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Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.
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Two-Player Games

Does she have a winning
strategy?

4 / 60



Two-Player Games

Given: a propositional formula Gwith variables p1, q1, . . . , pn, qn

There are two players: P and Q

At step k each player makes a move:
1. the player P can choose a Boolean value for the variable pk
2. the player Q can choose a Boolean value for the variable qk

Player Pwins if a�er n steps the chosen values satisfy formula G
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Suppose Both Players Make no Errors: WhoWins?

Consider several special cases:

G Outcome

1. p1 Pwins with { p1 7→ 1 }
2. p1 → q1 Pwins with { p1 7→ 0 }
3. q1 → q2 G has no pi vars, P’s choices are immaterial
4. q1 → q1 G is valid, P always wins!
5. p1 ∧ ¬p1 G is unsatisfiable, Q always wins!
6. p1 ↔ q1 eachmove by P can be beaten by Q
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Winning Strategy
Problem: does P have a winning strategy?

P has a winning strategy
i�
there exists a move for P (a value for p1) such that
for all moves of Q (values for q1)
there exists a move for P (a value for p2) such that
for all moves of Q (values for q2)
. . .
there exists a move for P (a value for pn) such that
for all moves of Q (values for qn)
the formula G is satisfiable

The existence of a winning strategy can be expressed by the
quantified Boolean formula

∃p1∀q1∃p2∀q2 . . . ∃pn∀qnG
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Quantified Boolean Formulas

Propositional Formula:
• Every Boolean variable is a (propositional) formula
• > and⊥ are formulas
• If F is a PF, then¬F is a formula
• If F1, . . . , Fn are formulas, where n ≥ 2,
then (F1 ∧ · · · ∧ Fn) and (F1 ∨ · · · ∨ Fn) are formulas

• If F and G are formulas, then (F → G) and (F ↔ G) are formulas

Quantified Boolean Formulas (QBFs):
• Every propositional formula is a QBF
• If p is a Boolean variable and F is a QBF,
then ∀pF and ∃pF are QBFs
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Quantifiers

• ∀ is called the universal quantifier (symbol)
• ∃ is called the existential quantifier (symbol)
• ∀pF is read as “for all p, F”
• ∃pF is read as “there exists p such that F” or “for some p, F”
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Changing interpretations pointwise

Let I be an interpretation

Notation:

I[p 7→ b](q) def
=

{
I(q), if p 6= q
b, if p = q

Example: I = { p 7→ 1, q 7→ 0, r 7→ 1 }

I[q 7→ 1] = {p 7→ 1, q 7→ 1, r 7→ 1}
I[q 7→ 0] = {p 7→ 1, q 7→ 0, r 7→ 1} = I
I[p 7→ 0] = {p 7→ 0, q 7→ 0, r 7→ 1}
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QBF Semantics

1. I(>) = 1 and I(⊥) = 0

2. I(F1 ∧ · · · ∧ Fn) = 1 i� I(Fi) = 1 for all i

3. I(F1 ∨ · · · ∨ Fn) = 1 i� I(Fi) = 1 for some i

4. I(¬F) = 1 i� I(F) = 0

5. I(F → G) = 1 i� I(F) = 0 or I(G) = 1

6. I(F ↔ G) = 1 i� I(F) = I(G)
7. I(∀pF) = 1 i� I[p 7→ 0](F) = 1 and I[p 7→ 1](F) = 1
8. I(∃pF) = 1 i� I[p 7→ 0](F) = 1 or I[p 7→ 1](F) = 1
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Evaluating a formula: and-or trees

How to evaluate ∀p∃q(p↔ q) on the interpretation { p 7→ 1, q 7→ 0 }

Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

I10 |= ∀p∃q(p↔ q)

⇔ I00 |= ∃q(p↔ q)
I10 |= ∃q(p↔ q) and

⇔

I00 |= p↔ q
I01 |= p↔ q or

and

I10 |= p↔ q
I11 |= p↔ q or
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Evaluating a formula: and-or trees

