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Credits

Part of these slides are based on Chap. 1 of Logic in Computer Science by M. Huth
and M. Ryan, Cambridge University Press, 2nd edition, 2004.

2/39



Outline

Inference Systems for Propositional Logic
Semantic consequence/entailment
Derivability
Natural deduction
Soundness and completeness of natural deduction
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Logics, formally

Alogicisatriple (£, S, R) where

e [, thelanguage, is
a class of sentences described by a formal grammar

® S, the semantics,is
a formal specification for assigning meaning to sentences in £

® 72, theinference system, is

a set of axioms and inference rules to infer (i.e., generate)
sentences of £ from given sentences of £
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Propositional logic, formally

Propositional logic is a triple (£, S, R ) where

e [ isthe set of all formulas built from Boolean variables and the
propositional connectives (—, /A, V. .. )

® Sisprovided by interpretations of the variables as 0, 1 and the
connectives as certain Boolean functions

® Ris??
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Propositional logic, formally

Propositional logic is a triple (£, S, R ) where

e [ isthe set of all formulas built from Boolean variables and the
propositional connectives (—, /A, V. .. )

® Sisprovided by interpretations of the variables as 0, 1 and the
connectives as certain Boolean functions

® Ris??

There are many inference systems for PL
We will study a few of them
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We have seen many methods to reason in propositional logic
Their description was largely procedural

They and others can be expressed more declaratively as inference
systems

This allows us study them at a higher level of abstraction than
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That makes it easier to separate their essence from heuristic
considerations or implementation details
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Formal properties of inference systems

A formal system is defined by a set of inference rules that allow us to
generate formulas from given formulas
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Formal properties of inference systems

A formal system is defined by a set of inference rules that allow us to
generate formulas from given formulas
We will focus on these properties of our inference systems:

Soundness Every inferred formula is a semantic consequence
of the given ones

Completeness Only semantic consequences are inferable

Termination Only finitely many inferences are needed to prove
or disprove semantic consequence
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Semantic consequence (or entailment)

Given
® asetU = {A,... A,} of formulas and

e aformula B
we write

iff every interpretation that satisfies all formulas in U satisfies 5 too
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Semantic consequence (or entailment)

Given
® asetU = {A, ... A,} of formulas and

e aformula B
we write

iff every interpretation that satisfies all formulas in U satisfies B too

U |= B isread as B is a semantic/logical consequence of U, or
B logically follows from U, or
U entails B
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Semantic consequence (or entailment)

Given
® asetlU = {A, ..., A, } of formulas and
¢ aformula B

we write

iff every interpretation that satisfies all formulas in U satisfies B too

U = Aformally captures the notion of
a fact A following from assumptions U
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Given
®asetlU = {A, . ... A, } of formulas and
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we write
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Semantic consequence (or entailment)

Given
®asetlU = {A, . ... A, } of formulas and

e aformula B
we write

iff every interpretation that satisfies all formulas in U satisfies 5 too

Note 1: We usually write just A;, ..., A, = B instead of {A;, ..., A} E B

Note 2: Do not confuse this use = with thatin Z = B where 7 is an interpretation

8/39



Entailment, Examples

{p} F pVvg

{p,p—a} E ¢q

{p,q} E pAg

{} E r—r

{p, —r} = (pvag)n(gV—r)

{a} E (pva)A(gVv-r)

{p,qVv-r} ¥~ pAg

{pv-pt ¥ p
[ MTelalr[—~rlp—qlpVvalprglr—rlgv—r](®EVaAQV-r)]
1. 0 0 0 1 1 0 0 1 1 1
2. 0 0 1 0 1 0 0 1 0 1
3. 0 1 0 1 1 1 0 1 1 1
4, 0 1 1 0 1 1 0 1 1 1
5. 1 0 0 1 0 1 0 1 1 1
6. 1 0 1 0 0 1 0 1 0 0
7. 1 1 0 1 1 1 1 1 1 1
8. 1 1 1 0 1 1 1 1 1 1
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Exercise

Determine which of the following entailments hold

?
pAg,r =
?
p, ~=(q Ar) =
?
p,p—q,q—r =
?
pvVag. p—=q,q—r
?
pvVa, p—=rqg—=r =
?
p—q =
?
p—q =
pVvV(gAr) =

p—=qp——9q =

qgnNr

TP AT

,

.

