CS:4350 Logic in Computer Science
 Inference Systems for Propositional Logic

Cesare Tinelli

Spring 2021

Credits

Part of these slides are based on Chap. 1 of Logic in Computer Science by M. Huth and M. Ryan, Cambridge University Press, 2nd edition, 2004.

Outline

Inference Systems for Propositional Logic
Semantic consequence/entailment
Derivability
Natural deduction
Soundness and completeness of natural deduction

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is
a class of sentences described by a formal grammar

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is a class of sentences described by a formal grammar
- \mathcal{S}, the semantics, is a formal specification for assigning meaning to sentences in \mathcal{L}

Logics, formally

A logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L}, the language, is
a class of sentences described by a formal grammar
- \mathcal{S}, the semantics, is a formal specification for assigning meaning to sentences in \mathcal{L}
- \mathcal{R}, the inference system, is
a set of axioms and inference rules to infer (i.e., generate) sentences of \mathcal{L} from given sentences of \mathcal{L}

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} is the set of all formulas built from Boolean variables and the propositional connectives ($\neg, \wedge, \vee, \ldots$)
- \mathcal{S} is provided by interpretations of the variables as 0,1 and the connectives as certain Boolean functions
$-\mathcal{R}$ is ??

Propositional logic, formally

Propositional logic is a triple $(\mathcal{L}, \mathcal{S}, \mathcal{R})$ where

- \mathcal{L} is the set of all formulas built from Boolean variables and the propositional connectives ($\neg, \wedge, \vee, \ldots$)
- \mathcal{S} is provided by interpretations of the variables as 0,1 and the connectives as certain Boolean functions
$-\mathcal{R}$ is ??

> There are many inference systems for PL We will study a few of them

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic
Their description was largely procedural

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic

They and others can be expressed more declaratively as inference systems

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic

This allows us study them at a higher level of abstraction than pseudo code

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic

That makes it easier to separate their essence from heuristic considerations or implementation details

Inference Systems for Propositional Logics

We have seen many methods to reason in propositional logic
Their description was largely procedural
They and others can be expressed more declaratively as inference systems

This allows us study them at a higher level of abstraction than pseudo code

That makes it easier to separate their essence from heuristic considerations or implementation details

Formal properties of inference systems

A formal system is defined by a set of inference rules that allow us to generate formulas from given formulas

Formal properties of inference systems

A formal system is defined by a set of inference rules that allow us to generate formulas from given formulas

We will focus on these properties of our inference systems:
Soundness Every inferred formula is a semantic consequence of the given ones

Completeness Only semantic consequences are inferable
Termination Only finitely many inferences are needed to prove or disprove semantic consequence

Semantic consequence (or entailment)

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies all formulas in U satisfies B too

Semantic consequence (or entailment)

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies all formulas in U satisfies B too
$U \models B$ is read as B is a semantic/logical consequence of U, or B logically follows from U, or U entails B

Semantic consequence (or entailment)

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies all formulas in U satisfies B too
$U \vDash$ A formally captures the notion of a fact A following from assumptions U

Semantic consequence (or entailment)

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies all formulas in U satisfies B too

Note 1: We usually write just $A_{1}, \ldots, A_{n} \models B$ instead of $\left\{A_{1}, \ldots, A_{n}\right\} \models B$

Semantic consequence (or entailment)

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas and
- a formula B
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \models B
$$

iff every interpretation that satisfies all formulas in U satisfies B too

Note 1: We usually write just $A_{1}, \ldots, A_{n} \models B$ instead of $\left\{A_{1}, \ldots, A_{n}\right\} \models B$
Note 2: Do not confuse this use \models with that in $\mathcal{I} \models B$ where \mathcal{I} is an interpretation

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \not \models(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \equiv p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Entailment, Examples

$$
\begin{array}{ll}
\{p\} & \models p \vee q \\
\{p, p \rightarrow q\} & \models q \\
\{p, q\} & \models p \wedge q \\
\} & \models r \rightarrow r \\
\{p, \neg r\} & \neq(p \vee q) \wedge(q \vee \neg r) \\
\{q\} & \models(p \vee q) \wedge(q \vee \neg r) \\
\{p, q \vee \neg r\} & \not \models p \wedge q \\
\{p \vee \neg p\} & \not \models p
\end{array}
$$

	p	q	r	$\neg r$	$p \rightarrow q$	$p \vee q$	$p \wedge q$	$r \rightarrow r$	$q \vee \neg r$	$(p \vee q) \wedge(q \vee \neg r)$
1.	0	0	0	1	1	0	0	1	1	1
2.	0	0	1	0	1	0	0	1	0	1
3.	0	1	0	1	1	1	0	1	1	1
4.	0	1	1	0	1	1	0	1	1	1
5.	1	0	0	1	0	1	0	1	1	1
6.	1	0	1	0	0	1	0	1	0	0
7.	1	1	0	1	1	1	1	1	1	1
8.	1	1	1	0	1	1	1	1	1	1

Exercise

Determine which of the following entailments hold

$$
\begin{array}{lll}
p \wedge q, r & \stackrel{\models}{=} & q \wedge r \\
p, \neg \neg(q \wedge r) & \stackrel{?}{=} & \neg \neg p \wedge r \\
p, p \rightarrow q, q \rightarrow r & \stackrel{?}{=} & r \\
p \vee q, p \rightarrow q, q \rightarrow r & \stackrel{?}{=} & r \\
p \vee q, p \rightarrow r, q \rightarrow r & \stackrel{?}{=} & r \\
p \rightarrow q & \stackrel{?}{=} & \neg q \rightarrow \neg p \\
p \rightarrow q & \stackrel{?}{=} & \neg p \rightarrow \neg q \\
p \vee(q \wedge r) & ? ? & \stackrel{?}{=} \\
& ? p \vee q) \wedge(p \vee \\
p \rightarrow q, p \rightarrow \neg q & \stackrel{?}{=} & p \rightarrow(q \rightarrow p) \\
& \neg p
\end{array}
$$

Properties of entailment

- $U \models A$ for all $A \in U \quad$ (inclusion)

Properties of entailment

- if $U \neq A$ then $V \neq A$ for all $V \supseteq U$ (monotonicity)

Properties of entailment

- A is valid iff $\emptyset \models A$ (also written as $\models A$)

Properties of entailment

- A is unsatisfiable iff $A \models \perp$

Properties of entailment

- $U \models A$ iff $U \cup\{\neg A\}$ is unsatisfiable

Properties of entailment

- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \models A_{n} \rightarrow B \quad$ (deduction)

Properties of entailment

- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \models A_{n} \rightarrow B \quad$ (deduction)
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1} \wedge \cdots \wedge A_{n}\right\} \models B$ iff $\emptyset \models\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow B$

Properties of entailment

- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

Properties of entailment

- $U \models A$ for all $A \in U \quad$ (inclusion)
- if $U \Vdash A$ then $V \vDash A$ for all $V \supseteq U$ (monotonicity)
- A is valid iff $\emptyset \models A$ (also written as $\models A$)
- A is unsatisfiable iff $A \models \perp$
- $U \models A$ iff $U \cup\{\neg A\}$ is unsatisfiable
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1}, \ldots, A_{n-1}\right\} \neq A_{n} \rightarrow B \quad$ (deduction)
- $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ iff $\left\{A_{1} \wedge \cdots \wedge A_{n}\right\} \models B$ iff $\emptyset \models\left(A_{1} \wedge \cdots \wedge A_{n}\right) \rightarrow B$
- $A \equiv B$ iff $\{A\} \models B$ and $\{B\} \models A$