I10 |= ∀p∃q(p↔ q)

∧

I00 |= ∃q(p↔ q)

∨
I10 |= ∃q(p↔ q)

∨

I00 |= p↔ q I01 |= p↔ q I10 |= p↔ q I11 |= p↔ q

0 1

0 1 0 1

13 / 60



Evaluating a formula
Notation: Denote any interpretation { p 7→ b1, q 7→ b2 } by Ib1b2

Use wildcards ∗ to denote any Boolean value

I∗∗ |= ∀p∃q(p↔ q)

⇔ I0∗ |= ∃q(p↔ q)
I1∗ |= ∃q(p↔ q) and

⇔

I00 |= p↔ q
I01 |= p↔ q or

and
I10 |= p↔ q
I11 |= p↔ q or

The variables p and q are bound by the quantifiers ∀p and ∃q, so
the value of the formula does not depend on the values p and q
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Subformula

Propositional formulas:
• F is the immediate subformula of¬F
• F1, . . . , Fn are the immediate subformulas of F1 ∧ · · · ∧ Fn
• F1, . . . , Fn are the immediate subformulas of F1 ∨ · · · ∨ Fn
• F1 and F2 are the immediate subformulas of F1 → F2
• F1 and F2 are the immediate subformulas of F1 ↔ F2
• . . .

Quantified Boolean formulas:
• F is the immediate subformula of ∀pF and of ∃pF
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Positions and polarity by example

→ p→ ∀q∃p(q↔ p) ∨ r

p

1

∨

2

∀q

1

r

2

∃p
1

↔
1

q

1

p

2

F|2.1 = ∀q∃p(q↔ p)

F|2.1.1.1.1 = q
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Positions and Polarity

Let F|π = A

Propositional formulas:
• If A has the form¬A1 ,
then π.1 is a position in F, F|π.1

def
= A1 and pol(F, π.1)

def
= −pol(F, π)

• If A has the form A1 ∧ · · · ∧ An or A1 ∨ · · · ∨ An and i ∈ { 1, . . . , n },
then π.i is a position in F and pol(F, π.i) def

= pol(F, π)
• . . .

Quantified Boolean formulas:
• If A has the form ∀pB or ∃pB,
then π.1 is a position in F, F|π.1

def
= B and pol(F, π.1) def

= pol(F, π)
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Free and bound variables by example

→ p→ ∀q∃p(q↔ p) ∨ r

p
(free)

∨

∀q r
(free)

∃p

↔

q
(bound)

p
(bound)
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Free and bound occurrences in programs

• Free variables in formulas are analogous to global variables in programs
• Bound variables in formulas are analogous to local variables in programs

int offset_sym_diff(int i, int j)
{

int k = i > j ? i - j : j - i;
return a + k

}

sum = i + offset_sym_diff(3,4);

free

bound

binding
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Free and bound occurrences of variables

Let F be a QBF and p be atom of at position π

The occurrence of p at position π in F is bound if π can be represented as a
concatenation of two strings π1π2 such that F|π1 has the form ∀pG or ∃pG

A bound occurrence of p is an occurrence in the scope of ∀p or ∃p

Free occurrence: not bound

Free (bound) variable of a formula: a variable with at least one free (bound)
occurrence

Closed formula: formula with no free variables
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Only free variables matter for truth

The truth value of a QBF formula F depends only on the values of its free variables:

Lemma 1
Suppose I1(p) = I2(p) for all free variables p of F. Then

I1 |= F i� I2 |= F

Theorem 2
Let F be a closed formula and let I1, I2 be two interpretations. Then

I1 |= F i� I2 |= F
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Truth, Validity and Satisfiability

Validity and satisfiability are defined as for propositional formulas

There is no di�erence between these notions for closed formulas:

Lemma 3
For every interpretation I and closed formula F the following statements are
equivalent: (i) I |= F; (ii) F is satisfiable; and (iii) F is valid.