.

—q — —p
—p = —q
(pva)A(pVr)
p—(q—p)
-p
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Properties of entailment

o (J|=Aforall Ac U (inclusion)
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Properties of entailment

o (A, ... A} =BIiff {A, ..., An—1} = A, — B (deduction)

o (A  AYEBIff {AA- AAYEBIfFOE (AA - AA) — B
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Properties of entailment
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Properties of entailment

o U=Aforall Ac U (inclusion)

if U=Athen V|=A forall V O U (monotonicity)

Aisvalid iff () = A (also written as |= A)

® Aisunsatisfiable iff A = L

U = A iff UU {-A} is unsatisfiable
o {A,.... A} =Biff {A,....A,1} = A, — B (deduction)

© (A ... AYEBIff {AA- AAYEBIffOE (AA - AA) — B

o A=Biff (A} =B and (B} =A
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Inference systems for propositional logic

An inference system | is a collection of formal rules for inferring formulas from
formulas

Given
® asetU = {A,..., A, } of formulas (premises) and

® aformula B (conclusion)

we write

iff it is possible to infer B from U with the rules of /
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Given
® asetU = {A,..., A, } of formulas (premises) and

® aformula B (conclusion)

we write

iff it is possible to infer B from U with the rules of /

U, Aisread as Uderives Binl,or
B derives from Uin |, or
B is derivable from Uin |
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Inference systems for propositional logic

An inference system | is a collection of formal rules for inferring formulas from
formulas

Given
® asetU = {A,..., A, } of formulas (premises) and

® aformula B (conclusion)

we write

iff it is possible to infer B from U with the rules of /

We write just U= A when /is clear from context
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Inference systems for propositional logic

An inference system | is a collection of formal rules for inferring formulas from
formulas

Given
® asetU = {A,..., A, } of formulas (premises) and

® aformula B (conclusion)

we write

iff it is possible to infer B from U with the rules of /

[ Intuitively, / is designed so that U I~ A onlyif U = A

[ Ideally, / should be such that U - A if U A j
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All these symbols!

Note:

AN B — C isaformula, a sequence of symbols manipulated
by an inference system/

AN B = C isamathematical abbreviation for the statement:
“every interpretation that satisfies A /\ B, also satisfies C”

AN B, C isamathematical abbreviation for the statement:
“I derives C from A N\ B”
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All these symbols!

In other words,

e — isasymbol of propositional logic, processed by inference
systems

e — denotes a relation from sets of formulas to formulas, based on
their meaning in propositional logic

® |-, denotes a relation from sets of formulas to formulas, based on
their derivability in /
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Implication vs. Entailment

The connective — and the relation | are related as follows:

A — Bisvalidiff A =B
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Implication vs. Entailment

The connective — and the relation | are related as follows:

A — Bisvalidiff A =B

Example: p — (pV g)isvalidandp = (p VvV q)

pVvVg|p—(pVaq)
0 1

— O] = OQ

1 1
1 1
1 1

AN =

—l—= OOl
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Soundness and completeness

Therelations = and -, are related as by these two properties of
inference systems /
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Soundness and completeness

Therelations = and |, arerelated as by these two properties of
inference systems /

Soundness /is sound if it can derive from any set U of formulas only
formulas entailed by U:

if Ul Athen U= A
Completeness /is complete if it can derive from any set U of

formulas all formulas entailed by U:

if Ul=A then Ut A

15/39



Natural deduction

There are many inference systems for propositional logic

Natural deduction is a family of inference systems with inference
rules designed to mimic the way people reason deductively
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Natural deduction

There are many inference systems for propositional logic

Natural deduction is a family of inference systems with inference
rules designed to mimic the way people reason deductively