Inference systems for propositional logic

An inference system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from U with the rules of $/$

Inference systems for propositional logic

An inference system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from U with the rules of $/$
$\cup \vdash, A$ is read as U derives B in $।$, or B derives from \cup in I, or B is derivable from U in I

Inference systems for propositional logic

An inference system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from U with the rules of $/$
We write just $\cup \vdash A$ when / is clear from context

Inference systems for propositional logic

An inference system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from U with the rules of $/$

Intuitively, / is designed so that $U \vdash$, A only if $U \models A$

Inference systems for propositional logic

An inference system / is a collection of formal rules for inferring formulas from formulas

Given

- a set $U=\left\{A_{1}, \ldots, A_{n}\right\}$ of formulas (premises) and
- a formula B (conclusion)
we write

$$
\left\{A_{1}, \ldots, A_{n}\right\} \vdash, B
$$

iff it is possible to infer B from U with the rules of $/$

$$
\text { Intuitively, / is designed so that } U \vdash \text {, } A \text { only if } U \models A
$$

Ideally, / should be such that $U \vdash$, A if $U \models A$

All these symbols!

Note:

$A \wedge B \rightarrow C$ is a formula, a sequence of symbols manipulated by an inference system /
$A \wedge B \models C$ is a mathematical abbreviation for the statement: "every interpretation that satisfies $A \wedge B$, also satisfies C "
$A \wedge B \vdash, C$ is a mathematical abbreviation for the statement: "I derives C from $A \wedge B$ "

All these symbols!

In other words,

- \rightarrow is a symbol of propositional logic, processed by inference systems
- \models denotes a relation from sets of formulas to formulas, based on their meaning in propositional logic
- \vdash, denotes a relation from sets of formulas to formulas, based on their derivability in /

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:

$$
A \rightarrow B \text { is valid iff } A \models B
$$

Implication vs. Entailment

The connective \rightarrow and the relation \models are related as follows:

$$
A \rightarrow B \text { is valid iff } A \models B
$$

Example: $p \rightarrow(p \vee q)$ is valid and $p \models(p \vee q)$

	p	q	$p \vee q$	$p \rightarrow(p \vee q)$
1.	0	0	0	1
2.	0	1	1	1
3.	$\underline{1}$	0	1	1
4.	$\underline{1}$	1	1	1

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of inference systems /

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of inference systems /

Soundness / is sound if it can derive from any set U of formulas only formulas entailed by U :

$$
\text { if } U \vdash, A \text { then } U \models A
$$

Soundness and completeness

The relations \models and \vdash, are related as by these two properties of inference systems /

Soundness / is sound if it can derive from any set U of formulas only formulas entailed by U :

$$
\text { if } U \vdash, A \text { then } U \models A
$$

Completeness / is complete if it can derive from any set U of formulas all formulas entailed by U :

$$
\text { if } U \models A \text { then } U \vdash, A
$$

Natural deduction

There are many inference systems for propositional logic

Natural deduction is a family of inference systems with inference rules designed to mimic the way people reason deductively

Natural deduction

There are many inference systems for propositional logic

Natural deduction is a family of inference systems with inference rules designed to mimic the way people reason deductively

Note

- "Natural" here is meant in contraposition to "mechanical / automated"
- Other inference systems for PL are more machine-oriented and so arguably not as natural for people
- Natural deduction is actually automatable but less conveniently than other, more machine-oriented inference systems
\wedge introduction and elimination

$\frac{A \wedge B}{B} \wedge \mathrm{e}_{2}$

\wedge introduction and elimination

Usage Given: A set U of formulas
\wedge i: for any two formulas A and B in $U, \operatorname{add} A \wedge B$ to U
$\wedge e_{1}$: for any formula of the form $A \wedge B$ in U, add A to U
$\wedge \mathrm{e}_{2}$: for any formula of the form $A \wedge B$ in U, add A to U

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

$$
p \wedge q, r \vdash q \wedge r
$$

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

I like cats and (like) dogs, Jill likes birds \vdash I like dogs and Jill likes birds

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

Proof

1 $p \wedge q$ premise

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

Proof
1 $p \wedge q$ premise
$=r$ premise

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

Proof

1 $p \wedge q$ premise
$2 r$ premise
${ }_{3} \quad q \quad \wedge e_{2}$ applied to 1

Example derivation

$$
\frac{A}{A \wedge B} \wedge \mathrm{i} \quad \frac{A \wedge B}{A} \wedge \mathrm{e}_{1} \quad \frac{A \wedge B}{B} \wedge \mathrm{e}_{2}
$$

Let's prove that we can derive $q \wedge r$ from $p \wedge q$ and r, i.e., that

Proof
${ }_{1} p \wedge q$ premise
${ }_{2} r$ premise
$3 \quad q \quad \wedge \mathrm{e}_{2}$ applied to 1
$4 \quad q \wedge r \quad \wedge i$ applied to 3, 2

Proof tree

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$
$1 p$ premise
$=\quad \neg \neg(q \wedge r)$ premise

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$
$1 p \quad$ premise
2 $\neg \neg(q \wedge r)$ premise
3 $q \wedge r \quad \neg \neg e 2$

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$
$1 p$ premise
2 $\neg \neg(q \wedge r)$ premise
$3 \quad q \wedge r \quad \neg \neg{ }^{2}$
$4 r \wedge$ e 3

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$
$1 p$ premise
$2 \quad \neg \neg(q \wedge r)$ premise
$3 q \wedge r \quad \neg$ e 2
$4 r \quad \wedge$ e 3
$5 \quad \neg \neg p \quad \neg \neg$ i 1

\neg introduction and elimination

$$
\frac{A}{\neg \neg A} \neg \neg \mathrm{i} \quad \frac{\neg \neg A}{A} \neg \neg \mathrm{e}
$$

Example Prove $p, \neg \neg(q \wedge r) \vdash \neg \neg p \wedge r$

1	p	premise
${ }_{2}$	$\neg \neg(q \wedge r)$	premise
3	$q \wedge r$	$\neg \neg \mathrm{e} 2$
4	r	\wedge e 3
5	$\neg \neg p$	$\neg \neg$ i 1
6	$\neg \neg p \wedge r$	\wedge i 5, 4

\rightarrow elimination

\rightarrow elimination

Example Prove $p, p \rightarrow q, q \rightarrow r \vdash r$

\rightarrow elimination

Example Prove $p, p \rightarrow q, q \rightarrow r \vdash r$

$$
\begin{array}{lll}
1 & p & \text { premise } \\
2 & p \rightarrow q & \text { premise } \\
{ }_{3} & q \rightarrow r & \text { premise }
\end{array}
$$

\rightarrow elimination

Example Prove $p, p \rightarrow q, q \rightarrow r \vdash r$

${ }_{1}$	p	premise
${ }_{2}$	$p \rightarrow q$	premise
${ }_{3}$	$q \rightarrow r$	premise
${ }_{4}$	q	\rightarrow e 1,2

\rightarrow elimination

Example Prove $p, p \rightarrow q, q \rightarrow r \vdash r$

${ }_{1}$	p	premise
${ }_{2}$	$p \rightarrow q$	premise
${ }_{3}$	$q \rightarrow r$	premise
${ }_{4}$	q	$\rightarrow \mathrm{e} 1,2$
${ }_{5}$	r	$\rightarrow \mathrm{e} 4,3$