Satisfiability can be expressed through satisfiability/validity of closed formulas:

Lemma 4
Let F be a formula with free variables p1, . . . , pn.
• F is satisfiable i� ∃p1 . . . ∃pnF is satisfiable/valid
• F is valid i� the formula ∀p1 . . . ∀pnF is satisfiable/valid
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Substitutions for propositional formulas

Substitution: FGp : denotes the formula obtained from F by replacing all occurrences
of the variable p by G

Example:

((p ∨ s) ∧ (q→ p))(l∧s)p = ((l ∧ s) ∨ s) ∧ (q→ (l ∧ s))

Property: Applying any substitution to a valid formula results in a valid formula
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Substitution for quantified formulas

Some problems . . .

Consider ∃q(¬p↔ q)

We cannot simply replace variables by formulas any more:
∃(r → r)(¬p↔ r → r) ???

Free variables are parameters: we can only substitute for parameters.
But a variable can have both free and bound occurrences in a formula,
e.g.,

∀p((p→ q) ∨ ¬p) ∧ (q ∨ (q→ p))
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Renaming bound variables

Notation: ∀∃ : any of ∃, ∀

Renaming bound variables in F[ ∀∃ pG ]:

1. Take a fresh variable q (i.e., a variable not occurring in F)
2. Replace all free occurrences of p in G (not in F!) by q, obtaining G′

3. Consider F[ ∀∃ qG′ ]

Example:

∃r(∀p ((p→ r) ∧ p) ) ∨ p rename p to q obtaining

∃r(∀q ((q→ r) ∧ q) ) ∨ p

Lemma 5
F[ ∀∃ pG ] ≡ F[ ∀∃ qG′ ]
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Free and bound variables by example

→ p→ ∀q∃p(q↔ p) ∨ r

p
(free)

∨

∀q r
(free)

∃p

↔

q
(bound)

p
(bound)
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Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FGp for substitutions into a rectified formula F,
assuming p occurs only free in F

27 / 60



Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FGp for substitutions into a rectified formula F,
assuming p occurs only free in F

27 / 60



Rectified formulas

Rectified formula F:
1. no variable appears both free and bound in F
2. for every variable p, there is at most one occurrence of quantifier ∀∃ p in F

Any formula can be rectified by renaming its bound variables

We can use the usual notation FGp for substitutions into a rectified formula F,
assuming p occurs only free in F

27 / 60



Rectification: Example

p→ ∃p(p ∧ ∀p(p ∨ r → ¬p))⇒

p→ ∃p(p ∧ ∀p1(p1 ∨ r → ¬p1)) ⇒

p→ ∃p2(p2 ∧ ∀p1(p1 ∨ r → ¬p1))
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Another problem

∃q(¬p↔ q) This formula is valid (whatever p is, choose the opposite for q)

substitute p by q

∃q(¬q↔ q) This formula is unsatisfiable!

Substitutions below a quantifier should not lead to variable capturing
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Another restriction

Suppose we want to substitute G for p in F[p]

Requirement: no free variables in G become bound in FGp

(In previous example, (∃q(¬p↔ q))qp does not satisfy this requirement)

Uniform solution: renaming of bound variables

Example:
Since ∃q(¬p↔ q) ≡ ∃r(¬p↔ r)
we can use (∃r(¬p↔ r))qp instead of (∃q(¬p↔ q))qp
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From now on, we always assume that:
1. formulas are rectified
2. all substitutions satisfy the requirement above



Equivalent replacement

Lemma 6
Let I be an interpretation and I |= F1 ↔ F2. Then I |= G[F1]↔ G[F2].

