CS:4350 Logic in Computer Science

Quantified Boolean Formulas

Cesare Tinelli

Spring 2021

L

ThE m

UNIVERSITY
OF lowa

1/60

Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2/60

Outline

Quantified Boolean Formulas
Syntax and Semantics
Free and Bound Variables
Prenex Form

Satisfiability Checking
Splitting
Conjunctive Normal Form
DPLL

QBF and BDDs

3/60

Two-Player Games

Does she have a winning
strategy?

4/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn

5/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn

There are two players: P and Q

5/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn
There are two players: P and Q

At step k each player makes a move:

5/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn
There are two players: P and Q

At step k each player makes a move:
1. the player P can choose a Boolean value for the variable py

5/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn
There are two players: P and Q

At step k each player makes a move:
1. the player P can choose a Boolean value for the variable py
2. the player Q can choose a Boolean value for the variable g,

5/60

Two-Player Games

Given: a propositional formula G with variables p;, gy, . . ., Pn,qn
There are two players: P and Q

At step k each player makes a move:
1. the player P can choose a Boolean value for the variable py
2. the player Q can choose a Boolean value for the variable g,

Player P wins if after n steps the chosen values satisfy formula G

5/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome

1. p

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome

1. P P wins with { p; — 1}

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome

1. p P wins with { p; — 1}
2. pr—aq

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome

1. P P wins with { p; — 1}
2. pi— @ P wins with { p; — 0}

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome
. P P wins with { p; — 1}
2. pi— @ P wins with { p; — 0}

3. g1~

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome
. P P wins with { p; — 1}
2. pi— @ P wins with { p; — 0}

3. g—0q G has no p; vars, P’s choices are immaterial

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

g — Qi

G Outcome
1. P P wins with { p; — 1}
2. pi— @ P wins with { p; — 0}
3. g—0q G has no p; vars, P’s choices are immaterial
4,

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

g — Qi

G Outcome
1. P P wins with { p; — 1}
2. pi— @ P wins with { p; — 0}
3. g—0q G has no p; vars, P’s choices are immaterial
4,

Gisvalid, P always wins!

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome
1. P P wins with { p; — 1}
2. pr—q P wins with { p; — 0 }
3. g—0q G has no p; vars, P’s choices are immaterial
4. g, — ¢ Gisvalid, P always wins!
3. pi/ATp

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome
1. P P wins with { p; — 1}
2. pr—q P wins with { p; — 0 }
3. g—0q G has no p; vars, P’s choices are immaterial
4. g, — ¢ Gisvalid, P always wins!
5 piA—p; G is unsatisfiable, Q always wins!

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

G Outcome
1. P P wins with { p; — 1}
2. pr—q P wins with { p; — 0 }
3. g—0q G has no p; vars, P’s choices are immaterial
4. g, — ¢ Gisvalid, P always wins!
5 piA—p; G is unsatisfiable, Q always wins!
6. pi < q

6/60

Suppose Both Players Make no Errors: Who Wins?

Consider several special cases:

P1 < h

G Outcome
1. P P wins with { p; — 1}
2. pr—q P wins with { p; — 0 }
3. g—0q G has no p; vars, P’s choices are immaterial
4. g, — ¢ Gisvalid, P always wins!
5 piA—p; G is unsatisfiable, Q always wins!
6.

each move by P can be beaten by Q

6/60

Winning Strategy

Problem: does P have a winning strategy?

7/60

Winning Strategy

Problem: does P have a winning strategy?
P has a winning strategy

iff

there exists a move for P (a value for p;) such that

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy

iff

there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,;) such that

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,;) such that
for all moves of Q (values for g,)

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,;) such that
for all moves of Q (values for g,)

the formula G is satisfiable

7/60

Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
iff
there exists a move for P (a value for p;) such that
for all moves of Q (values for g;)
there exists a move for P (a value for p,) such that
for all moves of Q (values for g;)

there exists a move for P (a value for p,;) such that
for all moves of Q (values for g,)

the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

JpiVaq13p.vaq, . .. IpVq,G

7/60

Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and L areformulas
e |f FisaPF, then —Fisaformula

°
=
n

..... F,, are formulas, wheren > 2,
then (F A--- AFy)and (F; V-V F,) are formulas

If Fand G are formulas, then (F — G) and (F <+ G) are formulas

8/60

Quantified Boolean Formulas

Propositional Formula:
® Every Boolean variable is a (propositional) formula
® T and | areformulas
e |f FisaPF,then —Fisaformula

o IfF., ..., F,, are formulas, wheren > 2,
then (F A--- AFy)and (F; V-V F,) are formulas

¢ If Fand G are formulas, then (F — G) and (F <> G) are formulas

Quantified Boolean Formulas (QBFs):
® Every propositional formula is a QBF

® |f pisaBoolean variable and Fis a QBF,
then VpF and IpF are QBFs

8/60

Quantifiers

e /s called the universal quantifier (symbol)
e is called the existential quantifier (symbol)
® /pFisread as “forall p, F”

® pFisread as “there exists p such that F” or “for some p, F”

9/60

Changing interpretations pointwise

Let 7 be an interpretation

Notation:

A
‘ =N

{ I(q), ifp#q
b, ifp=g

10/60

Changing interpretations pointwise

Let 7 be an interpretation

Notation:

Zlp bl(q) = { }1 P2

Example: 7 = {p+>1,g+> 0,r+> 1}

Zlg—1] = {p—=1,g—1r—1}
Z[g—0] = {p—=1,9g—0r—1} =T
Ilp—0] = {p— 0,9 0,r—1}

10/60

QBF Semantics

S S o
N

1/60

QBF Semantics

® NP v A W N o

I(T)=1andZ(L) =0

(

T(Fy A ANFy) =T10ff Z(F;) = 1foralli

IZ(FyV -\ F,) = 1iff Z(F;) = 1forsome

T(—F)=1Iiff Z(F) =0

I(F — G) =1iff Z(F) = 00orZ(G) = 1

I(F + G) =1iff Z(F) = Z(G)