\rightarrow elimination

\rightarrow elimination

- $\rightarrow \mathrm{e}$ is also known as Modus Ponens
- MT is known as Modus Tollens
\rightarrow introduction

$$
\frac{\begin{array}{|c}
A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow \mathrm{i}
$$

\rightarrow introduction

$$
\frac{\left.\begin{array}{|c}
\hline A \\
\vdots \\
B
\end{array}\right]}{A \rightarrow B} \rightarrow i
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

\rightarrow introduction

$$
\frac{\begin{array}{|c}
A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow i
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$
{ }_{1} \quad p \rightarrow q \quad \text { premise }
$$

\rightarrow introduction

$$
\frac{\begin{array}{|c|}
\hline A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow \mathrm{i}
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
=\neg q & \text { assumption }
\end{array}
$$

\rightarrow introduction

$$
\frac{\begin{array}{|c}
A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow \mathrm{i}
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
2 & \neg q & \text { assumption } \\
3 & \neg p & \text { MT } 1,2
\end{array}
$$

\rightarrow introduction

$$
\frac{\begin{array}{|c}
A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow \mathrm{i}
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
2 & \neg q & \text { assumption } \\
3 & \neg p & \text { MT } 1,2 \\
4 & \neg q \rightarrow \neg p & \rightarrow \text { i } 2-3
\end{array}
$$

\rightarrow introduction

$$
\frac{\begin{array}{|c|}
\hline A \\
\vdots \\
B
\end{array}}{A \rightarrow B} \rightarrow i
$$

Example Prove $p \rightarrow q \vdash \neg q \rightarrow \neg p$

1	$p \rightarrow q$	premise
${ }_{2}$	$\neg q$	assumption
3	$\neg p$	MT 1,2
4	$\neg q \rightarrow \neg p$	\rightarrow i $2-3$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

$$
\left.\begin{array}{c}
\frac{A A \rightarrow B}{B} \rightarrow \mathrm{e} \\
\frac{A \rightarrow B \neg B}{\neg A} \mathrm{MT} \\
\frac{\square}{A} \\
\vdots \\
\hline
\end{array}\right] \mathrm{i}
$$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
1 $\quad q \rightarrow r$
assumption

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
1 $\quad q \rightarrow r$
$=\neg q \rightarrow \neg p$
assumption
assumption

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
1 $\quad q \rightarrow r$
$=\neg q \rightarrow \neg p$
assumption
$3 p$
assumption
assumption
$\frac{A \quad A \rightarrow B}{B} \rightarrow \mathrm{e}$
$\frac{A \rightarrow B \quad \neg B}{\neg A} \mathrm{MT}$
$\frac{\begin{array}{c}A \\ \vdots \\ B\end{array}}{A \rightarrow B} \rightarrow \mathrm{i}$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

1	$q \rightarrow r$	assumption
$2 \quad \neg q \rightarrow \neg p$	assumption	
3	p	assumption
4	$\neg \neg p$	$\neg \neg$ i 3

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
$4 \neg \neg p$	$\neg \neg \mathrm{i} 3$	
5	$\neg \neg q$	MT 2,4

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

$1 \quad q \rightarrow r$	assumption	
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
$4 \neg \neg p$	$\neg \neg$ i 3	
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

$1 \quad q \rightarrow r$	assumption	
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg \mathrm{i} 3$
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e} 1,6$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg \mathrm{i} 3$
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e} 1,6$

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg$ i 3
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e} 1,6$
8	$p \rightarrow r$	\rightarrow i 3-7

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$

	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg i 3$
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e} \mathrm{1,6}$
8	$p \rightarrow r$	\rightarrow i 3-7

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
$\frac{A \quad A \rightarrow B}{B} \rightarrow \mathrm{e}$
$\frac{A \rightarrow B \quad \neg B}{\neg A} \mathrm{MT}$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg$ i 3
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg$ e 5
7	r	\rightarrow e 1,6
8	$p \rightarrow r$	\rightarrow i 3-7
9	$(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$	\rightarrow i 2-8

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
$\frac{A \quad A \rightarrow B}{B} \rightarrow \mathrm{e}$

$$
\frac{A \rightarrow B \quad \neg B}{\neg A} \mathrm{MT}
$$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg i 3$
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e}$ 1,6
8	$p \rightarrow r$	$\rightarrow \mathrm{i} 3-7$
	$(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$	\rightarrow i 2-8

Longer Example

Prove $\vdash(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$
$\frac{A \quad A \rightarrow B}{B} \rightarrow \mathrm{e}$

$$
\frac{A \rightarrow B \quad \neg B}{\neg A} \mathrm{MT}
$$

1	$q \rightarrow r$	assumption
2	$\neg q \rightarrow \neg p$	assumption
3	p	assumption
4	$\neg \neg p$	$\neg \neg \mathrm{i} 3$
5	$\neg \neg q$	MT 2,4
6	q	$\neg \neg \mathrm{e} 5$
7	r	$\rightarrow \mathrm{e} 1,6$
8	$p \rightarrow r$	\rightarrow i 3-7
9	$(\neg q \rightarrow \neg p) \rightarrow(p \rightarrow r)$	\rightarrow i 2-8
	$(q \rightarrow r) \rightarrow(\neg q \rightarrow \neg p)$	\rightarrow e 1-9

\checkmark introduction and elimination

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$
$1 \quad p \vee q$ premise

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$
$1 \quad p \vee q$ premise
$2 p$ assumption

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

$$
\begin{array}{lll}
1 & p \vee q & \text { premise } \\
= & p & \text { assumption } \\
3 & q \vee p & \vee i_{2} 2
\end{array}
$$

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

${ }_{1}$	$p \vee q$	premise
2	p	assumption
3	$q \vee p$	$\vee \mathrm{i}_{2} 2$

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

${ }_{1}$	$p \vee q$	premise
${ }_{2}$	p	assumption
3	$q \vee p$	$\vee \mathrm{i}_{2} 2$
4	q	assumption

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$
${ }_{1} \quad p \vee q$ premise

2	p	assumption
3	$q \vee p$	$\vee \mathrm{i}_{2} 2$
4	q	assumption
${ }_{5}$	$q \vee p$	$\vee \mathrm{i}_{1} 2$

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

${ }_{1}$	$p \vee q$	premise
2	p	assumption
3	$q \vee p$	$\vee \mathrm{i}_{2} 2$
4	q	assumption
5	$q \vee p$	$\vee \mathrm{i}_{1} 2$

\vee introduction and elimination

Example 1 Prove $p \vee q \vdash q \vee p$

| 1_{1} $p \vee q$ premise
 2 p assumption
 3 $q \vee p$ $\vee \mathrm{i}_{2} 2$
 4 q assumption
 5 $q \vee p$ $\vee \mathrm{i}_{1} 2$
 6 $q \vee p$ $\vee \mathrm{e} \mathrm{1,2-3,4-5}$ |
| :--- | :--- | :--- |

\checkmark introduction and elimination

\vee introduction and elimination

Example 2 Prove $p \vee q, p \rightarrow r, q \rightarrow r \vdash r$

\vee introduction and elimination

Example 2 Prove $p \vee q, p \rightarrow r, q \rightarrow r \vdash r$
$1 p \vee q$ premise
$=p \rightarrow r$ premise
3 $\quad q \rightarrow r$ premise