Theorem 7 (Equivalent Replacement)
Let F1 ≡ F2. Then G[F1] ≡ G[F2].
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More equivalences

Theorem 8
The following holds for all QBFs F:
1. ∀p1∀p2F ≡ ∀p2∀p1F
2. ∃p1∃p2F ≡ ∃p2∃p1F
3. ∀∃ pF ≡ F if p does not occur free in F

Note: In general, ∃p1∀p2F 6≡ ∀p2∃p1F
Example:
• ∀p∃q(p↔ q) ≡ >
• ∃q∀p(p↔ q) ≡ ⊥
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Prenex form

Quantifier-free formula: no quantifiers (that is, propositional)

Prenex formula: formula of the form

quantifier prefix︷ ︸︸ ︷
∀∃ 1p1 · · · ∀∃ npn G︸︷︷︸

matrix

with G quantifier-free

Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence ∀∃ 1p1 · · · ∀∃ kpk of
∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k
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Outermost prefix of ∀∃ 1p1 · · · ∀∃ npnG: the longest subsequence ∀∃ 1p1 · · · ∀∃ kpk of
∀∃ 1p1 · · · ∀∃ npn such that ∀∃ 1 = · · · = ∀∃ k

Example
• outermost prefix of ∀p∀q∃r(r ∧ p→ q): ∀p∀q
• outermost prefix of ∃p∀q∃r(r ∧ p→ q): ∃p
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A formula F is a prenex form of a formula G if F is prenex and F ≡ G
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Conversion to prenex form, Example I

→

∃q

→

q p

∨

¬

∀r

→

r p

p
⇒

∀q

→
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q p

∨
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¬
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r p
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Conversion to prenex form, Example I

∃q(q→ p)→ ¬∀r(r → p) ∨ p ⇒
∀q((q→ p)→ ¬∀r(r → p) ∨ p) ⇒
∀q((q→ p)→ ∃r¬(r → p) ∨ p) ⇒
∀q((q→ p)→ ∃r(¬(r → p) ∨ p)) ⇒
∀q∃r((q→ p)→ ¬(r → p) ∨ p)
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Prenexing rules

( ∀∃ pF1) ∧ · · · ∧ Fn ⇒ ∀∃ p(F1 ∧ · · · ∧ Fn)
( ∀∃ pF1) ∨ · · · ∨ Fn ⇒ ∀∃ p(F1 ∨ · · · ∨ Fn)

(∀pF1)→ F2 ⇒ ∃p(F1 → F2) F1 → (∃pF2) ⇒ ∃p(F1 → F2)

(∃pF1)→ F2 ⇒ ∀p(F1 → F2) F1 → (∀pF2) ⇒ ∀p(F1 → F2)

¬∀pF ⇒ ∃p¬F ¬∃pF ⇒ ∀p¬F
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Conversion to prenex form, Example II

∃q(q→ p)→ ¬∀r(r → p) ∨ p ⇒
∃q(q→ p)→ ∃r¬(r → p) ∨ p ⇒
∃q(q→ p)→ ∃r(¬(r → p) ∨ p) ⇒
∃r(∃q(q→ p)→ ¬(r → p) ∨ p) ⇒
∃r∀q((q→ p)→ ¬(r → p) ∨ p)
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Checking the satisfiability of QBFs

The algorithms for propositional satisfiability or validity can be adapted to QBF
We will see:
• Splitting
• DPLL

Recall:
1. F(p1, . . . , pn) is satisfiable i� ∃p1 · · · ∃pnF(p1, . . . , pn) is satisfiable
2. F(p1, . . . , pn) is valid i� ∀p1 · · · ∀pnF(p1, . . . , pn) is satisfiable
3. A closed QBF is either always true (valid) or false (unsatisfiable)

The algorithms will check whether a closed formula is valid or unsatisfiable
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Splitting: foundations

Lemma 9
• A closed formula ∀pF evaluates to true i� both F⊥p and F>p evaluate to true.
• A closed formula ∃pF evaluates to true i� either F⊥p or F>p evaluates to true.
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Splitting

Simplification rules for>:

¬> ⇒ ⊥
> ∧ F1 ∧ · · · ∧ Fn ⇒ F1 ∧ · · · ∧ Fn

> ∨ F1 ∨ · · · ∨ Fn ⇒ >
F → > ⇒ > > → F ⇒ F
F ↔ > ⇒ F > ↔ F ⇒ F

∀p> ⇒ >
∃p> ⇒ >

Simplification rules for⊥:

¬⊥ ⇒ >
⊥ ∧ F1 ∧ · · · ∧ Fn ⇒ ⊥

⊥∨ F1 ∨ · · · ∨ Fn ⇒ F1 ∨ · · · ∨ Fn
F → ⊥ ⇒ ¬F ⊥ → F ⇒ >
F ↔ ⊥ ⇒ ¬F ⊥ ↔ F ⇒ ¬F

∀p⊥ ⇒ ⊥
∃p⊥ ⇒ ⊥
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Splitting, Example

∀p∃q(p↔ q)

∧

∃q(¬q)

p = 0

∨

>1

q = 0

1 ∃q(q)

p = 1

∨

>1

q = 1

1

1 ∃q∀p(p↔ q)
∨

∀p(¬p)

q = 0

∧

⊥0

p = 1

0 ∀p(p)

q = 1

∧

⊥0

p = 0

0

0

Tominimize search the selection of variable values is best seen as a two-player
game:
by selecting a value for ∃q one is trying to make the formula true,
by selecting a value for ∀p one is trying to make the formula false
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Splitting algorithm

Notation: if p = (p1, . . . , pk) then ∀∃ pF denotes ∀∃ p1 · · · ∀∃ pkF
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Splitting algorithm
procedure splitting(F)
input: closed rectified prenex formula F
output: 0 or 1
parameters: function select_variable_value // selects a variable from the outermost prefix
begin // of F as well as a Boolean value for it
F := simplify(F) // apply extended simplification rules to completion
if F = ⊥ then return 0
if F = > then return 1
// else F has the form ∀∃ pF′ where p is F’s outermost prefix
(p, b) := select_variable_value(F)
Let G be obtained from F by deleting p from p
if b = 0 then A := ⊥; B := > else A := >; B := ⊥
b := splitting(GAp)
case (b, ∀∃ ) of
(0,∀)⇒ return 0
(0,∃)⇒ return splitting(GBp)
(1, ∀)⇒ return splitting(GBp)
(1, ∃)⇒ return 1

end
42 / 60



Conjunctive Normal Form

For more e�icient algorithms we need QBFs to be in a convenient normal form

Our next aim is to modify CNF and DPLL to deal with quantified Boolean formulas

A quantified Boolean formula F is in Conjunctive Normal Form (CNF), if
• it is either⊥, or>, or
• it has the form

∀∃ 1p1 · · · ∀∃ npn(C1 ∧ · · · ∧ Cm)

where C1, . . . , Cm are clauses

Example:
∀p∃q∃s ((¬p ∨ s ∨ q) ∧ (s ∨ ¬q) ∧ ¬s))
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CNF rules

Prenexing rules
+
propositional CNF rules:

F ↔ G ⇒ (¬F ∨ G) ∧ (¬G ∨ F)
F → G ⇒ ¬F ∨ G

¬(F ∧ G) ⇒ ¬F ∨ ¬G
¬(F ∨ G) ⇒ ¬F ∧ ¬G
¬¬F ⇒ F

(F1 ∧ · · · ∧ Fm) ∨ G1 ∨ · · · ∨ Gn ⇒ (F1 ∨ G1 ∨ · · · ∨ Gn) ∧
· · · ∧

(Fm ∨ G1 ∨ · · · ∨ Gn)
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DPLL for quantified boolean formulas

Input:
Q: quantifier sequence ∀∃ 1p1 · · · ∀∃ npn
S: set of clauses with variables from p1, . . . , pn

Main components:
Unit propagation
Splitting on literals
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Unit Propagation

Q: quantifier sequence
S: current clause set

Propositional formulas:
For each unit clause L in S
1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

Quantified Boolean formulas:
For each unit clause L in S of the form p or¬p
• If Q does not contain p or contains ∃p,

1. remove all clauses containing literal L from S
2. remove every literal L from remaining clauses

• otherwise (Q contains ∀p), add� to S
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DPLL algorithm

Why do we add� to Swhen Q is ∀p ∀∃ 1p1 · · · ∀∃ mpm and
S is { p, C1, . . . , Cn } (or {¬p, C1, . . . , Cn })?