Z(VpF) =1 iff Z|p — O](F and Z[p — 1|(F)
(

) =1
- Z(3pF) = 1 iff Z[p — 0(F) = TorZ[p — 1](F) =

1

Evaluating a formula: and-or trees

How to evaluate Vp-g(p <+ q) on the interpretation { p — 1.+ 0 }

12/60

Evaluating a formula: and-or trees

How to evaluate Vp-g(p <+ q) on the interpretation { p — 1.+ 0 }

Notation: Denote any interpretation { p — by, q + by } by Zp,p,

12/60

Evaluating a formula: and-or trees

How to evaluate Vp-g(p <+ q) on the interpretation { p — 1.+ 0 }

Notation: Denote any interpretation { p — by, q + by } by Zp,p,

T = Yp3q(p < q)

12/60

Evaluating a formula: and-or trees

How to evaluate Vp-g(p <+ q) on the interpretation { p 1, +> 0 }

Notation: Denote any interpretation { p — by, q + by } by Zp,p,

T = Yp3q(p < q)

=

Zoo = 3q(p < q)
Tho = 39(p < q)

and

12/60

Evaluating a formula: and-or trees

How to evaluate Vp-g(p <+ q) on the interpretation { p 1, +> 0 }

Notation: Denote any interpretation { p — by, q + by } by Zp,p,

Zoo = 3q(p < q)
Tio = Vp3 YRS & and
0 = Yp3q(p < q) To = Jq(p ¢ q)

Too =p+q

or
InkEp+q

and

TwolEpeq

or
InEp+q

12/60

Evaluating a formula: and-or trees

Tyo = VYp3q(p < q)

SN

Too =39(p <> q) Tyo = 39(p <> q)

A

InfFp+qg InFEp<q TuEpeqg InEpoq

13/60

Evaluating a formula
Notation: Denote any interpretation { p ~— by, q > b, } by Zp,p,

Use wildcards * to denote any Boolean value

T« = Yp3q(p < q)

14/60

Evaluating a formula

Notation: Denote any interpretation { p ~— by, q > b, } by Zp,p,

Use wildcards * to denote any Boolean value

L EVpIap < q) =

14/60

Evaluating a formula

Notation: Denote any interpretation { p ~— by, q > b, } by Zp,p,
Use wildcards * to denote any Boolean value

Tow = >
T.. =EVpIq(p < q) < I:)* “: 33((59 g)) and
Too =p + q or
InEp<rq
& and
ToFEpP<q
or
InfEp+q

14/60

Evaluating a formula

Notation:

T« = Yp3q(p < q)

-~

To. =3a(p <) 4

Denote any interpretation { p + by, q + by } by Zp,p,
Use wildcards * to denote any Boolean value

T E 3q(p < q)
Loo P q
InEp<q
ToFEp+q

or
InEpP+q

and

The variables p and q are bound by the quantifiers Vp and g, so
the value of the formula does not depend on the values p and g

|

14/60

Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
e ... F,, are the immediate subformulasof /;, A -+ - A F,,
® ..., F, are the immediate subformulasof /; vV - - - V F,,
® [and F; are theimmediate subformulas of /;, — F,
® [and F, are the immediate subformulas of F; <+ F,

15/60

Subformula

Propositional formulas:
® Fisthe immediate subformula of —F
® [..., F,, are the immediate subformulasof /;, A -+ - A F,,
® ..., F, are the immediate subformulasof /; vV - - - V F,,
® [and F; are theimmediate subformulas of /;, — F,
® [and F; are the immediate subformulas of F; <+ F,

Quantified Boolean formulas:
® fisthe immediate subformula of VpF and of 9pF

15/60

Positions and polarity by example

4>
PR
p v
VN
Vq r
\1
Jp

p—Vqip(q < p)Vr

Positions and polarity by example

4>
VX
p Y
VN
Vq r
\ 1
Jp Floa =Vq3p(q < p)

p—Vqip(q < p)Vr

16/60

Positions and polarity by example

P/HX\/
e

Jp Fl21 =Vq3p(q < p)

p—Vqip(q < p)Vr

Vg

Flaiiia=gq

16/60

Positions and Polarity

LetF|, =A

Propositional formulas:
® |f Ahasthe form —4,,
then w.1is a positionin F, F| . = ' 4, and pol(F,m.1) of —pol(F,)
e IfAhastheformA; A ANA,orAy V-~ VA andie {1,..., nt,

then 7.jis a position in F and pol(F, .i) o pol(F,)

17/60

Positions and Polarity

LetF|, =A

Propositional formulas:
® |f Ahasthe form —4,,
then 7.1is a positionin £, F|, ; ““ A, and pol(F,m.1) def —pol(F,)
e IfAhastheformA; A - ANA,orAy V-~V Ayandie {1,...,n},
then ./ is a position in F and pol(F. i) " pol(F. =)

Quantified Boolean formulas:
e |f A has the form VpB or 9pB,
w1 2 Band pol(F, w.1) % pol(F,)

then 7.1is a positionin F, F

17/60

Free and bound variables by example
*>
e >
(free)
vq \ r

’

p—Vq3p(q <> p)Vr

(free)

1
1

‘ YN
1
1
|
\

p
(bound) (bound)

18/60

Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)

intk=1>3j7 i-3j: j-1;
return a + k

sum = i + offset_sym_diff(3,4);

