CS:4350 Logic in Computer Science

Transition Systems

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by **Andrei Voronkov** at the University of Manchester. Adapted by permission.

Outline

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

State-changing systems

Our main interest from now on is modeling state-changing systems

We assume a discrete notion of time, with each time corresponding to a *step* taken by the system

Informally	Formally
At each step, the system is in a particular state	This state can be characterized by values of a set of variables, called the <i>state variables</i> .
The system state changes over time There are actions (controlled or not) that change the state	Actions change values of some state variables

Reasoning about state-changing systems

- 1. Build a formal model of this state-changing system describing
 - the behavior of the system, or
 - some abstraction of that behavior
- 2. Using a logic to specify and verify properties of the system

Reasoning about state-changing systems

- 1. Build a formal model of this state-changing system describing
 - the behavior of the system, or
 - some abstraction of that behavior
- 2. Using a logic to specify and verify properties of the system

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a box for dispensing drinks, and
 - a coin slot
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state
 Ex: when the customer inserts a coin, the amount of money stored in the slot changes

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a box for dispensing drinks, and
 - a coin slot
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state
 Ex: when the customer inserts a coin, the amount of money stored in the slot changes

Example, Vending machine

A state-changing system: vending machine dispensing drinks

- The machine has several components, including:
 - storage space for storing and preparing drinks,
 - a box for dispensing drinks, and
 - a coin slot
- When the machine is operating, it goes through several states, depending on the behavior of the current customer
- Each action by the customer or the machine itself may change its state
 Ex: when the customer inserts a coin, the amount of money stored in the slot changes

State transition: action that may change the machine's state

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they change the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they *change* the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Modeling state-changing systems

To build a formal model of a particular state-changing system, we specify its behavior in terms of

- 1. its state variables
- 2. the possible values for the state variables
- 3. the state transitions and how they *change* the values of the state variables

A state can be identified with

- the set of pairs (variable, value), or
- a function from variables to values

Formally, the system can be modeled as a transition system

Transition systems

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $\mathit{In} \subseteq S$ is a non-empty set of states, the set of $\mathit{initial}$ states of S
- 3. $\mathit{T} \subseteq \mathit{S} imes \mathit{S}$ is a set of state pairs, the transition relation of $\mathbb S$

Transition systems

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T\subseteq S imes S$ is a set of state pairs, the transition relation of $\mathbb S$

Transition systems

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of $\mathbb S$

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state s to state s' iff (s, s') ∈ T

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

State Transition Graph of a transition system $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$:

- The nodes are the states of S
- The arcs are elements of the transition relation: there is an edge from state *s* to state *s'* iff (*s*, *s'*) ∈ *T*

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of S
- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x
- L is a function mapping states of S to interpretations, the labeling function of S (more on this later)

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of S
- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x
- L is a function mapping states of S to interpretations, the labeling function of S (more on this later)

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of S
- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the $domain \ of \ x$
- L is a function mapping states of S to interpretations, the labeling function of S (more on this later)

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of S
- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the $domain\ of\ x$
- 6. *L* is a function mapping states of *S* to interpretations, the *labeling function* of *S* (more on this later)

A labelled transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$, where

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $In \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S \times S$ is a set of state pairs, the transition relation of S
- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the $domain\ of\ x$
- 6. *L* is a function mapping states of *S* to interpretations, the *labeling function* of *S* (more on this later)

 \mathbb{S} is *finite-state* if dom(x) is finite for all $x \in varX$

- 1. *S* is a finite non-empty set, the set of *states* of *S*
- 2. $ln \subseteq S$ is a non-empty set of states, the set of *initial states* of S
- 3. $T \subseteq S$
- 4. \mathcal{X} is a We will only study finite-state transition systems
- 6. *L* is a function mapping states of *S* to interpretations, the *labeling function* of *S* (more on this later)
- \mathbb{S} is *finite-state* if dom(x) is finite for all $x \in varX$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of *state variables*
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x

 \mathcal{X} and dom define an instance of PLFD!

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x

 \mathcal{X} and dom define an instance of PLFD!

Let I be the set of all interpretations for this instance of PLFD

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over X and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x

 \mathcal{X} and dom define an instance of PLFD!

Let **I** be the set of all interpretations for this instance of PLFD

L is a mapping $L: S \to \mathbb{I}$, associating every state to an interpretation of \mathcal{X} :

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over X and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the $domain \ of \ x$

 \mathcal{X} and dom define an instance of PLFD!