Note
® “Natural” here is meant in contraposition to “mechanical / automated”

® Other inference systems for PL are more machine-oriented and so arguably
not as natural for people

e Natural deduction is actually automatable but less conveniently than other,
more machine-oriented inference systems
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A introduction and elimination

A B ANB ANB
AC]

/\(,‘2
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A introduction and elimination

A B ANB ANB
E— ey

/\(,‘2

Usage Given: Aset U of formulas

Ai: forany two formulasAand Bin U,add A A Bto U
Neq: forany formula of the form A A Bin U,add Ato U
Aey: forany formula of the form A A Bin U, add Ato U
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Example derivation | |

Let’s prove that we can derive g A r from p A g and r, i.e., that

pAqg,rEqgnr
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= qgAnr
—— ~—~——

premises conclusion

I like cats and (like) dogs, Jill likes birds I like dogs and Jill likes birds
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAqg,rt= qgAnr
—— =

premises conclusion

Proof
1 pAQg premise
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Example derivation | |

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAg,r = qgAr
—— —~—

premises conclusion

Proof
1 pAQg premise

> premise
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Example derivation

A B
ANB

Let’s prove that we can derive g A r fromp A g andr,i.e., that

pAg,r = qgAr
—— —~—

premises conclusion

Proof
1 pAQg premise

> T premise
3 g Ae, applied to1
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Example derivation

Let’s prove that we can derive g A r fromp A g andr,i.e., that

Proof

4 qNAT

A B
ANB

pAqg,r = qgAr
—— —~—

premises

premise

premise

Ae, applied to1
Ai applied to 3,2

conclusion

Proof tree

pAq

/\ez
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— introduction and elimination

A _ ——A

——e
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1 p premise
> ——(gAr) premise
3 gANTr ——e 2

4 F Ae 3
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— introduction and elimination

A ——A

——i

——e

/1,

Example Prove p, ==(qAr) = ——pAr

1 p premise
> ——(gAr) premise
3 gANTr ——e 2

4 F Ae 3

5 ﬁﬁp -1 1
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— introduction and elimination

A ——A

——i

—e
/1,

Example Prove p, ==(qAr) = ——pAr

1 p premise
> ——(gAr) premise

3 gATr —e 2
4 F Ae 3
5 ﬁﬁp -1 1

6 TP ATr Al 5,4
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— elimination

A A— B
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— elimination

A A— B
B

Example Prove p,p—q,q—rtr
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— elimination

A A—B
B

Example  Prove p.p-—q,q—rtr

1 P premise
> p—q premise
3 g—r premise
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— elimination

A A—B
B

Example  Prove p,p—q,q—rtr

L p
> p—g
3 q—r

premise
premise
premise
—e 1,2
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— elimination

A A—B
B

Example  Prove p,p—q,q—rtr

ot

p
p—q
q—r

premise
premise
premise
—e 1,2
—e 4,3
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— elimination

A A— B A—B -B
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— elimination

A A— B A—B -B

e . cisalso known as Modus Ponens
e MT is known as Modus Tollens
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— introduction

>|

& -
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) ) \
— introduction 4B —B

—A

MT

>|

‘m

Example Prove p — gk —g— —p
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A—B —-B
—A

— introduction T

Example Prove p—qg F —q— —p

1 p—q premise
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A—B —-B
—A

— introduction

MT

Example Prove p—qgtF —g— —p

1 p—q premise
> Qg assumption

4 —g——p —12-3
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A—B -B
MT
—A

— introduction

Example Prove p—qgtF —g— —p

1 p—q premise
2 —q assumption
3 P MT 1,2

4 g — p —i2-3
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Longer Example WL

A— B ﬁBMT B )
Prove = (q—=r) = (=g = -p) = (p—r) A Y
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Longer Example WL

A—B ﬁBMT B )
Prove = (g —r) = (=g = =p) = (p 1) A —=5

rqg=r assumption
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Longer Example AAZE L A
A=B B yr B .
Prove + (g —r)—(—q——-p)—(p—r) —A As5B
1 g—r assumption
2 g — —p assumption
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Longer Example AAZE . A
A=B B yr B .
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3 p assumption
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Longer Example AA=E A