19/60

Free and bound occurrences in programs

® Free variables in formulas are analogous to global variables in programs

® Bound variables in formulas are analogous to local variables in programs

binding
int offﬁig‘s§aj;;ff(in;\;?jint j)
{
intk=1i>37 1i-3j: j-1;
return a + k
bound
sum = i +|offset_sym_diff(3,4);

N\

free

19/60

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 77, such that F|;, has the form VpG or JpG

20/60

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 77, such that F|;, has the form VpG or JpG

A bound occurrence of p is an occurrence in the scope of Vp or Jp

20/60

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7

The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 77, such that F|;, has the form VpG or JpG

A bound occurrence of p is an occurrence in the scope of Vp or Jp

Free occurrence: not bound

20/60

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7
The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 77, such that F|;, has the form VpG or 9pG

A bound occurrence of p is an occurrence in the scope of Vp or Jp

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

20/60

Free and bound occurrences of variables

Let F be a QBF and p be atom of at position 7
The occurrence of p at position 7 in F is bound if = can be represented as a
concatenation of two strings 77, such that F|;, has the form VpG or 9pG

A bound occurrence of p is an occurrence in the scope of Vp or Jp

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables

20/60

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:
Lemmal
Suppose 7,(p) = I,(p) for all free variables p of F. Then

T = Fiff T, = F

21/60

Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemmal
Suppose 7,(p) = I,(p) for all free variables p of F. Then

LEFIfLE=F
Theorem 2

Let F be a closed formula and let T, 7, be two interpretations. Then

21/60

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

22/60

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

There is no difference between these notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T = F; (ii) F is satisfiable; and (iii) F is valid.

22/60

Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

There is no difference between these notions for closed formulas:

Lemma 3
For every interpretation 7 and closed formula F the following statements are
equivalent: (i) T = F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma4
Let F be a formula with free variables p1, . . ., Pn-
e [jssatisfiable iff Ip, ... dp,F is satisfiable/valid
® [jsvalid iff the formula¥p, ...Vp,F is satisfiable/valid

22/60

Substitutions for propositional formulas

Substitution: Fg: denotes the formula obtained from F by replacing all occurrences
of the variable p by G

23/60

Substitutions for propositional formulas

Substitution: Fg: denotes the formula obtained from F by replacing all occurrences
of the variable p by G

Example:

((pvs)A(g—p)S") = ((LAS)VS)A(qg— (IAs))

23/60

Substitutions for propositional formulas

Substitution: Fg: denotes the formula obtained from F by replacing all occurrences
of the variable p by G

Example:

((PVs)A(g—p)S™ = ((LAs)VS) A (g — (IAS))

Property: Applying any substitution to a valid formula results in a valid formula

23/60

Substitution for quantified formulas

Some problems...

24/60

Substitution for quantified formulas

Some problems...

Consider Jg(—p «» q)

24/60

Substitution for quantified formulas

Some problems...

Consider Jg(—p «» q)

We cannot simply replace variables by formulas any more:

AHr—r)(-p<r—r)MN

24/60

Substitution for quantified formulas

Some problems...
Consider Jg(—p «» q)

We cannot simply replace variables by formulas any more:
Hr—=nr(-pcr—=r)M

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

Vp((p = q) vV -p)A(qV(g—p))

24/60

Renaming bound variables

Notation: -¥: any of 4,V

25/60

Renaming bound variables
Notation: ¥: any of 4,

Renaming bound variables in F[/pG |:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

25/60

Renaming bound variables
Notation: ¥: any of 4,

Renaming bound variables in F[/pG |:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Jr(Vp ((p—r)Ap))Vp renameptoqobtaining

Ir(vg ((g—r)AqQ))Vp

25/60

Renaming bound variables
Notation: ¥: any of 4,

Renaming bound variables in F[/pG |:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by g, obtaining G’
3. Consider F| F/qG’ |

Example:
Jr(Vp ((p—r)Ap))Vp renameptoqobtaining

Ir(vg ((g—r)AqQ))Vp

Lemma5
F[¥pG| = F[¥qG' |

25/60

Free and bound variables by example
*>
e >
(free)
vq \ r

’

p—Vq3p(q <> p)Vr

(free)

1
1

‘ YN
1
1
|
\

p
(bound) (bound)

26/60

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier /p in F

27/60

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier /p in F

Any formula can be rectified by renaming its bound variables

27/60

Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier /p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation Fg for substitutions into a rectified formula F,
assuming p occurs only freein F

27/60

Rectification: Example

p— 3p(p AVp(pVr— —p))

28/60

Rectification: Example

p—3Ip(pA Yp(pVr— —p))

28/60

Rectification: Example

p—3IppA Yp(pVr——p))=

p— 3p(p AVpi(pr VI — —py))

28/60

Rectification: Example

p—3IppA Yp(pVr——p))=

p— 3p(p AVpi(pr VI — —p)) =

p — 3pa(p2 AVpi(pr V r — —p1))

28/60

Another problem

dg(—p +» q) Thisformulaisvalid (whatever p is, choose the opposite for g)

29/60

Another problem

dg(—p +» q) Thisformulaisvalid (whatever p is, choose the opposite for g)

substitute p by g

29/60

Another problem

dg(—p +» q) Thisformulaisvalid (whatever p is, choose the opposite for g)
substitute p by g

d9(—q <> q) This formula is unsatisfiable!

29/60

Another problem

dg(—p +» q) Thisformulaisvalid (whatever p is, choose the opposite for g)
substitute p by g

d9(—q <> q) This formula is unsatisfiable!