Let I be the set of all interpretations for this instance of PLFD

L is a mapping $L: S \to \mathbb{I}$, associating every state to an interpretation of \mathcal{X} :

- 1. for every $x \in \mathcal{X}$ and $s \in \mathcal{S}$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Note this part of the definition:

- 4. \mathcal{X} is a finite set of state variables
- 5. dom is a mapping from \mathcal{X} such that for every $x \in \mathcal{X}$, dom(x) is a non-empty set of values, the domain of x

 \mathcal{X} and dom define an instance of PLFD!

Let I be the set of all interpretations for this instance of PLFD

L is a mapping $L:S \to \mathbb{I}$, associating every state to an interpretation of \mathcal{X} :

- 1. for every $x \in \mathcal{X}$ and $s \in S$, we have $L(s)(x) \in dom(x)$
- 2. for every formula A over \mathcal{X} and every state $s \in S$, either $L(s) \models A$ or $L(s) \not\models A$

State Transition Graph

 $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$

State transition graph of \mathbb{S} :

- The nodes are the states of S
- The edges are the state pairs in T

State Transition Graph

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

State transition graph of S:

- The nodes are the states of S
- The edges are the state pairs in T

Example: $X = \{x, y\}$, $dom(x) = dom(y) = \{0, 1\}$

$$\begin{array}{lcl} S & = & \{\,(0,0),(0,1),(1,0),(1,1)\,\}\\ In & = & \{\,(1,0)\,\}\\ T & = & \{\,((1,0),(0,1)),\\ & & & ((1,0),(0,0)),\\ & & & & ((0,0),(1,0)),\\ & & & & & ((0,1),(0,0)),\\ & & & & & & ((0,1),(1,1))\,\} \end{array}$$

If L(s)(x) = v, we say that x has the value v in s, and write s(x) = v

If $L(s) \models A$, we say that s satisfies A or A is true in s, and write $s \models A$

In both cases, we identify s with L(s)

If
$$L(s)(x) = v$$
, we say that x has the value v in s , and write $s(x) = v$
If $L(s) \models A$, we say that s satisfies A or A is true in s , and write $s \models A$

In both cases, we identify s with L(s)

If L(s)(x) = v, we say that x has the value v in s, and write s(x) = v

If $L(s) \models A$, we say that s satisfies A or A is true in s, and write $s \models A$

In both cases, we identify s with L(s)

- S₁ = X
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 = x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \wedge y$
- $s_3 \models x \leftrightarrow y$

- $s_1 \models x$
- $s_2 \models x \land y$
- $s_3 \models x \leftrightarrow y$

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is applicable to a state s if there is a state s' such that $(s, s') \in t$

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is applicable to a state s if there is a state s' such that $(s, s') \in t$

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is *applicable* to a state s if there is a state s' such that $(s, s') \in t$

We will usually represent a transition relation as a union of transitions

Transition t: any set of state pairs

A transition t is *applicable* to a state s if there is a state s' such that $(s, s') \in t$

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- A can of beer costs two coins. A cup of coffee costs one coin.
- There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- From time to time the drink storage can be recharged

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- 3. The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- A can of beer costs two coins. A cup of coffee costs one coin.
- There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- From time to time the drink storage can be recharged

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- 3. The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- From time to time the drink storage can be recharged

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- 3. The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- From time to time the drink storage can be recharged

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- 3. The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- 6. From time to time the drink storage can be recharged.

Formalization: Variables and Domains

variable	domain	explanation
st_coffee	{ 0, 1 }	drink storage contains coffee
st_beer	{ 0, 1 }	drink storage contains beer
disp	{ none, beer, coffee }	content of drink dispenser
coins	{ 0, 1, 2, 3 }	number of coins in the slot
customer	{ none, student, prof }	customer

Transitions for the Vending Machine

- 1. Recharge, results in the drink storage having both beer and coffee
- 2. Customer_arrives, corresponds to a customer arriving at the machine
- 3. Customer_leaves, corresponds to the customer's leaving
- 4. Coin_insert, corresponds to the customer's inserting a coin in the machine
- 5. Dispense_beer, results in the customer's getting a can of beer
- 6. Dispense_coffee, results in the customer's getting a cup of coffee
- Take_drink, corresponds to the customer's removing a drink from the dispenser

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$\{s \mid s \models F\}$$

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$ be a (finite-state) labelled transition system

Every PLFD formula F over the variables in \mathcal{X} defines a set states:

$$\{s \mid s \models F\}$$

We say that F (symbolically) represents this set of states

- X ← \
- x \(\text{y} \)
- ¬X

- \bullet $\chi \leftrightarrow \gamma$
- x ∧ y
- ¬X

- $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- x \ y
- ¬X

- $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- $x \wedge y$
- ¬X

- $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- $x \wedge y$ represents $\{s_2\}$

• ¬X

- $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- $x \wedge y$ represents $\{s_2\}$
- ¬>

- $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- $x \wedge y$ represents $\{s_2\}$
- $\neg x$ represents $\{s_3, s_4\}$

Example

Let us represent the set of states in which the machine is ready to dispense a drink.