Alternatively, using the gamemetaphor, because

the ∀-player wants to falsify the formula

Winning move for the ∀-player:

select the value for p that falsifies the unit clause p, and hence the whole CNF

(argument is similar for {¬p, C1, . . . , Cn })
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the ∀-player wants to falsify the formula
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select the value for p that falsifies the unit clause p, and hence the whole CNF

(argument is similar for {¬p, C1, . . . , Cn })
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DPLL, Example

∃p∀q∃r
p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

1∀q∃r
¬p

p ∨ q ∨ ¬r
p ∨ ¬q ∨ r
¬p ∨ q ∨ r
¬p ∨ q ∨ ¬r

¬p1

∀q∃r
q ∨ ¬r
¬q ∨ r

∃r
¬q

q ∨ ¬r
¬q ∨ r

¬q

1

∃r

¬r

∃r
q

q ∨ ¬r
¬q ∨ r

q

1

∃r

r
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DPLL algorithm
procedure DPLL(Q, S)
input: quantifier sequence Q = ∀∃ 1p1 · · · ∀∃ npn,

clause set Swith vars from Q
output: 0 or 1
parameters: function select_variable_value
begin
S := unit_propagate(Q, S)
if S is empty then return 1
if S contains� then return 0
(p, b) := select_variable_value(p1, S)
Let Q′ be obtained from Q by deleting ∀∃ 1p from ∀∃ 1p1
if b = 0 then L := ¬p

else L := p
case (DPLL(Q′, S ∪ { L }), ∀∃ ) of
(0,∀)⇒ return 0
(0,∃)⇒ return DPLL(Q′, S ∪ { L })
(1, ∀)⇒ return DPLL(Q′, S ∪ { L })
(1, ∃)⇒ return 1

end
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Improving DPLL with further simplifications

∃p∃q∀r∃s((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q∀r∃s(p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))⇒
∃q∀r∃s((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))⇒
∃q∃s(¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))⇒
∃s(s ∧ ¬s)⇒
�

• We can treat¬r in p ∨ ¬r as 0 without loss of generality
• We can apply unit propagation
• We can treat r as 0 everywhere without loss of generality
• We can apply unit propagation to¬q
• We can apply unit propagation to s
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Pure literal rule

Q: quantifier sequence
S: current clause set
L: literal of the form p or¬p

Suppose L is pure in S (i.e., L does not occur in S). Then:
• If p is existentially quantified in Q, we can remove all clauses containing L

• if p is universally quantified in Q, we can remove L from all clauses

Why?

• The ∃-player will make L true (satisfying all clauses containing L)
• The ∀-player will make L false (so it can be removed from those clauses that
contain L)
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Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables

• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q

• p is quantified before a variable q if p occurs before q in Q
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Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables

• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q
• p is quantified before a variable q if p occurs before q in Q

Example: In Q = ∀q∃p∀r
q is quantified before both p and r; and p is quantified before r
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Universal literal deletion
Q: quantifier sequence
S: clause set

p, q: variables

• p is existential in Q if Q contains ∃p
• q is universal in Q if Q contains ∀q
• p is quantified before a variable q if p occurs before q in Q

Theorem 10
Suppose that
1. C is a clause in S;
2. a variable q occurring in C is universal in Q;
3. all existential variables of Q in C are quantified before q.