[Substitutions below a quantifier should not lead to variable capturing]

29/60

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in Fg

30/60

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in Fg

(In previous example, (Jg(—p <+ q)); does not satisfy this requirement)

30/60

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in Fg

(In previous example, (Ig(—p < q)); does not satisfy this requirement)
Uniform solution: renaming of bound variables

Example:
Since Jdg(—p <+ q) = Jr(—p <> 1)
we can use (Jr(—p < r)); instead of (3g(—p <+ q));

30/60

Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in Fg

(In previous example, (Jg(—p <+ q)); does not satisfy this requirement)

e

Unifor

Examp
Since
we can

From now on, we always assume that:
1. formulas are rectified
2. all substitutions satisfy the requirement above

30/60

Equivalent replacement

Lemma 6
Let 7 be an interpretationand 7 = F; <+ F,. Then T |= G|F;| <+ G|F,].

31/60

Equivalent replacement

Lemma 6
Let 7 be an interpretationand 7 = F; <+ F,. Then T |= G|F;| <+ G|F,].

Theorem 7 (Equivalent Replacement)
Let F; = F,. Then G[F;]| = G[F,].

31/60

More equivalences

Theorem 8
The following holds for all QBFs F:

1. VprzF = VpZVpWF
2. Jpidpaf = dppdpiF
3. WpF = F if p does not occur free in F

32/60

More equivalences

Theorem 8
The following holds for all QBFs F:

1. VprzF = VpZVpWF
2. Jpidpaf = dppdpiF
3. WpF = F if p does not occur free in F

Note: In general, -p\Vp,F # Vp,dpiF

32/60

More equivalences

Theorem 8
The following holds for all QBFs F:

1. VprzF = VpZVpWF
2. Jpidpaf = dppdpiF
3. WpF = F if p does not occur free in F

Note: In general, -p\Vp,F # Vp,dpiF
Example:
® vpdg(p <+ q) =T

32/60

More equivalences

Theorem 8
The following holds for all QBFs F:

1. VprzF = VpZVpWF
2. Jpidpaf = dppdpiF
3. WpF = F if p does not occur free in F

Note: In general, -p\Vp,F # Vp,dpiF
Example:

® Vpdg(p < q) =T

® dgvp(p <+ q) =L

32/60

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

33/60

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form
quantifier prefix

——
Fipr - - Fnpn \G,_/

matrix

with G quantifier-free

33/60

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

quantifier prefix

——
Fipr - - Fnpn \G,_/

matrix

with G quantifier-free

Outermost prefix of 3,p; - - - ¥,p,G: the longest subsequence ¥/,
F1py -+ Wppy such that 3, = - = 3,

~-~3ka of

33/60

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

quantifier prefix

e N
Fipr - - Fnpn \G,_/

matrix

with G quantifier-free

Outermost prefix of 3,p; - - - ¥,p,G: the longest subsequence ¥/,
F1py -+ Wppy such that 3, = - = 3,

Example
® outermost prefix of VpvVgIr(r A p — q): VpVgq
® outermost prefix of IpvVgIr(r Ap — q): Ip

~-~37kpk of

33/60

Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

quantifier prefix

——
Fipr - - Fnpn \G,_/

matrix
with G quantifier-free

Outermost prefix of ¥/,p; - - - ¥/,p, G: the longest subsequence ¥/ p;
Fpr - Wop, suchthat %, = - = ¥/,

Aformula Fis a prenex form of a formula G if F is prenexand F = G

~-~3ka of

33/60

Conversion to prenex form, Example |

| !
Hq/ﬁ\ Y >/ \ v >/ \\/ >/ \Hr ‘,»
A AN AN AT N
LA A AN LAY
| | | | |
) / / /)

34/60

Conversion to prenex form, Example |

Jq(g — p) = ~Vr(r = p)Vp
Vq((g — p) — —Vr(r — p) vV p)
va((g — p) — 3r=(r — p) vV p)

¢l

vq((g — p) — 3r(=(r — p) vV p))
vq3r((g — p) = —(r — p) Vp)

35/60

Prenexing rules

(FpF)AN---ANFy = Fp(F A AFp)
(FpF)V---VF, = Fp(FV---VF,)
(VpF) — F, = Jp(F — F) Fr — (3pF) = Ip(F — F)
(3IpF1) — F, = Vp(F — F) Fr — (VYpFy) = Yp(Fy — F,)
—VpF = dp—F —dpF = Vp—F

36/60

Conversion to prenex form, Example I

Jq(q = p) = —Vr(r = p)Vp
3q(g — p) = 3Ir=(r—p)Vp
Jq(qg — p) = 3r(=(r — p) Vp)
3r(3q(qg — p) = ~(r = p) Vp)
Irva((g — p) — ~(r = p) Vp)

¢l

37/60

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF
We will see:

® Splitting
® DPLL

38/60

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF
We will see:

® Splitting
e DPLL
Recall:
1. F(pr,. ., pn) is satisfiable iff Sp;--- Jp,F(p1, ..., py)is satisfiable
2. F(pr,.... pn) is valid iff Vo1 -VpaF(ps,...,pn)issatisfiable

3. Aclosed QBF is either always true (valid) or false (unsatisfiable)

38/60

Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF
We will see:

® Splitting
e DPLL
Recall:
1. F(pr,. ., pn) is satisfiable iff Sp;--- Jp,F(p1, ..., py)is satisfiable
2. F(pr,.... pn) is valid iff Vo1 -VpaF(ps,...,pn)issatisfiable

3. Aclosed QBF is either always true (valid) or false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable

38/60

Splitting: foundations

Lemma9
® Aclosed formula VpF evaluates to true iff both Fp‘ and F; evaluate to true.

® Aclosed formula 3pF evaluates to true iff either FpL or FpT evaluates to true.