-
B
A=B B yr B .
Prove + (gq—r)—=(—qg——-p)—(p—r) ZA =5
1 g—=r assumption
2 g — —p assumption
3 p assumption

4 TP ——i 3
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Longer Example

Prove + (g —r)—(—q——-p)—(p—r)

ot

q—r

A A—=B A
(§]

A—B -B B

MT =1

—A A—B

assumption
assumption
assumption
——i 3

MT 2,4
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Longer Example

Prove + (q—r)—(—q— —p)—(p—r)

ot

6

q—r

A A—=B A
e

A— B —-B
S V) § B

—A A—B

assumption
assumption
assumption
——i 3
MT 2,4

e 5
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Longer Example
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ot

6

q—r

A A—=B A
e

A—B -B B

MT =1

—A A—B
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Longer Example AA=EB A

o8 By le|
Prove + (q—r)—(—q— —p)—(p—r) A A— B
1 q—=r assumption
2 g — —p assumption
3 p assumption
4 TP -l 3
5 —q MT 2,4
6 g ——e 5
7T —e 1,6
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Longer Example A A8
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A—B —-B MT
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6 q ——e 5
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8 p—=r —1 3-7
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Theorem 1 (Soundness)
Forall formulas A, . . ., A,andAsuchthat A, ..., A, = A, we have that

For the proof of the theorm, we will rely on this lemma:

Lemma 2
Forall formulas A, . . ., Ay, Aand B,
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Proof of Theorem 1.

Let P bethe a proofof A, .. ., A, | A, seen as a sequence of formulas.
Assume, without loss of generality, that A is the last formula in the sequence.
By induction on the length [ of P.

(=1

Then A = A forsomei € {1,..., nt. Trivially, A, . . ., Ar E AL

(continued)
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is a proof of B, fromA;. . . .| Ap, By that is shorter than P.
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premise

premise

30/39



Soundness proof (continued)

(1)

31/39



Soundness proof (continued)

(—1) Then A has the form —B and

31/39



Soundness proof (continued)

(—i) Then A has the form -8 and

P looks like: 1 Ay premise

3 B assumption

6 —B -i

31/39



Soundness proof (continued)

(—i) Then A has the form -8 and

P looks like: 1 Ay premise

3 B assumption

but then

31/39



Soundness proof (continued)

(—i) Then A has the form -8 and

P looks like: 1 Ay premise but then A
3 B assumption 3 B
5 L . 5 L
6 —B -1

is a proof of | fromA;, ..., A,, B that is shorter than P.

premise

premise

31/39



Soundness proof (continued)

(—i) Then A has the form -8 and

P looks like: 1 Ay premise but then A
3 B assumption 3 B
5 L . 5 L
6 —B -i

is a proof of | fromA;, ..., A,, B that is shorter than P.
Then, by inductive hypothesis, A, ..., A,, B = L.

premise

premise

31/39



Soundness proof (continued)

(—i) Then A has the form -8 and

P looks like: 1 Ay premise but then A
3 B assumption 3 B
4 1
5 L . 5 L
6 —B -i

is a proof of | fromA;, ..., A,, B that is shorter than P.

Then, by inductive hypothesis, A, ..., A,, B = L.

It follows from Lemma 2 that A, ... A, = —B.

premise

premise

31/39



Soundness proof (continued)

Ai,) Analogous to /i, case.
V1) Exercise.
Vi) Exercise.
Ve) Exercise.
—e) Exercise.
—e) Exercise.
1e) Exercise.