\vee introduction and elimination

Example 2 Prove $p \vee q, p \rightarrow r, q \rightarrow r \vdash r$

${ }_{1} \quad p \vee q$	premise	
${ }_{2}$	$p \rightarrow r$	premise
3	$q \rightarrow r$	premise
4 p assumption 5 r $\rightarrow \mathrm{e} 4,2$	q assumption r $\rightarrow \mathrm{e} \mathrm{4} 3$,	

\vee introduction and elimination

Example 2 Prove $p \vee q, p \rightarrow r, q \rightarrow r \vdash r$

1	$p \vee q$			premise
2	$p \rightarrow r$			premise
3	$q \rightarrow r$			premise
4	p	assumption	q	assumption
5		$\rightarrow \mathrm{e} 4,2$	r	$\rightarrow \mathrm{e} 4,3$
6	r			Ve 1, 4-5

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

[^0]
\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

$$
{ }_{1} \quad \neg p \vee q \text { premise }
$$

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

$$
\begin{array}{lll}
1 & \neg p \vee q & \text { premise } \\
2 & \neg p & \text { assumption }
\end{array}
$$

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

$$
\begin{array}{lll}
1 & \neg p \vee q & \text { premise } \\
2 & \neg p & \text { assumption } \\
3 & p & \text { assumption }
\end{array}
$$

\perp elimination and \neg elimination

Example Prove $\neg p \vee q \vdash p \rightarrow q$

1	$\neg p \vee q$	premise
2	$\neg p$	assumption
3	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$

\perp elimination and \neg elimination

Example Prove $\neg p \vee q \vdash p \rightarrow q$

1	$\neg p \vee q$	premise
2	$\neg p$	assumption
3	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$
5	q	$\perp \mathrm{e} 4$

\perp elimination and \neg elimination

Example Prove $\neg p \vee q \vdash p \rightarrow q$
$1 \quad \neg p \vee q$ premise
$2 \neg p$ assumption

3	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$
5	q	$\perp \mathrm{e} 4$

\perp elimination and \neg elimination

Example Prove $\neg p \vee q \vdash p \rightarrow q$

1	$\neg p \vee q$	premise
2	$\neg p$	assumption
3	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$
5	q	$\perp \mathrm{e} 4$
6	$p \rightarrow q$	$\rightarrow \mathrm{i} 3-5$

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

$$
1 \neg p \vee q \quad \text { premise }
$$

2	$\neg p$	assumption
3	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$
5	q	\perp e 4
6	$p \rightarrow q$	\rightarrow i 3-5

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

1	$\neg p \vee q$			premise
2	$\neg p$	assumption	q	assumption
3	p	assumption		assumption
4	\perp	$\neg \mathrm{e} 3,2$		
5	q	$\perp \mathrm{e} 4$		
6	p	\rightarrow i 3-5		

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$

1	$\neg p \vee q$			premise
2	$\neg p$	assumption	q	assumption
3	p	assumption	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$	q	copy 2
5	9	$\perp \mathrm{e} 4$		
6	$p \rightarrow$	\rightarrow i 3-5		

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$
$1 \quad \neg p \vee q \quad$ premise

2	$\neg p$	assumption	q	assumption
3	p	assumption	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$	q	copy 2
5	q	$\perp \mathrm{e} 4$		
6	$p \rightarrow$	\rightarrow i 3-5		

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e} \quad \frac{A \quad \neg A}{\perp} \neg \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$
$1 \quad \neg p \vee q \quad$ premise

2	$\neg p$	assumption	q	assumption
3	p	assumption	p	assumption
4	\perp	$\neg \mathrm{e} 3,2$	9	copy 2
5	q	Le 4	$p \rightarrow q$	$\rightarrow \mathrm{i}$ 3-4
6	p	\rightarrow i 3-5		

\perp elimination and \neg elimination

$$
\frac{\perp}{A} \perp \mathrm{e}
$$

Example Prove $\neg p \vee q \vdash p \rightarrow q$
$1 \quad \neg p \vee q \quad$ premise

2	$\neg p$	assumption	q	assumption
3	p	assumption	p	assumption
4	\perp	$\begin{aligned} & \neg \mathrm{e} 3,2 \\ & \perp \mathrm{e} 4 \end{aligned}$	9	copy 2
5	q		$p \rightarrow q$	\rightarrow i 3-4
	p	$\rightarrow \mathrm{i} 3-5$		

$$
7 \quad p \rightarrow q
$$

Ve 1, 2-6
\neg introduction and proof by contradiction

$\overline{A \vee \neg A}$ LEM

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
= & p \rightarrow \neg q & \text { premise }
\end{array}
$$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
= & p \rightarrow \neg q & \text { premise } \\
= & p & \text { assumption }
\end{array}
$$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
2 & p \rightarrow \neg q & \text { premise } \\
3 & p & \text { assumption } \\
4 & q & \rightarrow \mathrm{e} 1,3
\end{array}
$$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
= & p \rightarrow \neg q & \text { premise } \\
3 & p & \text { assumption } \\
4 & q & \rightarrow \mathrm{e} 1,3 \\
5 & \neg q & \rightarrow \mathrm{e} 2,3
\end{array}
$$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

$$
\begin{array}{lll}
1 & p \rightarrow q & \text { premise } \\
2 & p \rightarrow \neg q & \text { premise } \\
3 & p & \text { assumption } \\
4 & q & \rightarrow \mathrm{e} 1,3 \\
5 & \neg q & \rightarrow \mathrm{e} 2,3 \\
6 & \perp & \neg \mathrm{e} 4,5
\end{array}
$$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$
1 $p \rightarrow q$ premise
$=\quad p \rightarrow \neg q$ premise

3	p	assumption
4	q	$\rightarrow \mathrm{e} 1,3$
5	$\neg q$	$\rightarrow \mathrm{e} 2,3$
6	\perp	$\neg \mathrm{e} 4,5$

\neg introduction and proof by contradiction

Example 1 Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$
1 $p \rightarrow q$ premise
$=\quad p \rightarrow \neg q$ premise

3	p	assumption
4	q	$\rightarrow \mathrm{e} 1,3$
5	$\neg q$	$\rightarrow \mathrm{e} 2,3$
6	\perp	$\neg \mathrm{e} 4,5$
7	$\neg p$	$\neg \mathrm{i} 2-4$

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

$$
1 \quad \neg p \rightarrow \perp \text { premise }
$$

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

$$
\begin{array}{lll}
1 & \neg p \rightarrow \perp & \text { premise } \\
2 & \neg p & \text { assumption }
\end{array}
$$

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

$$
\begin{array}{lll}
1 & \neg p \rightarrow \perp & \text { premise } \\
2 & \neg p & \text { assumption } \\
3 & \perp & \rightarrow \mathrm{e} 1,2
\end{array}
$$

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

${ }_{1}$	$\neg p \rightarrow \perp$	premise
2 $\neg p$ assumption 3 \perp $\rightarrow \mathrm{e} 1,2$		

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

1	$\neg p \rightarrow \perp$	premise
2 $\neg p$ assumption 3 \perp $\rightarrow \mathrm{e} \mathrm{1,2}$ 4 $\neg \neg p$ $\neg \mathrm{i} 2-3$		

\neg introduction and proof by contradiction

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

	$\neg p \rightarrow \perp$	premise
2 $\neg p$ assumption 3 \perp \rightarrow e 1,2 4 $\neg \neg p$ $\neg \mathrm{i} 2-3$ 5 p $\neg \neg \mathrm{e} \mathrm{4}$		