39/60

Splitting

Simplification rules for T:

-T = 1
TARAN---AFy = A AF,
TVRV---VF, =T
F—T =T T —=F=F
F<T=F T+ F=F

Simplification rules for L:

-1l = T
LARAN-ANFp = L
1LVFAHV---VF, = [V---VF,
F— 1 = —=F 1l—=F=T
F< 1L = -F L« F= —F

40/60

Splitting

Simplification rules for T:

-T = 1
TARAN---AFy = A AF,
TVRV---VF, =T
F—T =T T —=F=F
F<T=F T+ F=F
VpT = T
dpT = T

Simplification rules for L:

L =T
LARAN-ANFp = L
1VFARV---VF, = RV---VF,
F— 1 = —=F 1l —=F=T
F< 1l = —-F 1<+ F = —F
Vpl = L
dpl = L

40/60

Splitting, Example

Vp3q(p < q)

41/60

Splitting, Example

41/60

1

Splitting, Example

41/60

1

Splitting, Example

41/60

Splitting, Example

Vp3q(p < q)
S & |
1 3q(-q) (9)

/v
g=20

T

41/60

Splitting, Example

Vp3q(p < q)
/ xl
1 39(—q)

v /

41/60

Splitting, Example

Vp3q(p < q)
1 39(—q) 1

v /

41/60

Splitting, Example

Vpdg(p < q) 1
1 39(—q) 1

A

il 1T

41/60

Splitting, Example

Vp3q(p < q) 1 Jqvp(p < q)
1 3g(—q) 1

A

il 1T

41/60

Splitting, Example

Vp3q(p <> q) 1 Jqvp(p < q)
/ \ / Y,
qg=20
1 Jg9(—q) 1 Vp(—p)

v /

41/60

Splitting, Example

41/60

Splitting, Example

41/60

Splitting, Example

41/60

Splitting, Example

41/60

Splitting, Example

41/60

Splitting, Example

41/60

Splitting, Example

Vpﬂqpﬁq 1 ﬂququ 0
1 3g(—q) 1 0 Vp(—p) 0
7/ 7/ 7/ 7/
0 1

To minimize search the selection of variable values is best seen as a two-player
game:

by selecting a value for Jq one is trying to make the formula true,
by selecting a value for Vp one is trying to make the formula false

41/60

Splitting algorithm

Notation: ifp = (py, ..., px) then =/pF denotes p; - - - ¥piF

42/60

Splitting algorithm

procedure splitting(F)
input: closed rectified prenex formula F
output: Oor1
parameters: function select_variable_value [/ selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it
F := simplify(F) // apply extended simplification rules to completion
if F = | thenreturn0
if - = T thenreturn1
// else F has the form =/pF" where p is F’s outermost prefix
(p,b) := select_variable_value(F)
Let G be obtained from F by deleting p from p
ifb=0thenA := 1:B := TelseA := T:B := L
b := splitting(Gj)
case (b, V) of
(0,V) = return 0
(0.9) = return splitting(Gy,)
(1,V) = return splitting(Gp)
(1.3) = return 1

end
42/60

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

43/60

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

43/60

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula £ is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or
® it has the form
Fipr--- 3%7Pn(C1 ANERA Cm)

where Gy, C,, are clauses

43/60

Conjunctive Normal Form

For more efficient algorithms we need QBFs to be in a convenient normal form
Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula £ is in Conjunctive Normal Form (CNF), if
® jtiseither | ,or T,or
® it has the form
Fp1 - Fopa(G A -+ A C)

where Gy, C,, are clauses

Example:
Yp3g3s ((—p VsV q) A(sV —q) A -s))

43/60

CNF rules

Prenexing rules
+

propositional CNF rules:

(FA-

F+ G

F—G

—(FAG)

—(F V G)

__\F
“AFR)V G V-V G,

O

(=FV G) A (=G VF)
-FVG

—-FV =G

—F A =G

F
(RAVGV---VG,) A
A\
(FmV G V---VGp)

44/60

DPLL for quantified boolean formulas

Input:
Q: quantifier sequence ¥/p, - -- ¥,p,
S: set of clauses with variables fromp,, P,

Main components:
Unit propagation
Splitting on literals

45/60

Unit Propagation

Q: quantifier sequence
St current clause set

Propositional formulas:

For each unit clause L in S
1. remove all clauses containing literal L from S
2. remove every literal from remaining clauses

46 /60

Unit Propagation

Q: quantifier sequence
St current clause set

Propositional formulas:

For each unit clause L in S
1. remove all clauses containing literal L from S
2. remove every literal from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or —p

46 /60

Unit Propagation

Q: quantifier sequence
St current clause set

Propositional formulas:

For each unit clause L in S
1. remove all clauses containing literal L from S
2. remove every literal from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains =p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

46 /60

Unit Propagation

Q: quantifier sequence
S: current clause set
Propositional formulas:
For each unit clause L in S
1. remove all clauses containing literal L from S
2. remove every literal from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or —p

¢ |f O does not contain p or contains =p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

® otherwise (Q contains Vp),add [to S

46 /60

DPLL algorithm

Why do we add [1to Swhen Qis Vp=/,p; - - - &,pm and
Sis{p,Cy,..., Cptlor{—p,Cp,..., Co })?

47/60

DPLL algorithm

Why do we add [to Swhen Qis Vp=/p; - - - ¥,pm, and
Sis{p.C,....Ch}lor{—p,Ci,....Ch})?

Because
1. Theintended input formula is
G = VpIqi- Fmdm(P ACI A A Cp)

47/60

DPLL algorithm

Why do we add [to Swhen Qis Vp=/p; - - - ¥,pm, and
Sis{p,C,....Ch}lor{—p,Ci,....Cq})?