Then deleting the literal containing q from C does not change the truth value of Q S.
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Universal literal deletion

Intuition behind Theorem 10

Consider a clause C from S of the form

L1 ∨ · · · ∨ Ln ∨ (¬)q1 ∨ · · · ∨ (¬)qm

where all existential variables of Q in C are quantified before q1, . . . , qm

Consider the position before the q1, . . . , qm-moves of the ∀-player

• If at least one of L1, . . . , Ln is true,
then C is true regardless of the truth value of of (¬)q1, . . . , (¬)qm

• If all of L1, . . . , Ln are false,
the ∀-player will make all (¬)q1, . . . , (¬)qm false and win the game

In either case, the deletion of (¬)q1, . . . , (¬)qm will not change the final outcome
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Example revisited

∃p∃q∀r∃s((p ∨ ¬r) ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))

⇒
∃p∃q∀r∃s(p ∧ (¬q ∨ r) ∧ (¬p ∨ q ∨ s) ∧ (¬p ∨ q ∨ r ∨ ¬s))⇒
∃q∀r∃s((¬q ∨ r) ∧ (q ∨ s) ∧ (q ∨ r ∨ ¬s))⇒
∃q∃s(¬q ∧ (q ∨ s) ∧ (q ∨ ¬s))⇒
∃s(s ∧ ¬s)⇒
�

• Apply universal literal deletion to p ∨ ¬r
• Apply unit propagation
• Apply the pure literal rule to r
• Apply unit propagation
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Quantified Boolean Formulas and BDDs

OBDDs are e�icient data structures to represent propositional formulas
Can we use them also to represent QBFs?

Quantification: given an OBDD representing a formula F, find an OBDD
representing ∀∃ 1p1 · · · ∀∃ npnF

There is no simple algorithm for quantification over OBDDs in general,
but there is one when ∀∃ 1 · · · ∀∃ n are the same quantifier
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Quantification for OBDDs

We can rely on the following properties of QBFs:

• ∃p (if p then F else G) ≡ F ∨ G
• ∀p (if p then F else G) ≡ F ∧ G
• ∀∃ p (if q then F else G) ≡ if q then ∀∃ pF else ∀∃ pG when p 6= q
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∃-quantification algorithm for OBDDs
procedure ∃quant({ p1, . . . , pk }, { n1, . . . , nm })
parameters: global dag D
input: nodes n1, . . . , nm representing F1, . . . , Fm in D
output: a node n representing ∃p1 · · · ∃pk(F1 ∨ · · · ∨ Fm) in (modified) D
begin
ifm = 0 then return 0
if some ni is 1 then return 1
if some ni is 0 then return ∃quant({ p1, . . . , pk }, { n1, . . . , ni−1, ni+1, . . . , nm })
p := max_atom(n1, . . . , nm)
forall i = 1 . . .m
if ni is labelled by p
then (li, ri) := (lo(ni), hi(ni))
else (li, ri) := (ni, ni)

if p ∈ { p1, . . . , pk }
then return ∃quant({ p1, . . . , pk } − { p }, { l1, . . . , lm, r1, . . . , rm })
else
k1 := ∃quant({ p1, . . . , pk }, { l1, . . . , lm })
k2 := ∃quant({ p1, . . . , pk }, { r1, . . . , rm })
return integrate(k1, p, k2,D)

end
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Example

Variable order: p > q > r
Formula: ∃p∃r(p↔ ((p→ r)↔ q))

OBDD for p↔ ((p→ r)↔ q:

p

q q

r r

0 1
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Example

a: p

b: q c: q

d: r
e: r

0: 0 1: 1

∃quant({ p, r }, { a })

= 1
∃quant({ r }, { b, c })

q

∃quant({ r }, { 1, d })
∃quant({ r }, { 0, e })
∃quant({ r }, { e })
∃quant({ }, { 0, 1 })
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∀-quantification algorithm for OBDDs
procedure ∀quant({ p1, . . . , pk }, { n1, . . . , nm })
parameters: global dag D
input: nodes n1, . . . , nm representing F1, . . . , Fm in D
output: a node n representing ∀p1 · · · ∀pk(F1 ∧ · · · ∧ Fm) in (modified) D
begin
ifm = 0 then return 1
if some ni is 0 then return 0
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