\neg introduction and proof by contradiction

$$
\overline{A \vee \neg A} \mathrm{LEM}
$$

Example 2 Prove $\neg p \rightarrow \perp \vdash p$

	$\neg p \rightarrow \perp$	premise
2 $\neg p$ assumption 3 \perp $\rightarrow \mathrm{e} \mathrm{1,2}$ 4 $\neg \neg p$ $\neg \mathrm{i} 2-3$ 5 p $\neg \neg \mathrm{e} 4$		

PBC can be simulated

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p \quad 1 \quad \neg(p \vee \neg p)$ assumption

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$
$1 \quad \neg(p \vee \neg p)$ assumption
$=p$ assumption

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$
$1 \quad \neg(p \vee \neg p)$ assumption
$2 p$ assumption
$3 p \vee \neg p \quad \vee i_{1} 2$

\neg introduction and proof by contradiction

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$

${ }_{1}$	$\neg(p \vee \neg p)$	assumption
2	p	assumption
3	$p \vee \neg p$	$\vee \mathrm{i}_{1} 2$
4	\perp	$\neg \mathrm{e} 3,1$
5	$\neg p$	$\neg \mathrm{i} 2-4$

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$

1	$\neg(p \vee \neg p)$	assumption
2	p	assumption
3	$p \vee \neg p$	$\vee \mathrm{i}_{1} 2$
4	\perp	$\neg \mathrm{e} 3,1$
5	$\neg p$	$\neg \mathrm{i} 2-4$
6	$p \vee \neg p$	$\vee \mathrm{i}_{2} 5$

\neg introduction and proof by contradiction

Example 3 Prove $\vdash p \vee \neg p$

1	$\neg(p \vee \neg p)$	assumption
2 p assumption 3 $p \vee \neg p$ $\vee \mathrm{i}_{1} 2$ 4 \perp $\neg \mathrm{e} 3,1$ 5 $\neg p$ $\neg \mathrm{i} 2-4$ 6 $p \vee \neg p$ $\vee \mathrm{i}_{2} 5$ 7 \perp $\neg \mathrm{e} 6,1$		

\neg introduction and proof by contradiction

$\overline{A \vee \neg A}$ LEM

Example 3	Prove $\vdash p \vee \neg p$		$\neg(p \vee-p$	assumption
		2	p	assumption
			$p \vee \neg p$	$\vee \mathrm{i}_{1} 2$
		4	\perp	$\neg \mathrm{e} 3,1$
		5	$\neg p$	$\neg \mathrm{i}$ 2-4
			$p \vee \neg p$	$\checkmark \mathrm{i}_{2} 5$
		7	\perp	$\neg \mathrm{e} 6,1$

\neg introduction and proof by contradiction

$\overline{A \vee \neg A} \mathrm{LEM}$

Example 3	Prove $\vdash p \vee \neg p$	1	$\neg(p \vee-$	assumption
		2	p	assumption
		3	$p \vee \neg p$	$\vee \mathrm{i}_{1} 2$
			\perp	$\neg \mathrm{e} 3,1$
		5	$\neg p$	$\neg \mathrm{i}$ 2-4
		6	$p \vee \neg p$	$\vee \mathrm{i}_{2} 5$
		7	\perp	$\neg \mathrm{e} 6,1$
		8	$p \vee \neg p$	PBC 7

\neg introduction and proof by contradiction

$\overline{A \vee \neg A} \mathrm{LEM}$

\neg introduction and proof by contradiction

PBC and LEM are derived rules

\neg introduction and proof by contradiction

PBC and LEM are derived rules
MT and $\neg \neg$ i are derived rules too

Soundness of natural deduction

We will prove a crucial property of natural deduction:
any formula A derived from a set U of premises is a logical consequence of U

Soundness of natural deduction

We will prove a crucial property of natural deduction:
any formula A derived from a set U of premises is a logical consequence of U

Theorem 1 (Soundness)
For all formulas A_{1}, \ldots, A_{n} and A such that $A_{1}, \ldots, A_{n} \vdash A$, we have that

$$
A_{1}, \ldots, A_{n} \models A .
$$

Soundness of natural deduction

We will prove a crucial property of natural deduction:
any formula A derived from a set U of premises is a logical consequence of U

Theorem 1 (Soundness)

For all formulas A_{1}, \ldots, A_{n} and A such that $A_{1}, \ldots, A_{n} \vdash A$, we have that

$$
A_{1}, \ldots, A_{n} \models A .
$$

For the proof of the theorm, we will rely on this lemma:
Lemma 2
For all formulas A_{1}, \ldots, A_{n}, A and B,

1. $A_{1}, \ldots, A_{n}, A \models B$ iff $A_{1}, \ldots, A_{n} \models A \rightarrow B$
2. $A_{1}, \ldots, A_{n}, \neg B \models \perp$ iff $A_{1}, \ldots, A_{n} \models B$

Soundness proof

The proof of Theorem 1 is by induction on proof length
The length of a natural deduction proof is the number of lines in it

Soundness proof

[^1]
Soundness proof

Proof of Theorem 1.

Let P be the a proof of $A_{1}, \ldots, A_{n} \vdash A$, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.

Soundness proof

Proof of Theorem 1.

Let P be the a proof of $A_{1}, \ldots, A_{n} \vdash A$, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.
By induction on the length / of P.

Soundness proof

Proof of Theorem 1.

Let P be the a proof of $A_{1}, \ldots, A_{n} \vdash A$, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.
By induction on the length / of P.
($l=1$)

Soundness proof

Proof of Theorem 1.

Let P be the a proof of $A_{1}, \ldots, A_{n} \vdash A$, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.
By induction on the length / of P.
$(l=1)$
Then $A=A_{i}$ for some $i \in\{1, \ldots, n\}$. Trivially, $A_{1}, \ldots, A_{n} \mid=A_{i}$.
(continued)

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.
The proof depends on the final rule used to derive A.

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.
The proof depends on the final rule used to derive A.
$\left(\wedge e_{1}\right)$ If A was derived by $\wedge e_{1}$, then P looks like:
A_{1} premise

for some formula B.

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.
The proof depends on the final rule used to derive A.
$\left(\wedge e_{1}\right)$ If A was derived by $\wedge e_{1}$, then P looks like:

for some formula B.
Note that the subsequence of P from A_{1} to $A \wedge B$ is a proof of $A \wedge B$ of length $<l$.

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.
The proof depends on the final rule used to derive A.
$\left(\wedge e_{1}\right)$ If A was derived by $\wedge e_{1}$, then P looks like:

for some formula B.
Note that the subsequence of P from A_{1} to $A \wedge B$ is a proof of $A \wedge B$ of length $<l$.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n} \models A \wedge B$.

Soundness proof (continued)

($1>1$)
Assume by induction that the theorem holds for all proofs of length $l^{\prime}<l$.
The proof depends on the final rule used to derive A.
$\left(\wedge e_{1}\right)$ If A was derived by $\wedge e_{1}$, then P looks like:

for some formula B.
Note that the subsequence of P from A_{1} to $A \wedge B$ is a proof of $A \wedge B$ of length $<l$.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n} \models A \wedge B$. Hence, $A_{1}, \ldots, A_{n} \models A$.