Because
1. Theintended input formula is
G = VpF g FmGm(p ACI A+ A Ci)
2. 6= g Hnm((PACA - ACp)g A(PAC A+~ ACr),)

47/60

DPLL algorithm

Why do we add [to Swhen Qis Vp=/p; - - - ¥,pm, and

Sis{p,Cy,....Cp}(or{—p,C,

Because
1. Theintended input formula is
G = VpIq1 FnGm(p A Ci A+ A Crn)

2.6 =3¢ HnGn((PAGA - ACn)y A(PACA -

= G- FmGm(LA(G A ACn)y AP ACA

ACm)])
A Cm)pT)

47/60

DPLL algorithm

Why do we add [to Swhen Qis Vp=/p; - - - ¥,pm, and
SIS{pC1CH}(Or{_‘pC1CH})?

Because
1. Theintended input formula is
G = VpF g FmGm(p ACI A+ A Ci)

2. 6= g Hnm((PACA - ACp)g A(PAC A+~ ACr),)
g FmGm(LA(CIA ACn)y APACIA---ACrm)y)
371q1"'3V/QOJ—

1

47/60

DPLL algorithm

Why do we add [to Swhen Qis Vp=/p; - - - ¥,pm, and
SIS{pC1CH}(Or{_‘pC1CH})?

Because
1. Theintended input formula is
G = VpF g FmGm(p ACI A+ A Ci)

2. 6= g Hnm((PACA - ACp)g A(PAC A+~ ACr),)
g FmGm(LA(CIA ACn)y APACIA---ACrm)y)
371q1"'3V/QOJ—

1

47/60

DPLL algorithm

Why do we add [1to Swhen Qis Vp=/,p; - - - &,pm and
Sis{p,Cy,..., Cptlor{—p,Cp,..., Co })?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

47/60

DPLL algorithm

Why do we add [1to Swhen Qis Vp=/,p; - - - &,pm and
Sis{p,Cy,..., Cptlor{—p,Cp,..., Co })?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the whole CNF

47/60

DPLL algorithm

Why do we add [1to Swhen Qis Vp=/,p; - - - &,pm and
Sis{p,Cy,..., Cptlor{—p,Cp,..., Co })?

Alternatively, using the game metaphor, because

the V-player wants to falsify the formula

Winning move for the V-player:

select the value for p that falsifies the unit clause p, and hence the whole CNF

(argument is similar for { —p. Ci. ..., Ch })

47/60

DPLL, Example

Jpvqar
pvVqg\V-r
pV-qVr
oV qVr
—pVqV-r

48 /60

DPLL, Example

vYq3ir
P
pVvq\V-r
pV-qVr
—pVvqgVvr
—pVaq\V-r

P

JpVq3r
pVvVaq\V-r
pV—qVr
—pVqVvr

-pVqV-r

48/60

DPLL, Example

Yq3r
qV —r
—qVr

X

Yq3r
P
pVvq\V-r
pV-qVr
—pVvqgVvr
pVqV-r

P

Jpvq3r
pvq\V-r
pV-qVr
-pVqgVvr

-pVqV-r

48/60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

X

o

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

X

o

e — — 4

=

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

X

o

e — — 4

=

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

o

e — — 4

=

dr

qVv-r
~qVr

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

o

e — — 4

=

dr

qVv-r
~qVr

ke — — -
~

LU
S

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

o

e — — 4

=

dr

qVv-r
~qVr

ke — — -
~

LU
S

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

o

e — — 4

=

dr

qVv-r
~qVr

ke — — -
~

LU
S

48 /60

DPLL, Example

dr

-q
qvV-r
-qVr

Yq3r
qV —r
-qVr

Yq3r
-p
pVvaqV-r
pV-gVr
—pVqgVvr
-pVvVqg\V-r

-p

Jpvq3r
pvqg\V-r
pV-qVr
—pVvgVvr

-pVqV-r

o

e — — 4

=

dr

qVv-r
~qVr

ke — — -
~

LU
S

48 /60

DPLL algorithm

procedure DPLL(Q, S)
input: quantifier sequence O = p, - - - W,p,,
clause set S with vars from Q
output: O or1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if Sis empty then return 1
if S contains [then return 0
(p,b) := select_variable_value(p,, S)
Let Q' be obtained from Q by deleting =7, p from ¥p,
ifb=0thenl := —p
elsel :=p
case (DPLL(Q',SU{L}), W) of
(0,V) = return 0
(0,9) = return DPLL(Q", S U
(1,V) = return DPLL(Q', SU
(1,3) = return 1
end

—_—— =

49/60

Improving DPLL with further simplifications

FpIgVras((pV —r) A (=g V) A(=pVgVs)A(—=pVqgVrV-s))

50/60

Improving DPLL with further simplifications

FpIgVras((pV —r)A(—gV) A(=pVgVs)A(=pVqgVrV-s))

® We cantreat —rinp \V —ras 0 without loss of generality

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
IpAgVras(p A(—gV) A(=pV gV s)A(=pVgVrV=s))

® We cantreat —rinp \ —ras 0 without loss of generality

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A (=g V r)A(=pV gV S)A(-pVgVrV-s))

® We cantreat —rinp \ —ras 0 without loss of generality

® We can apply unit propagation

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
JqVr3as((—g VvV r) A(gVs)A(gVrV —s))

® We cantreat —rinp \ —ras 0 without loss of generality

® We can apply unit propagation

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
JqVr3as((—g VvV r) A(gVs)A(gVrV —s))

® We cantreat —rinp \ —ras 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
Agvr3s((—g VvV r)A(qVs)A(qVrV—s)) =

3q3s(=g A (g Vs) A(qV —s))

® We cantreat —rinp \ —ras 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
Agvr3s((—g VvV r)A(qVs)A(qVrV—s)) =

Jq3s(=g A (g Vs) A(qV —s))

