties:

- 1. one cannot have two beers in a row without inserting a coin
- 2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival

Note that they are about transitions, not state:

How can one represent these properties?

Consider the following properties:

- 1. one cannot have two beers in a row without inserting a coin
- 2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival

Note that they are about transitions, not states

How can one represent these properties?

Consider the following properties:

- 1. one cannot have two beers in a row without inserting a coin
- 2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival

Note that they are about transitions, not states

How can one represent these properties?

Consider the following properties:

- 1. one cannot have two beers in a row without inserting a coin
- 2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival

Note that they are about transitions, not states

How can one represent these properties?

Example

tr with domain { recharge, customer_arrives, coin_insert, . . . }

```
Recharge \stackrel{\text{def}}{=} tr = recharge \land customer = none \land
                                      st coffee' \wedge st beer' \wedge
                                      only(st coffee, st beer, tr)
                          \stackrel{\mathrm{def}}{=} \mathsf{tr} = \mathit{customer\_arrives} \land \mathsf{customer} = \mathit{none} \land
Customer arrives
                                      customer' \neq none \land
                                      only(customer, tr)
         Coin insert \stackrel{\text{def}}{=} tr = coin insert \land
                                      customer \neq none \wedge coins \neq 3 \wedge
                                      (coins = 0 \rightarrow coins' = 1) \land
                                       (coins = 1 \rightarrow coins' = 2) \land
                                      (coins = 2 \rightarrow coins' = 3) \land
                                      only(coins, tr)
```

1. One cannot have two beers without inserting a coin in between getting them:

1. One cannot have two beers without inserting a coin in between getting them:

```
\begin{tabular}{l} $ \Box (tr = \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer}) \lor \\ & (tr \neq \textit{dispense\_beer}) \lor (tr \neq \textit{dispense\_beer
```

1. One cannot have two beers without inserting a coin in between getting them:

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival:

1. One cannot have two beers without inserting a coin in between getting them:

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival:

1. One cannot have two beers without inserting a coin in between getting them:

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival:

```
\Box(\mathsf{tr} = \mathit{recharge} \to \bigcirc \mathsf{tr} \neq \mathit{recharge}) \to \\ \Box(\mathsf{tr} = \mathit{recharge} \to \bigcirc \mathsf{tr} = \mathit{customer\_arrives})
```

The value of customer can only be changed as a result of either Customer_arrives or Customer_leaves:

1. One cannot have two beers without inserting a coin in between getting them:

2. If we never have two recharge transitions in a row, then the next transition after a recharge must be a customer arrival:

The value of customer can only be changed as a result of either Customer_arrives or Customer_leaves:

```
\Box(\bigwedge_{v \in dom(\text{customer})}(\text{customer} = v \land \bigcirc \text{customer} \neq v) \rightarrow tr = customer\_arrives \lor tr = customer\_leaves})
```

1. If somebody inserts a coin twice in a row and then immediately gets a beer, the amount of coins in the slot will not change:

1. If somebody inserts a coin twice in a row and then immediately gets a beer, the amount of coins in the slot will not change:

1. If somebody inserts a coin twice in a row and then immediately gets a beer, the amount of coins in the slot will not change:

If the system is occasionally recharged, then after each <u>dispense_beer</u> the customer will leave:

1. If somebody inserts a coin twice in a row and then immediately gets a beer, the amount of coins in the slot will not change:

If the system is occasionally recharged, then after each <u>dispense_beer</u> the customer will leave:

Exercise, Dimmable Lamp

Device A lamp with two buttons that can be

- off
- on but dimmed at medium intensity
- on at full intensity

Actions

- 1. pushing the first button (set): switches light from off to medium intensity or from medium to full intensity
- 2. pushing the second button (reset): switches light off
- 3. doing nothing (none): results just in time passing

Constraints

- 1. Pushing the first button has no effect if done immediately after a reset
- 2. Pushing the second button has no effect if done immediately after a set

Exercise, Modeling device as a transition system

State variables

variable	domain	explanation
а	{ set, reset, none }	actions/transitions
S	{ off, on1, on2 }	lamp status
st	{ 0, 1 }	time counter for set
rt	{0,1}	time counter for reset