Soundness proof (continued)

(i)

Soundness proof (continued)

($\wedge \mathrm{i}$) Then A has the form $B_{1} \wedge B_{2}$

Soundness proof (continued)

($\wedge \mathrm{i}$) Then A has the form $B_{1} \wedge B_{2}$ and P looks like:

A_{1}	premise	A_{1}	premise	
\vdots		\vdots		
B_{1}	\cdots	or	\vdots	
\vdots		B_{2}	\cdots	
B_{2}	\cdots	B_{1}	\cdots	
\vdots		\vdots		
$B_{1} \wedge B_{2}$	$\wedge \mathrm{i}$	$B_{1} \wedge B_{2}$	$\wedge \mathrm{i}$	

Soundness proof (continued)

($\wedge \mathrm{i})$ Then A has the form $B_{1} \wedge B_{2}$ and P looks like:

This implies that P contains a (shorter) proof of B_{1} and of B_{2}.

Soundness proof (continued)

($\wedge \mathrm{i})$ Then A has the form $B_{1} \wedge B_{2}$ and P looks like:

This implies that P contains a (shorter) proof of B_{1} and of B_{2}.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n} \models B_{i}$ for $i=1,2$.

Soundness proof (continued)

($\wedge \mathrm{i})$ Then A has the form $B_{1} \wedge B_{2}$ and P looks like:

A_{1}	premise	A_{1}	premise	
\vdots		\vdots		
B_{1}	\cdots		B_{2}	\cdots
\vdots		\vdots		
B_{2}	\cdots	B_{1}	\cdots	
\vdots		\vdots		
$B_{1} \wedge B_{2}$	$\wedge \mathrm{i}$		$B_{1} \wedge B_{2}$	$\wedge \mathrm{i}$

This implies that P contains a (shorter) proof of B_{1} and of B_{2}.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n} \models B_{i}$ for $i=1,2$.
Hence, $A_{1}, \ldots, A_{n} \vDash B_{1} \wedge B_{2}$.

Soundness proof (continued)

$(\rightarrow \mathrm{i})$

Soundness proof (continued)

$(\rightarrow \mathrm{i})$ Then A has the form $B_{1} \rightarrow B_{2}$ and

Soundness proof (continued)

$(\rightarrow i)$ Then A has the form $B_{1} \rightarrow B_{2}$ and

P looks like:

1_{1}	A_{1}	premise
${ }_{2}$	\vdots	
3	B_{1}	assumption
4	\vdots	
5	B_{2}	\ldots
6	$B_{1} \rightarrow B_{2}$	$\rightarrow \mathrm{i}$

Soundness proof (continued)

$(\rightarrow i)$ Then A has the form $B_{1} \rightarrow B_{2}$ and

P looks like:

${ }_{1}$	A_{1}	premise
${ }_{2}$	\vdots	
3	B_{1}	assumption
4	\vdots	
5	B_{2}	\ldots
6	$B_{1} \rightarrow B_{2}$	$\rightarrow \mathrm{i}$

but then

Soundness proof (continued)

$(\rightarrow \mathrm{i})$ Then A has the form $B_{1} \rightarrow B_{2}$ and

P looks like:

1	A_{1}	premise
${ }_{2}$	\vdots	
3	B_{1}	assumption
4	\vdots	
5	B_{2}	\ldots
6	$B_{1} \rightarrow B_{2}$	$\rightarrow \mathrm{i}$

but then
${ }_{1} A_{1}$ premise
$B_{1} \rightarrow B_{2} \rightarrow 1$
is a proof of B_{2} from $A_{1}, \ldots, A_{n}, B_{1}$ that is shorter than P.

Soundness proof (continued)

$(\rightarrow \mathrm{i})$ Then A has the form $B_{1} \rightarrow B_{2}$ and
P looks like:

1	A_{1}	premise
2	\vdots	
3	B_{1}	assumption
4	\vdots	
5	B_{2}	\ldots
6	$B_{1} \rightarrow B_{2}$	$\rightarrow \mathrm{i}$

but then
${ }_{1} A_{1}$ premise
$3 \quad B_{1}$ premise
4
${ }_{5} \quad B_{2} \ldots$
is a proof of B_{2} from $A_{1}, \ldots, A_{n}, B_{1}$ that is shorter than P.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n}, B_{1} \models B_{2}$.

Soundness proof (continued)

$(\rightarrow \mathrm{i})$ Then A has the form $B_{1} \rightarrow B_{2}$ and
P looks like:

1	A_{1}	premise
${ }_{2}$	\vdots	
3	B_{1}	assumption
4	\vdots	
5	B_{2}	\ldots
6	$B_{1} \rightarrow B_{2}$	$\rightarrow \mathrm{i}$

${ }_{1} A_{1}$ premise

2
$3 \quad B_{1}$ premise

4
$5 \quad B_{2} \ldots$
is a proof of B_{2} from $A_{1}, \ldots, A_{n}, B_{1}$ that is shorter than P.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n}, B_{1} \models B_{2}$.
It follows from Lemma 2(1) that $A_{1}, \ldots, A_{n} \models B_{1} \rightarrow B_{2}$.

Soundness proof (continued)

(i)

Soundness proof (continued)

$(\neg i)$ Then A has the form $\neg B$ and

Soundness proof (continued)

$(\neg \mathrm{i})$ Then A has the form $\neg B$ and
P looks like: $\quad 1 \quad A_{1}$ premise
2

Soundness proof (continued)

$(\neg \mathrm{i})$ Then A has the form $\neg B$ and
Plooks like
${ }_{1} A_{1}$ premise
but then

Soundness proof (continued)

$(\neg \mathrm{i})$ Then A has the form $\neg B$ and

is a proof of \perp from A_{1}, \ldots, A_{n}, B that is shorter than P.

Soundness proof (continued)

$(\neg \mathrm{i})$ Then A has the form $\neg B$ and

is a proof of \perp from A_{1}, \ldots, A_{n}, B that is shorter than P.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n}, B \models \perp$.

Soundness proof (continued)

$(\neg i)$ Then A has the form $\neg B$ and

is a proof of \perp from A_{1}, \ldots, A_{n}, B that is shorter than P.
Then, by inductive hypothesis, $A_{1}, \ldots, A_{n}, B \models \perp$.
It follows from Lemma 2 that $A_{1}, \ldots, A_{n} \models \neg B$.

Soundness proof (continued)

($\wedge \mathrm{i}_{2}$) Analogous to $\wedge \mathrm{i}_{2}$ case.
$\left(\vee i_{1}\right)$ Exercise.
$\left(\vee i_{1}\right)$ Exercise.
(Ve) Exercise.
$(\rightarrow \mathrm{e})$ Exercise.
$(\neg \mathrm{e})$ Exercise.
$(\perp e)$ Exercise.
($\neg \neg \mathrm{e})$ Exercise.

Completeness of natural deduction

We will now prove another important property of natural deduction:
any logical consequence A of a set U of formulas has a proof with premises U

Completeness of natural deduction

We will now prove another important property of natural deduction:
any logical consequence A of a set U of formulas has a proof with premises U

Assumption: We remove T from the language and simulate it with $p \vee \neg p$

Completeness of natural deduction

We will now prove another important property of natural deduction:
any logical consequence A of a set U of formulas has a proof with premises U

Assumption: We remove T from the language and simulate it with $p \vee \neg p$

Theorem 3 (Completeness)
For all formulas A_{1}, \ldots, A_{n} and A such that $A_{1}, \ldots, A_{n} \vDash A$, we have that

$$
A_{1}, \ldots, A_{n} \vdash A .
$$

Completeness of natural deduction

We will now prove another important property of natural deduction:
any logical consequence A of a set U of formulas has a proof with premises U

Assumption: We remove T from the language and simulate it with $p \vee \neg p$

Theorem 3 (Completeness)
For all formulas A_{1}, \ldots, A_{n} and A such that $A_{1}, \ldots, A_{n} \models A$, we have that

$$
A_{1}, \ldots, A_{n} \vdash A .
$$

To prove this theorem, we will rely on several intermediate results

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models$ A implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Proof.
By induction on n in both cases (see Huth \& Ryan).