® We cantreat —rinp \ —ras 0 without loss of generality
® We can apply unit propagation
® We can treat r as 0 everywhere without loss of generality

® We can apply unit propagation to —g

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
Agvr3s((—g VvV r)A(qVs)A(qVrV—s)) =

dg3s(—g A (g Vs)A(gV —s)) =

3s(s A —s)

® We cantreat —rinp \ —ras 0 without loss of generality
® We can apply unit propagation
® We can treat r as 0 everywhere without loss of generality

® We can apply unit propagation to —g

50/60

Improving DPLL with further simplifications

Fp3gVras((pV =r) A(=gV) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A(—gV) A(mpV gV sS)A(—pVgVrVv=s)) =
JgVr3s((—g VvV r)A(gVs)A(gVrV —s)) =

dg3s(—g A (g Vs)A(gV —s)) =

ds(s A —s) =

g

® We cantreat —rinp \ —ras 0 without loss of generality
® We can apply unit propagation

® We can treat r as 0 everywhere without loss of generality
® We can apply unit propagation to —g

® We can apply unit propagation to s

50/60

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L

51/60

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

51/60

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?

51/60

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?
® The J-player will make L true (satisfying all clauses containing L)

51/60

Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or —p

Suppose L is purein S (i.e., L does not occurin S). Then:
¢ |f pis existentially quantified in Q, we can remove all clauses containing L
e if pis universally quantified in Q, we can remove L from all clauses

Why?
® The J-player will make L true (satisfying all clauses containing L)

® The V-player will make L false (so it can be removed from those clauses that
contain L)

51/60

Universal literal deletion

Q: quantifier sequence
S: clause set
p. q: variables

® pisexistential in Q if O contains Jp
® gisuniversalin Q if Q contains Vg

52/60

Universal literal deletion

Q: quantifier sequence
S: clause set
p. q: variables

® pisexistential in Q if O contains Jp
® gisuniversalin Q if Q contains Vg
® pis quantified before a variable g if p occurs before g in Q

52/60

Universal literal deletion

Q: quantifier sequence
S: clause set
p. q: variables

® pisexistential in Q if O contains Jp
® gisuniversalin Q if Q contains Vg
® pis quantified before a variable g if p occurs before g in Q

Example: In Q = Vgdpvr
q is quantified before both p and r; and p is quantified before r

52/60

Universal literal deletion

Q: quantifier sequence
S: clause set
p. q: variables

® pisexistential in Q if O contains Jp
® gisuniversalin Q if Q contains Vg
® pis quantified before a variable g if p occurs before g in Q

Theorem 10
Suppose that

1. CisaclauseinS;
2. avariable q occurring in C is universal in Q;
3. all existential variables of Q in C are quantified before q.
Then deleting the literal containing g from C does not change the truth value of Q S.

52/60

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form
LV VLV (=) V-V (2)gm

where all existential variables of Q in C are quantified before gy, . . ., am

53/60

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form
LV VLV (=) V-V (2)gm
where all existential variables of Q in C are quantified before gy, . . ., am

Consider the position before the g, . . ., qm-moves of the V-player

53/60

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

LV VL V(=) V-V (7)gm

where all existential variables of Q in C are quantified before gy, . . ., am
Consider the position before the g, . . ., qm-moves of the V-player
e |fatleastoneof /..., L, istrue,

then Cis true regardless of the truth value of of (—)q, . . ., (=)qm

53/60

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

LV VL V(=) V-V (7)gm

where all existential variables of Q in C are quantified before gy, . . ., am
Consider the position before the g, . . ., qm-moves of the V-player
e |fatleastoneof /..., L, istrue,
then Cis true regardless of the truth value of of (—)q, . . ., (=)qm
e |fallofl, ..., L, are false,

the V-player willmake all (—)q, . . ., (—)gm false and win the game

53/60

Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

LV VL V(=) V-V (7)gm

where all existential variables of Q in C are quantified before gy, . . ., am
Consider the position before the g, . . ., gm-moves of the V-player
e |fatleastoneof /..., L, istrue,
then Cis true regardless of the truth value of of (—)q, . . ., (=)qm
e |fallofl, ..., L, are false,
the V-player willmake all (—)q, . . ., (—)gm false and win the game

In either case, the deletion of (—)gy, (—)gm will not change the final outcome

53/60

Example revisited

FpAgVras((pV —r)A(—=gV) A(=pVgVs)A(=pVqgVrV-s))

54/60

Example revisited

Ip3gVras((pV —r) A(—=gV r)A(=pV gV s)A(-pVgVrV-s))

® Apply universal literal deletionto p \/ —r

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
IpAgVras(p A (—gV) A(-pV gV s)A(—pVgVrV=s))

® Apply universal literal deletionto p \/ —r

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpIgVras(p A (g V r)A(=pV gV S)A(-pVgVrV=s))

® Apply universal literal deletionto p \/ —r

® Apply unit propagation

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
JqVr3as((—g VvV r) A(gVs)A(gVrV —s))

® Apply universal literal deletionto p \/ —r

® Apply unit propagation

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
Agvr3s((—g VvV r)A(gVs)A(qVrV-s))

® Apply universal literal deletionto p \/ —r
® Apply unit propagation
® Apply the pure literal rule to r

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
JqVr3s((—g VvV r)A(gVs)A(gVrV —s)) =

3g3s(=g A (g Vv s) A (g V —s))

® Apply universal literal deletionto p \/ —r
® Apply unit propagation
® Apply the pure literal rule to r

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
JqVr3s((—g VvV r)A(gVs)A(gVrV —s)) =

3q3s(=g A (g Vv s) A (g V —s))