Exercise, Modeling device as a transition system

Initial state formula

$$s = off \land st = 1 \land rt = 1$$

Transition formulas

$$Set \stackrel{\mathrm{def}}{=} a = set \wedge rt \neq 0 \wedge \\ (s = off \wedge s' = on1 \vee s \neq off \wedge s' = on2) \wedge \\ st' = 0 \wedge only(s, st, a)$$

$$Reset \stackrel{\mathrm{def}}{=} a = reset \wedge st \neq 0 \wedge \\ s' = off \wedge rt' = 0 \wedge only(s, rt, a)$$

$$None \stackrel{\mathrm{def}}{=} a = none \wedge \\ st' = 1 \wedge rt' = 1 \wedge only(st, rt, a)$$

Exercise, Temporal properties about the lamp

- 1. The lamp is initially off.
- 2. Resetting when the lamp is on turns it off.
- 3. Resetting always turns the lamp off.
- 4. Setting when the lamp is off turns it on.
- 5. Setting when the lamp is half-on turns it fully on.
- 6. A reset cannot immediately follow a set and vice versa.
- 7. Setting when the lamp is fully on has no effect on the light.
- 8. The lamp is initially off and stays off until the first set.
- 9. Once off, the lamp stays off until the next set.
- 10. Two consecutive set actions are enough to turn the lamp fully on.
- 11. If the lamp is on at any point, it must have been turned on some time before.
- 12. If the lamp is on, it will eventually be off.
- 13. The lamp will be on repeatedly.
- 14. At some point the lamp will burn and stay permanently off.
- 15. If set occurs infinitely often the lamp will be on infinitely often.

Exercise, formalization of properties

1.
$$s = off$$

2.
$$\square$$
 (a = reset \land s \neq off $\rightarrow \bigcirc$ s = off)

3.
$$\bigcap$$
 (a = reset \rightarrow \bigcirc s = off)

4.
$$\square$$
 (a = set \wedge s = off $\rightarrow \bigcirc$ s \neq off)

5.
$$\square$$
 (a = set \wedge s = on1 \rightarrow \bigcirc s = on2)

6.
$$\square$$
 (a = set $\rightarrow \bigcirc$ a \neq reset) $\land \square$ (a = reset $\rightarrow \bigcirc$ a \neq set)

7.
$$\square$$
 (a = set \wedge s = on2 \rightarrow \bigcirc s = on2)

8.
$$a = set R s = off$$

9.
$$\square$$
 (s = off \rightarrow a = set \mathbb{R} s = off)

10.
$$\square$$
 (a = set \wedge \bigcirc a = set \rightarrow \bigcirc (s = on2), also \square (a = set \rightarrow \bigcirc (a = set \rightarrow \bigcirc s = on2))

11.
$$\neg (a \neq set U s \neq off)$$

12.
$$\square$$
 (s \neq off \rightarrow \lozenge s = off)

13.
$$\square(\lozenge s \neq off)$$

14.
$$\Diamond(\Box s = off)$$

15.
$$\square \lozenge a \neq set \rightarrow \square \lozenge s \neq off$$

Exercise, formalization of properties

1.
$$s = off$$

2.
$$\square$$
 (a = reset \wedge s \neq off $\rightarrow \bigcirc$ s = off)

3.
$$\bigcap$$
 (a = reset \rightarrow \bigcap s = off)

4.
$$\square$$
 (a = set \wedge s = off $\rightarrow \bigcirc$ s \neq off)

5.
$$\square$$
 (a = set \wedge s = on1 \rightarrow \bigcirc s = on2)

6.
$$\square$$
 (a = set $\rightarrow \bigcirc$ a \neq reset) $\land \square$ (a = reset $\rightarrow \bigcirc$ a \neq set)

7.
$$\square$$
 (a = set \wedge s = on2 \rightarrow \bigcirc s = on2)

8.
$$a = set \mathbf{R} s = off$$

9.
$$\square$$
 (s = off \rightarrow a = set \mathbb{R} s = off)

10.
$$\square$$
 (a = set $\land \bigcirc$ a = set $\rightarrow \bigcirc \bigcirc$ s = on2), also \square (a = set $\rightarrow \bigcirc$ (a = set $\rightarrow \bigcirc$ s = on2))

11.
$$\neg(a \neq set U s \neq off)$$

12.
$$\square$$
 (s \neq off \rightarrow \lozenge s = off)

13.
$$\square(\lozenge s \neq off)$$

14.
$$\Diamond(\Box s = off)$$

15.
$$\square \lozenge a \neq set \rightarrow \square \lozenge s \neq off$$

Which of these properties are satisfied by every execution path of the transition system?