In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

Example

Let us represent the set of states in which the machine is ready to dispense a drink.

In every such state, it must be the case that

- a drink is available
- the drink dispenser is empty, and
- the coin slot contains enough coins

This can be expressed by:

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$t = \{ (s, s') \mid s, s' \in S \}$$

It takes the system from some *current state* or *pre-state s* to some *next state* or *post-state s'*

Can we represent transitions symbolically using PLFD formulas? Not immediately.

PLFD formulas over ${\mathcal X}$ can only express properties of a single state

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$t = \{ (s, s') \mid s, s' \in S \}$$

It takes the system from some *current state* or *pre-state s* to some *next state* or *post-state s'*

Can we represent transitions symbolically using PLFD formulas?

Not immediately

PLFD formulas over $\mathcal X$ can only express properties of a single state

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

A *transition* t in \mathbb{S} is a binary relation on s, i.e., a set of state pairs:

$$t = \{ (s, s') \mid s, s' \in S \}$$

It takes the system from some *current state* or *pre-state s* to some *next state* or *post-state s'*

Can we represent transitions symbolically using PLFD formulas?

Not immediately.

PLFD formulas over \mathcal{X} can only express properties of a single state

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{x' \mid x \in \mathcal{X}\}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

• A formula F over variables $\mathcal{X} \cup \mathcal{X}'$ represents symbolically a transition t if

$$t = \{ (s, s') \mid (s, s') \models F$$

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{ x' \mid x \in \mathcal{X} \}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}''$

For all
$$x \in \mathcal{X}'$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}'$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

A formula F over variables X ∪ X' represents symbolically a transition t if

$$t = \{ (s, s') \mid (s, s') \models F \}$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{ x' \mid x \in \mathcal{X} \}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

• A formula F over variables $\mathcal{X} \cup \mathcal{X}'$ represents symbolically a transition t is

$$t = \{ (s, s') \mid (s, s') \models F \}$$

Symbolic Representation of Transitions

How can we represent transitions using formulas?

- Introduce a new set of *next-state variables* $\mathcal{X}' = \{ x' \mid x \in \mathcal{X} \}$
- Treat pairs of states as interpretations of formulas over $\mathcal{X} \cup \mathcal{X}'$

For all
$$x \in \mathcal{X}$$
, $(s, s')(x) \stackrel{\text{def}}{=} s(x)$
For all $x \in \mathcal{X}$, $(s, s')(x') \stackrel{\text{def}}{=} s'(x)$

• A formula F over variables $\mathcal{X} \cup \mathcal{X}'$ represents symbolically a transition t if

$$t = \{ (s, s') \mid (s, s') \models F \}$$

Example

The transition Recharge:

 $customer = \textit{none} \land st_coffee' \land st_beer'$

Example

The transition Recharge:

$$\underbrace{\text{customer} = \textit{none}}_{\text{current state}} \ \land \ \underbrace{\text{st_coffee}' \land \text{st_beer}'}_{\text{next state}}$$

Example

The transition Recharge:

$$\underbrace{\mathsf{customer} = \mathsf{none}}_{\mathsf{current}\,\mathsf{state}} \wedge \underbrace{\mathsf{st_coffee}' \wedge \mathsf{st_beer}'}_{\mathsf{next}\,\mathsf{state}}$$

However, this formula describes a strange transition after which, for example

- coins may appear in and disappear from the slot
- drinks may appear in and disappear from the dispenser
- ...

We must express explicitly, possibly for a large number of state variables, that

the values of these variables do not change after a transition

Example

```
(coins = 0 \leftrightarrow \text{coins}' = 0) \land

(coins = 1 \leftrightarrow \text{coins}' = 1) \land

(coins = 2 \leftrightarrow \text{coins}' = 2) \land

(coins = 3 \leftrightarrow \text{coins}' = 3)
```

This is known as the *frame problem*

We must express explicitly, possibly for a large number of state variables, that

the values of these variables do not change after a transition

Example

(coins =
$$0 \leftrightarrow \text{coins}' = 0$$
) \land
(coins = $1 \leftrightarrow \text{coins}' = 1$) \land
(coins = $2 \leftrightarrow \text{coins}' = 2$) \land
(coins = $3 \leftrightarrow \text{coins}' = 3$)