® Apply universal literal deletionto p \/ —r
® Apply unit propagation

® Apply the pure literal rule to r

® Apply unit propagation

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
JqVr3s((—g VvV r)A(gVs)A(gVrV —s)) =

dg3s(—g A (g Vs) A(gV —s)) =

3s(s A —s)

® Apply universal literal deletionto p \/ —r
® Apply unit propagation

® Apply the pure literal rule to r

® Apply unit propagation

54/60

Example revisited

Fp3gVras((pV —r) A(=g V) A(=pV gV s)A(-pVgVrV-s)) =
FpAgVras(p A(—gV) A(mpV gV sS)A(—pVgVrV=s)) =
JqVr3s((—g VvV r)A(gVs)A(gVrV —s)) =

dg3s(—g A (g Vs) A(gV —s)) =

Is(s A —s) =

g

® Apply universal literal deletionto p \/ —r
® Apply unit propagation

® Apply the pure literal rule to r

® Apply unit propagation

54/60

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas

55/60

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas
Can we use them also to represent QBFs?

55/60

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas
Can we use them also to represent QBFs?

Quantification: given an OBDD representing a formula -, find an OBDD
representing ¥,p; - - - W, p,F

55/60

Quantified Boolean Formulas and BDDs

OBDDs are efficient data structures to represent propositional formulas
Can we use them also to represent QBFs?

Quantification: given an OBDD representing a formula -, find an OBDD
representing ¥,p; - - - W, p,F

There is no simple algorithm for quantification over OBDDs in general,
but there is one when =, - - - 3, are the same quantifier

55/60

Quantification for OBDDs

We can rely on the following properties of QBFs:

e Jp(ifpthenFelseG)=FV G

56 /60

Quantification for OBDDs

We can rely on the following properties of QBFs:

e Jp(ifpthenFelseG)=FV G
® Vp(ifpthenFelseG)=FAG

56 /60

Quantification for OBDDs

We can rely on the following properties of QBFs:
e Jp(ifpthenFelseG)=FV G
® Vp(if pthenFelse G) =F A G
® 3/p (if g then F else G) = if q then ¥pF else 3/pG when p # q

56 /60

--quantification algorithm for OBDDs
procedure Squant({ p, . . ., Pt {m,...;nm})

parameters: global dag D
input: nodes ny, . . ., nm, representing f, . . ., FminD

output: a node n representing Jp; - - - Ipi(F V- - -V F)) in (modified) D

begin
if m — 0 then return/0]
if some n; is| ! then return

if some n; is[0]then return dquant({ p1,..., pr b, {m,..., Ni—1,Nigt, - .

p := max_atom(m,...,Nm)

foralli =1...m
if n; is labelled by p
then (li,r;) := (lo(n;), hi(n;))
else ([,'fl’,') = (ﬂ,‘,ﬂ,‘)

ifpe{p,....pc}
then return Jquant({pr,....pxc } —{p}. {hoo lmiri oo, m})
else
ky = 3quant({p1,...,px },{b,- - ylm})
ko := Jquant({ps,..., pe b {n, ..., m})
return integrate(ki, p. ko, D)

end

57/60

Example

Variable order:p > q > r
Formula: Ip3r(p <> ((p — r) <+ q))

OBDDforp <+ ((p —r) <> q:

58/60

Example

dquant({p,r},{a})

59/60

Example

59/60

Example

dquant({r},{0,e}) \
Aquant({r},{1,d})

59/60

Example

dquant({r},{0,e})

59/60

Example

dquant({r},{0,e})
dquant({r},{e})

59/60

Example

Squant({r}.{0.e})
Squant({r},{e})
Squant({ },{0,1})

59/60

Example

59/60

Example

Jquant({p,r},{a})=1

59/60

J-quantification algorithm for OBDDs
procedure Jquant({ p, . . ., Pt {m,...;nm})

parameters: global dag D

input: nodes ny, ..., n, representing f+, . . ., FminD
output: a node n representing 3p; - - - Ipk(F V - -+ V F) in (modified) D
begin

if m — 0 then return[0]
if some n; is [1]then return[1]

if some 1, is[0] then return quant({p1,..., pr b, {m,..., Ni—1, Nig1, - . .

p := max_atom(m,...,Nm)
foralli =1...m
if n; is labelled by p
then (li,r;) := (lo(n;), hi(n;))
else ([,'fl’,') = (f'l,uf'l,‘)
ifpe{p..... px }
then return 3quant({pr,....pxc } —{p}. {hooilmiri oo, m})
else
ky = 3quant({p1,...,px },{b,- - ylm})
ko := Jquant({ps,..., pe b {n, ..., m})
return integrate(ki, p. ko, D)
end

60/60

V-quantification algorithm for OBDDs
procedure Yquant({ p, . . ., Pt {m,...;nm})

parameters: global dag D
input: nodes ny, . . ., nm, representing f, . . ., FminD

output: a node n representing Vp; - - - Vpi(Fi A - -+ A Fry) in (modified) D

begin
if m = 0 then return
if some n; is (0] then return[0]

if some n; isL1ithen return Vquant({ p:, ..., pr b, {m,..., Ni—1,Nigt, - .

p := max_atom(m,...,Nm)

foralli =1...m
if n; is labelled by p
then (li,r;) := (lo(n;), hi(n;))
else ([,'fl’,') = (ﬂ,‘,ﬂ,‘)

ifpe{p,....pc}
thenreturnVouant({pi,....pc } —{p . {h, .. lm,rn ooty m})
else
ky = Yquant({p,...,px },{b,- - ylm})
ka := Yquant({ps,..., pe b {n, ..., m})
return integrate(ki, p. ko, D)

end

60/60

	Quantified Boolean Formulas
	Syntax and Semantics
	Free and Bound Variables
	Prenex Form
	Satisfiability Checking
	QBF and BDDs