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.
Proof of Theorem $3\left(A_{1}, \ldots, A_{n} \models\right.$ Aimplies $\left.A_{1}, \ldots, A_{n} \vdash A\right)$.
Assume $A_{1}, \ldots, A_{n} \models A$, prove $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.
Proof of Theorem $3\left(A_{1}, \ldots, A_{n} \models\right.$ Aimplies $\left.A_{1}, \ldots, A_{n} \vdash A\right)$.
Assume $A_{1}, \ldots, A_{n} \models A$, prove $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.
By Lemma 4(1), $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.
Proof of Theorem $3\left(A_{1}, \ldots, A_{n} \models\right.$ Aimplies $\left.A_{1}, \ldots, A_{n} \vdash A\right)$.
Assume $A_{1}, \ldots, A_{n} \models A$, prove $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.
By Lemma 4(1), $=A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
By Theorem $5, \vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.
Proof of Theorem $3\left(A_{1}, \ldots, A_{n} \models\right.$ Aimplies $\left.A_{1}, \ldots, A_{n} \vdash A\right)$.
Assume $A_{1}, \ldots, A_{n} \models A$, prove $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.
By Lemma 4(1), $=A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
By Theorem $5, \vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
By Lemma 4(2), $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Completeness of natural deduction

Lemma 4
For all formulas A_{1}, \ldots, A_{n} and A the following holds:

1. $A_{1}, A_{2}, \ldots, A_{n} \models A$ implies $\models A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$.
2. $\vdash A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n} \rightarrow A\right) \cdots\right)\right)$ implies $A_{1}, A_{2}, \ldots, A_{n} \vdash A$.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if $\models B$ then $\vdash B$.

So we are left with proving Theorem 5

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg$ p otherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \models A \text {. }
$$

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg$ p otherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \models A \text {. }
$$

Proof of Lemma 6. By structural induction on A.

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg p$ otherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \vDash A .
$$

Proof of Lemma 6. By structural induction on A.
(Base case)
If A is just a variable, say p_{1}, then it is immediate that $p_{1} \vdash p_{1}$ and $\neg p_{1} \vdash \neg p_{1}$.

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg p$ otherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \vDash A \text {. }
$$

Proof of Lemma 6. By structural induction on A.
(Base case)
If A is just a variable, say p_{1}, then it is immediate that $p_{1} \vdash p_{1}$ and $\neg p_{1} \vdash \neg p_{1}$. If A is \perp then $n=0$ and $\mathcal{I} \nLeftarrow A$. We can prove $\neg \perp$ from no premises by \neg i.

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg$ potherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \models A \text {. }
$$

Proof of Lemma 6. By structural induction on A.
(Base case)
If A is just a variable, say p_{1}, then it is immediate that $p_{1} \vdash p_{1}$ and $\neg p_{1} \vdash \neg p_{1}$. If A is \perp then $n=0$ and $\mathcal{I} \not \vDash A$. We can prove $\neg \perp$ from no premises by \neg i.
(Inductive Step) If A is not a variable or \perp, assume the result holds for all proper subformulas of A.

Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p_{1}, \ldots, p_{n} with $n \geq 0$ and let I be an interpretation. Let $\hat{p}_{i}=p$ if $\mathcal{I} \models p$ and $\hat{p}_{i}=\neg$ potherwise. Then,

$$
\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A \text { if } \mathcal{I} \models A \quad \text { and } \quad \hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A \text { if } \mathcal{I} \not \models A \text {. }
$$

Proof of Lemma 6. By structural induction on A.
(Base case)
If A is just a variable, say p_{1}, then it is immediate that $p_{1} \vdash p_{1}$ and $\neg p_{1} \vdash \neg p_{1}$. If A is \perp then $n=0$ and $\mathcal{I} \not \vDash A$. We can prove $\neg \perp$ from no premises by \neg i.
(Inductive Step) If A is not a variable or \perp, assume the result holds for all proper subformulas of A.
We reason by cases on the form of A.

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$(A=\neg B)$ (that is, suppose A has the form $\neg B$)

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$(A=\neg B)$ (that is, suppose A has the form $\neg B$)

- If $\mathcal{I} \vDash A$ then $\mathcal{I} \not \vDash B$. By inductive hypothesis, $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg B$.

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \vDash A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\mathcal{I} \not \vDash A$) (continued)
($A=\neg B$) (that is, suppose A has the form $\neg B$)

- If $\mathcal{I} \mid=A$ then $\mathcal{I} \not \vDash B$. By inductive hypothesis, $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg B$.
- If $\mathcal{I} \not \vDash A$ then $\mathcal{I} \models B$. By inductive hypothesis, $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash B$. Take a proof of B from $\hat{p}_{1}, \ldots, \hat{p}_{n}$ and apply $\neg \neg$ i to B. The resulting proof is a proof of $\neg A$.

Towards a proof of Theorem 5
Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\mathcal{I} \not \vDash A$) (continued)
$\left(A=B_{1} \wedge B_{2}\right)$

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$\left(A=B_{1} \wedge B_{2}\right)$

- If $\mathcal{I} \models A$ then $\mathcal{I} \models B_{1}$ and $\mathcal{I} \models B_{2}$.

By inductive hypothesis, $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash B_{1}$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash B_{2}$.
A proof of A from $\hat{p}_{1}, \ldots, \hat{p}_{n}$ is obtained by chaining a proof of B_{1} and a proof of B_{2} and applying $\wedge i$ to B_{1} and B_{2}.

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \vDash A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\mathcal{I} \not \vDash A$) (continued)
$\left(A=B_{1} \wedge B_{2}\right)$

- If $\mathcal{I} \not \vDash A$ then $\mathcal{I} \not \vDash B_{k}$ for some $k \in\{1,2\}$. Say $k=1$ (the other case is similar). By inductive hypothesis, $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash B_{1}$. A proof of $\neg B_{1}$ can be extended to a proof of $\neg A$ as follows:

1	$:$	
2	$\neg B_{1}$	
3	$B_{1} \wedge B_{2}$	assumption
4	B_{1}	$\wedge \mathrm{e}_{1} 3$
5	\perp	$\perp \mathrm{i} 4,2$
6	$\neg\left(B_{1} \wedge B_{2}\right)$	$\perp \mathrm{i} 3,5$

Towards a proof of Theorem 5
Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\mathcal{I} \not \vDash A$) (continued)
$\left(A=B_{1} \vee B_{2}\right)$

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$\left(A=B_{1} \vee B_{2}\right)$

- If $\mathcal{I} \models A$ then $\mathcal{I} \models B_{k}$ for some $k \in\{1,2\}$.

A proof of A from $\hat{p}_{1}, \ldots, \hat{p}_{n}$ is obtained from a proof of B_{k} by applying $\vee_{i_{k}}$ to B_{k} to get $B_{1} \vee B_{2}$.