(
(
(
(
(
(
(
(

——e¢) Exercise.
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Assumption: We remove T from the language and simulate it with p V —p

Theorem 3 (Completeness)
Forall formulas Ay, . . ., A, and Asuch that A,. ..., A, = A, we have that

To prove this theorem, we will rely on several intermediate results
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Lemma 4
Forall formulas Ay, . . ., A, and A the following holds:

1. ALAs A=A implies = Ay — (A — (- (A — A) ).
2. F A = (A= (- (A > A)--)) implies A Ay, ..., Ap A,
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Forall formulas Ay, . . ., A, and A the following holds:

1. A Ay, .. Ay = A implies E A — (A, — (- (Ah — A)--+)).
2. F A = (A= (- (A > A)--)) implies A Ay, ..., Ap A,

Proof.
By induction on 11 in both cases (see Huth & Ryan). O
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AssumeA;, ..., Ay = A prove Ay Ay, AL B AL

By Lemma4(1), = A — (A, — (- (A, — A)--+)).
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Completeness of natural deduction

Lemma 4
Forall formulas Ay, . . ., A, and A the following holds:

1. A Ay, .. Ay = A implies E A — (A, — (- (Ah — A)--+)).
2. A= (A= (- (A, — A)--)) implies A Ay, .. A, HA.

Theorem 5 (Completeness for validity)
All valid formulas B are provable in natural deduction: if |= B then + B.

[ So we are left with proving Theorem 5 ]
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Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p1, . . ., pnwithn > 0and let T be an interpretation.
Letp; = pifT |= pandp; = —p otherwise. Then,

Prooi by b AT A and Pr.....py - AT A,
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Towards a proof of Theorem 5

Lemma 6
Let A be a formula over variables p1, . . ., pnwithn > 0and let T be an interpretation.
Letp; = pifT |= pandp; = —p otherwise. Then,

Prooi by b AT A and Pr.....py - AT A,

Proof of Lemma 6. By structural induction on A.

(Base case)

If Ais just a variable, say py, then itisimmediate that p; = p;and —p; = —p;.
If Ais | thenn = 0 and Z [~ A. We can prove —_L from no premises by —i.
(Inductive Step) If Ais not a variable or |, assume the result holds for all proper

subformulas of A.
We reason by cases on the form of A.

(cont.)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)

e [f7 |= Athen 7 [~ B. By inductive hypothesis, p1, . . ., p, - —B.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = —B) (that is, suppose A has the form —B)
e [f7 |= Athen 7 [~ B. By inductive hypothesis, p1, . . ., pn F —B.

e If7 [~ Athen 7 |= B. By inductive hypothesis, p1, . . ., pn - B.
Take a proof of B from py, . . ., pn and apply ——i to B.

The resulting proof is a proof of —A.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A= By \By)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A= By \By)
o If7 =AthenZ = Bjand 7 |~ B,.

By inductive hypothesis, p;, . . ., pn b Brandpy, ..., pn F Bs.
Aproofof Afromp, ..., pn is obtained by chaining a proof of B; and a proof of

B, and applying /i to By and B.
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Towards a proof of Theorem 5

Proof of Lemma6. (5.,....p, - AifZ = A and p. ..., Pn F —AIfT £ A)
(continued)

(A= By \By)

o If7 |~ AthenT |~ By forsomek € {1,2}. Say k = 1 (the other case is similar).
By inductive hypothesis, p,...,p, = B.

A proof of —B; can be extended to a proof of —A as follows:

> By

3 By AB, assumption
4 B Nep 3

5 L 1i4)2

6 “(B} AB2) L13.5
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A=BVB,)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)
(A=BVB,)

o If7 = AthenZ = By forsome k ¢ {1,2}.

A proof of Afrompy, ..., pn is obtained from a proof of B, by applying /i) to
By toget By V B.
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... pn b AfZ =Aand pr,....p, - —AIfT I~ A)
(continued)

(A=BVB,)

o If7 £ AthenZ |~ Biand Z [~ B,.
A proof of A frompy, ..., pn is obtained by chaining a proof of —B; and a

proof of =B, and continuing as follows:

1

> By VB, assumption

By assumption ||B, assumption

w

L Li (with—=By)

L Li (with—By)
1 Ve2,3— —4
6 “(31 V Bz) 1li2— -5

N

2
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Towards a proof of Theorem 5

Proof of Lemma 6. (5:. . .., po - AT = Aand pr, ... Pn F —AIfT £ A)
(continued)