This is known as the *frame problem*

We must express explicitly, possibly for a large number of state variables, that

the values of these variables do not change after a transition

Example

(coins =
$$0 \leftrightarrow \text{coins}' = 0$$
) \land
(coins = $1 \leftrightarrow \text{coins}' = 1$) \land
(coins = $2 \leftrightarrow \text{coins}' = 2$) \land
(coins = $3 \leftrightarrow \text{coins}' = 3$)

This is known as the *frame problem*

We must express explicitly, possibly for a large number of state variables, that

the values of these variables do not change after a transition

Example

(coins = 0
$$\leftrightarrow$$
 coins' = 0) \land
(coins = 1 \leftrightarrow coins' = 1) \land
(coins = 2 \leftrightarrow coins' = 2) \land
(coins = 3 \leftrightarrow coins' = 3)

This is known as the *frame problem*

The frame formula

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Notation:

When dom(x) = dom(y),

For $\{x_1,\ldots,x_n\}\subseteq\mathcal{X}$

$$only(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x^n$$

 $only(x_1, ..., x_n)$ can be used in symbolic transitions to state that $x_1, ..., x_n$ are the only variables whose values may change in the transition

The frame formula

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Notation:

When dom(x) = dom(y),

$$x \neq v \stackrel{\text{def}}{=} \neg(x = v)$$

 $x = y \stackrel{\text{def}}{=} \bigwedge_{v \in dom(x)} (x = v \leftrightarrow y = v)$

For $\{x_1,\ldots,x_n\}\subseteq\mathcal{X}$,

$$only(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x'$$

 $only(x_1, ..., x_n)$ can be used in symbolic transitions to state that $x_1, ..., x_n$ are the only variables whose values may change in the transition

The frame formula

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Notation:

When dom(x) = dom(y),

$$x \neq v \stackrel{\text{def}}{=} \neg(x = v)$$

 $x = y \stackrel{\text{def}}{=} \bigwedge_{v \in dom(x)} (x = v \leftrightarrow y = v)$

For $\{x_1,\ldots,x_n\}\subseteq\mathcal{X}$,

$$only(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{x \in \mathcal{X} \setminus \{x_1,\ldots,x_n\}} x = x'$$

 $only(x_1, ..., x_n)$ can be used in symbolic transitions to state that $x_1, ..., x_n$ are the only variables whose values may change in the transition

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Typical symbolic representation of a transition t in \mathbb{S} :

A PLFD formula $F_1 \wedge F_2$ where

- 1. F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Typical symbolic representation of a transition t in \mathbb{S} :

A PLFD formula $F_1 \wedge F_2$ where

- 1. F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Typical symbolic representation of a transition t in \mathbb{S} :

A PLFD formula $F_1 \wedge F_2$ where

- 1. F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

$$\mathbb{S} = (S, In, T, \mathcal{X}, dom, L)$$

Typical symbolic representation of a transition t in \mathbb{S} :

A PLFD formula $F_1 \wedge F_2$ where

- 1. F_1 is a formula over variables \mathcal{X} expressing t's precondition
- 2. F_2 is a formula over $\mathcal{X} \cup \mathcal{X}'$ expressing t's postcondition

precondition: a necessary condition for a state of $\mathbb S$ of to be a pre-state of t *postcondition*: a condition relating t's post-states to their corresponding pre-state

Transitions for the Vending Machine

- 1. Recharge, results in the drink storage having both beer and coffee
- 2. Customer_arrives, corresponds to a customer arriving at the machine
- 3. Customer_leaves, corresponds to the customer's leaving
- 4. Coin_insert, corresponds to the customer's inserting a coin in the machine
- 5. Dispense_beer, results in the customer's getting a can of beer
- 6. Dispense_coffee, results in the customer's getting a cup of coffee
- Take_drink, corresponds to the customer's removing a drink from the dispenser

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
precondition
                                                 postcondition
                        \stackrel{\text{def}}{=} customer = none \land st\_coffee' \land st\_beer'
          Recharge
                                                       ∧ onlv(st coffee. st beer)
                        \stackrel{\mathrm{def}}{=} customer = none \land customer' \neq none
Customer arrives
                                                      ∧ only(customer)
Customer leaves \stackrel{\text{def}}{=} customer \neq none \wedge customer' = none
                                                      \land only(customer)
       Coin_insert \stackrel{\text{def}}{=} customer \neq none \wedge (coins = 0 \rightarrow coins' = 1)
                               coins \neq 3 \land (coins = 1 \rightarrow coins' = 2)
                                                      \land (coins = 2 \rightarrow coins' = 3)
                                                      ∧ only(coins)
```