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\mathcal{I} \not \vDash A$) (continued)
$\left(A=B_{1} \vee B_{2}\right)$

- If $\mathcal{I} \not \vDash A$ then $\mathcal{I} \not \vDash B_{1}$ and $\mathcal{I} \not \vDash B_{2}$.

A proof of $\neg A$ from $\hat{p}_{1}, \ldots, \hat{p}_{n}$ is obtained by chaining a proof of $\neg B_{1}$ and a proof of $\neg B_{2}$ and continuing as follows:

| 2 | $B_{1} \vee B_{2}$ | assumption |
| :---: | :---: | :---: | :---: |
| $\left.\begin{array}{ccc}3 & B_{1} & \text { assumption } \\ 4 & \perp & \perp \mathrm{i}\left(\text { with } \neg B_{1}\right)\end{array}\right)$ | B_{2} assumption
 \perp $\perp \mathrm{i}\left(\right.$ with $\left.\neg B_{2}\right)$ | |
| 5 | \perp | $\vee \mathrm{e} 2,3--4$ |
| 6 | $\neg\left(B_{1} \vee B_{2}\right)$ | $\perp \mathrm{i} 2--5$ |

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$\left(A=B_{1} \rightarrow B_{2}\right)$

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$\left(A=B_{1} \rightarrow B_{2}\right)$

- If $\mathcal{I} \vDash A$ then $\mathcal{I} \notin B_{1}$ or $\mathcal{I}=B_{2}$. (exercise)

Towards a proof of Theorem 5

Proof of Lemma 6. ($\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash A$ if $\mathcal{I} \models A$ and $\hat{p}_{1}, \ldots, \hat{p}_{n} \vdash \neg A$ if $\left.\mathcal{I} \not \vDash A\right)$ (continued)
$\left(A=B_{1} \rightarrow B_{2}\right)$

- If $\mathcal{I} \vDash A$ then $\mathcal{I} \notin B_{1}$ or $\mathcal{I}=B_{2}$.
(exercise)
- If $\mathcal{I} \not \vDash A$ then $\mathcal{I} \neq B_{1}$ and $\mathcal{I} \not \vDash B_{2}$. (exercise)

Towards a proof of Theorem 5

Lemma 7
Let L_{2}, \ldots, L_{n}, A be formulas and let p one of $A^{\prime} s$ variables.
If $p, L_{2}, \ldots, L_{n} \vdash A$ and $\neg p, L_{2}, \ldots, L_{n} \vdash A$ then $L_{2}, \ldots, L_{n} \vdash A$.

Proof of Lemma 7. $\left(p, L_{2}, \ldots, L_{n} \vdash A\right.$ and $\neg p, L_{2}, \ldots, L_{n} \vdash A$ implies $\left.L_{2}, \ldots, L_{n} \vdash A\right)$

Proof of Lemma 7. $\left(p, L_{2}, \ldots, L_{n} \vdash A\right.$ and $\neg p, L_{2}, \ldots, L_{n} \vdash A$ implies $\left.L_{2}, \ldots, L_{n} \vdash A\right)$ Suppose we have the proofs:

Proof of Lemma 7. $\left(p, L_{2}, \ldots, L_{n} \vdash A\right.$ and $\neg p, L_{2}, \ldots, L_{n} \vdash A$ implies $\left.L_{2}, \ldots, L_{n} \vdash A\right)$ Suppose we have the proofs:

| ${ }_{1}$ | p | premise | and | ${ }_{1}$ | $\neg p$ |
| :--- | :--- | :--- | :--- | :--- | :--- | premise

The following is a proof of A from L_{2}, \ldots, L_{n} :

Proof of Lemma 7. $\left(p, L_{2}, \ldots, L_{n} \vdash A\right.$ and $\neg p, L_{2}, \ldots, L_{n} \vdash A$ implies $\left.L_{2}, \ldots, L_{n} \vdash A\right)$

 Suppose we have the proofs:| ${ }_{1}$ | p | premise and | ${ }_{1}$ | $\neg p$ | premise | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | L_{2} | premise | | ${ }_{2}$ | L_{2} | premise |
| 3 | \vdots | | | \vdots | | |
| ${ }_{4}$ | A | \ldots | | | | |
| | | | A | \ldots | | |

The following is a proof of A from L_{2}, \ldots, L_{n} :

1	$p \vee \neg p$		LEM	
	p	assumption	$\neg p$	assumption
3	L_{2}	premise	L_{2}	premise
4	\vdots		:	
5	A	...	A	\ldots
6	A			Ve

Proof of Theorem $5(=$ Aimplies \vdash A).

Proof of Theorem $5(=$ A implies \vdash A).
Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$.

Proof of Theorem $5(=$ A implies \vdash A).
Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S \tag{1}
\end{equation*}
$$

Proof of Theorem $5(=$ A implies \vdash A).
Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples ($\hat{p}_{1}, \ldots, \hat{p}_{n}$) where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.

Proof of Theorem $5(=$ A implies \vdash A).
Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples ($\hat{p}_{1}, \ldots, \hat{p}_{n}$) where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$)

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).

Proof of Theorem $5(=$ A implies $\vdash A)$.

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
($i>1$)

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples ($\hat{p}_{1}, \ldots, \hat{p}_{n}$) where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
$(i>1)$ Suppose $\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples ($\hat{p}_{1}, \ldots, \hat{p}_{n}$) where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
$(i>1)$ Suppose $\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
We prove that $\hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
$(i>1)$ Suppose $\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
We prove that $\hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
Let $\left(\hat{p}_{1}, \ldots, p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right),\left(\hat{p}_{1}, \ldots, \neg p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right) \in S$.

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
$(i>1)$ Suppose $\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
We prove that $\hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
Let $\left(\hat{p}_{1}, \ldots, p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right),\left(\hat{p}_{1}, \ldots, \neg p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right) \in S$.
By induction hypothesis, $p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ and $\neg p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$

Proof of Theorem $5(=$ A implies \vdash A).

Let p_{1}, \ldots, p_{n} be all of A 's variables and consider the set

$$
S=\left\{p_{1}, \neg p_{1}\right\} \times \cdots \times\left\{p_{n}, \neg p_{n}\right\},
$$

of all tuples $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right)$ where each \hat{p}_{i} is either p_{i} or $\neg p_{i}$. We prove by induction on $i=1, \ldots, n+1$ that

$$
\begin{equation*}
\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A \text { for every }\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S . \tag{1}
\end{equation*}
$$

The theorem then follows from Property (1) for $i=n+1$.
($i=1$) Property (1) holds by Lemma 6 since every $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$ corresponds to an interpretation of A and all interpretations satisfy A (by def. of validity).
$(i>1)$ Suppose $\hat{p}_{i}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
We prove that $\hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ for all $\left(\hat{p}_{1}, \ldots, \hat{p}_{n}\right) \in S$.
Let $\left(\hat{p}_{1}, \ldots, p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right),\left(\hat{p}_{1}, \ldots, \neg p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n}\right) \in S$.
By induction hypothesis, $p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ and $\neg p_{i}, \hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$
Then $\hat{p}_{i+1}, \ldots, \hat{p}_{n} \vdash A$ by Lemma 7 .

[^0]: Example Prove $\neg p \vee q \vdash p \rightarrow q$

[^1]: Proof of Theorem 1.
 Let P be the a proof of $A_{1}, \ldots, A_{n} \vdash A$, seen as a sequence of formulas.