(A = 81 — Bz)
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Towards a proof of Theorem 5

Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)

(A = 81 — Bz)

o If7 =AthenZ |~ BiorZ |= B,.
(exercise)
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Proof of Lemma 6. (5., . ... Pn - AIfZ = A and pr,...,pn - —AIfT £ A)
(continued)
(A = 81 — Bz)
o If7 =AthenZ |~ BiorZ |= B,.
(exercise)

o If7 [~ AthenZ = Byand 7 [~ B,.
(exercise)
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Towards a proof of Theorem 5

Lemma7
Letl,, ..., L,, A be formulas and let p one of A’s variables.
Ifp.ly, . ... L, - Aand —p, Lo, ..., L, - Athen L, .. .. L, + A.
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Proof of Lemma 7. (p. L, .. ., L, & Aand —p, Lo, ..., L, & Aimpliesly, ... L, b A)
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Proof of Lemma 7. (p.L5,....L, - Aand —p, L. ..., L, & Aimpliesly, ... L, b A)
Suppose we have the proofs:

1 p premise and 1 —p  premise
> L, premise > L, premise
3 3

4 A L. 4 A
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Proof of Lemma 7. (p. L, .. ., L, & Aand —p,L;

Suppose we have the proofs:

1 p premise and L TP premise
> L, premise > L, premise
3 3 :
4 A 4 A

The following is a proof of Afrom L,, ..., L,
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Proof of Lemma 7. (p, L., ..., L, & Aand —p, Lo, ..., L, & Aimpliesly, ... L, b A)

Suppose we have the proofs:

1 p premise and 1 Tp  premise
> L, premise > L, premise
3 3
4 A L. 4 A
The following is a proof of Afrom L,, ..., L,
1 pV-p LEM
> p assumption||—-p assumption
3 L, premise L, premise
N
5 A
6 A Ve
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Proof of Theorem 5 (= Aimplies + A).
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Proof of Theorem 5 (= Aimplies + A).

Letp:, ..., pn be all of A’s variables and consider the set

S={p,pr} ¥ x{pn,=Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.
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Proof of Theorem 5 (= Aimplies - A).

Letp:, ..., pn be all of A’s variables and consider the set

S={p,pr} < x{pn,Pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.
We prove by inductionon/=1,.. ., n 4+ 1that

Pis-. ., pn B A forevery (pr,..., pn) €S. )]

The theorem then follows from Property (1) fori = n + 1.

(i = 1) Property (1) holds by Lemma 6 since every (p, . . ., pn) € S corresponds to
an interpretation of A and all interpretations satisfy A (by def. of validity).
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Proof of Theorem 5 (= Aimplies - A).
Letp:, ..., pn be all of A’s variables and consider the set
S={pi,-p1} x--x{pn,7pn},

of all tuples (p1, . . ., pn) where each p; is either p; or —1p;.
We prove by inductionon/=1,.. ., n 4+ 1that

Br....Pn - A forevery (pr,....ps) €S. ()
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(i = 1) Property (1) holds by Lemma 6 since every (p, . . ., pn) € S corresponds to
an interpretation of A and all interpretations satisfy A (by def. of validity).

(i>1)
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(i = 1) Property (1) holds by Lemma 6 since every (p1, . . ., pn) € S corresponds to
an interpretation of A and all interpretations satisfy A (by def. of validity).

(i > 1) Suppose p;, . . ., pn = Aforall (py,....p,) € S.

We provethatp;.q,...,p, = Aforall (py,. ... pn) € S.

Let(ﬁ1 ..... p,‘.f)[(],,...[A?n),(pp....’ﬁp,'.’/?),’.]....,,[5,,) e S.
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(i > 1) Suppose p;, . . ., pn = Aforall (py,....p,) € S.

We provethatp;.q,...,p, = Aforall (py,. ... pn) € S.
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By induction hypothesis, p;, pj 1, - . -, pn B Aand —p;. iy, ..., pn H A

Thenpi.q,..., pn = AbylLemmaT. O
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