```
Dispense_beer \stackrel{\mathrm{def}}{=} customer = student \land st\_beer \land disp = none \land (coins = 2 \lor coins = 3) \land (coins = 2 \rightarrow coins' = 0) \land (coins = 3 \rightarrow coins' = 1) \land disp' = beer \land only(st\_beer, disp, coins)
```

```
Dispense_beer \stackrel{\mathrm{def}}{=} customer = student \land st\_beer \land disp = none \land (coins = 2 \lor coins = 3) \land (coins = 2 \to coins' = 0) \land (coins = 3 \to coins' = 1) \land disp' = beer \land only(st\_beer, disp, coins)
```

```
Dispense beer \stackrel{\text{def}}{=} customer = student \wedge st beer \wedge
                                disp = none \land (coins = 2 \lor coins = 3) \land
                                 (coins = 2 \rightarrow coins' = 0) \land
                                 (coins = 3 \rightarrow coins' = 1) \land
                                disp' = beer \land only(st beer, disp, coins)
Dispense coffee
                                customer = prof \land st\_coffee \land
                                disp = none \land coins \neq 0 \land
                                 (coins = 1 \rightarrow coins' = 0) \land
                                 (coins = 2 \rightarrow coins' = 1) \land
                                 (coins = 3 \rightarrow coins' = 2) \land
                                disp' = coffee \land only(st\_coffee, disp, coins)
```

```
Dispense beer \stackrel{\text{def}}{=} customer = student \wedge st beer \wedge
                                disp = none \land (coins = 2 \lor coins = 3) \land
                                 (coins = 2 \rightarrow coins' = 0) \land
                                 (coins = 3 \rightarrow coins' = 1) \land
                                disp' = beer \land only(st beer, disp, coins)
Dispense coffee
                                customer = prof \land st\_coffee \land
                                disp = none \land coins \neq 0 \land
                                 (coins = 1 \rightarrow coins' = 0) \land
                                 (coins = 2 \rightarrow coins' = 1) \land
                                 (coins = 3 \rightarrow coins' = 2) \land
                                disp' = coffee \land only(st\_coffee, disp, coins)
```

```
Dispense beer \stackrel{\text{def}}{=} customer = student \wedge st beer \wedge
                                 disp = none \land (coins = 2 \lor coins = 3) \land
                                 (coins = 2 \rightarrow coins' = 0) \land
                                 (coins = 3 \rightarrow coins' = 1) \land
                                 disp' = beer \land only(st beer, disp, coins)
Dispense_coffee = def
                               customer = prof \land st\_coffee \land
                                 disp = none \land coins \neq 0 \land
                                 (coins = 1 \rightarrow coins' = 0) \land
                                 (coins = 2 \rightarrow coins' = 1) \land
                                 (coins = 3 \rightarrow coins' = 2) \land
                                 disp' = coffee \land only(st\_coffee, disp, coins)
      Take drink \stackrel{\mathrm{def}}{=}
                               customer \neq none \wedge disp \neq none \wedge
                                 disp' = none \land onlv(disp)
```

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- The machine cannot dispense drinks forever without recharging
- Eventually, the machine runs out of beer.
- If coffee is dispensed the machine must have had coins right before.
- 6.If the machine is never recharged it will never dispense drinks.
- 7. ...

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- The machine cannot dispense drinks forever without recharging
- Eventually, the machine runs out of beer.
- 5. If coffee is dispensed the machine must have had coins right before.
- 6.If the machine is never recharged it will never dispense drinks.
- 7. ...

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- 3. The machine cannot dispense drinks forever without recharging.
- Eventually, the machine runs out of beer.
- 5. If coffee is dispensed the machine must have had coins right before
- 6.If the machine is never recharged it will never dispense drinks.
- 7. ...

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of beer.
- If coffee is dispensed the machine must have had coins right before
- If the machine is never recharged it will never dispense drinks.
- 7. ...

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of beer.
- 5. If coffee is dispensed the machine must have had coins right before.
- 6.If the machine is never recharged it will never dispense drinks.
- 7. ...

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of beer.
- 5. If coffee is dispensed the machine must have had coins right before.
- 6. If the machine is never recharged it will never dispense drinks.

- 1. There is no state in which professor and student are both customers.
- 2. Students always get beer.
- 3. The machine cannot dispense drinks forever without recharging.
- 4. Eventually, the machine runs out of beer.
- 5. If coffee is dispensed the machine must have had coins right before.
- 6. If the machine is never recharged it will never dispense drinks.
- 7. ...