CS:4350 Logic in Computer Science
 Binary Decision Diagrams

Cesare Tinelli

Spring 2021

Credits

These slides are largely based on slides originally developed by Andrei Voronkov at the University of Manchester. Adapted by permission.

Outline

Binary Decision Diagrams
Binary Decision Trees
If-then-else Normal Form
Binary Decision Diagrams OBDD algorithms

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

For example, we may

- build a conjunction of several formulas
- negate a formula
- check if two formulas are equivalent
- ...

Data Structures for Large Propositional Formulas

In some applications, large propositional formulas are reused repeatedly

We need data structures that

- provide a compact representation of formulas (or the Boolean functions they represent)
- facilitate Boolean operations on these formulas (e.g., building conjunctions of them);
- facilitate checking properties of these formulas (e.g., satisfiability, equivalence,, ...)

Splitting Tree

$$
A=(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r)
$$

Splitting Tree

Let us ignore the concrete formulas in the tree

Splitting Tree

The semantics of formula A is preserved: the tree encodes all models of A

Splitting Tree

$$
A=(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r)
$$

The semantics of formula A is preserved: the tree encodes all models of A Any formula with the same tree has exactly the same models as A

Binary Decision Tree

$$
\mathbb{B}=\{0,1\}
$$

Note: propositional formulas also represent Boolean functions

Binary Decision Tree

$$
\mathbb{B}=\{0,1\}
$$

Note: propositional formulas also represent Boolean functions

Example:

$$
\begin{array}{rlrl}
A_{1} & =p_{1} \rightarrow p_{2} & & f_{1}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{2} & =p_{2} \leftrightarrow p_{3} & & f_{2}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{3} & =p \wedge q & & f_{3}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{4} & =\left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \leftrightarrow p_{3}\right) & & f_{4}: \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
f_{4}\left(p_{1}, p_{2}, p_{3}\right) & :=\text { if } p_{1} \text { then (if } p_{2} \text { then } p_{3} \text { else } 0 \text {) else if }\left(p_{2}=p_{3}\right) \text { then } 1 \text { else } 0
\end{array}
$$

Binary Decision Tree

$$
\mathbb{B}=\{0,1\}
$$

Note: propositional formulas also represent Boolean functions

Example:

$$
\begin{array}{rlrl}
A_{1} & =p_{1} \rightarrow p_{2} & & f_{1}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{2} & =p_{2} \leftrightarrow p_{3} & & f_{2}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{3} & =p \wedge q & & f_{3}: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
A_{4} & =\left(p_{1} \rightarrow p_{2}\right) \wedge\left(p_{2} \leftrightarrow p_{3}\right) & & f_{4}: \mathbb{B} \times \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B} \\
f_{4}\left(p_{1}, p_{2}, p_{3}\right) & :=\text { if } p_{1} \text { then (if } p_{2} \text { then } p_{3} \text { else } 0 \text {) else if }\left(p_{2}=p_{3}\right) \text { then } 1 \text { else } 0
\end{array}
$$

Exercise: Convince yourself that for any interpretation I,

$$
\mathcal{I} \models A_{4} \text { iff } f_{4}\left(\mathcal{I}\left(p_{1}\right), \mathcal{I}\left(p_{2}\right), \mathcal{I}\left(p_{3}\right)\right)=1
$$

Binary Decision Tree

Binary Decision Tree

Binary Decision Tree

A circled node, e.g., P, denotes the decision on the (input) variable in the node

Binary Decision Tree

A circled node, e.g., P, denotes the decision on the (input) variable in the node Leaf nodes are squared, e.g., 1 , and denote output values

Binary Decision Tree

A circled node, e.g., P, denotes the decision on the (input) variable in the node Leaf nodes are squared, e.g., 1 , and denote output values

Solid lines correspond to value 1 and dashed lines to value 0 for the variable

Nodes as "if _ then _ else" tests

Nodes as "if-then-else" tests

Tests correspond to "if-then-else"

$$
\left.\begin{array}{rlllllll}
\text { if } \quad p & \text { then if } & q & \text { then } & \text { if } & r & \text { then } & 1 \\
\text { else } & 1 \\
\text { else if } & q & & & & & & \\
\text { then } & 1 & & & \\
\text { else } & 0
\end{array}\right)
$$

Tests correspond to "if-then-else"

$$
\begin{aligned}
& \text { if } p \text { then if } q \text { then if } r \text { then } 1 \\
& \text { else } 1 \\
& \text { else if } r \text { then } 1 \\
& \text { else } 0 \\
& \text { else if } q \text { then } 1 \\
& \text { else if } r \text { then } \begin{aligned}
& 1 \\
& \text { else } 0
\end{aligned}
\end{aligned}
$$

Note:

$$
\text { if } A \text { then } B \text { else } C \equiv(A \rightarrow B) \wedge(\neg A \rightarrow C)
$$

If-Then-Else Normal Form

Any formula can be converted to an equivalent one in If-Then-Else Normal Form:

- The only connectives are if _ then _ else _, \top, and \perp
- All guard formulas A in if A then B else C are atomic

Evaluating the Formula

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

Evaluating the Formula

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

$$
\text { Example } \quad I=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
$$

Evaluating the Formula

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

$$
\text { Example } \quad I=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
$$

Evaluating the Formula

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

$$
\text { Example } \quad I=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
$$

Evaluating the Formula

We can evaluate a formula on in interpretation \mathcal{I} if we know its binary decision tree

$$
\text { Example } \quad \mathcal{I}=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}
$$

Evaluating the Formula

We can evaluate a formula on in interpretation I if we know its binary decision tree
Example $\quad I=\{p \mapsto 0, q \mapsto 0, r \mapsto 1\}$

Any formula with this decision tree is false in this interpretation

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (\wedge) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (\wedge) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions
- provide a compact representation of formulas, or the Boolean functions they represent

Properties

Properties of binary decision trees ($n=$ number of vars, $s=$ tree size):

- Size s is exponential in n in the worst case
- Checking truth in an interpretation can be done in time linear in n
- Satisfiability/validity checking can be done in time linear in s
- Equivalence checking is very hard
- Some boolean operations, (\wedge) are hard to implement

One needs data structures that

- facilitate checking properties of formulas, e.g., satisfiability or equivalence
- facilitate boolean operations on formulas, e.g., conjunctions
- provide a compact representation of formulas, or the Boolean functions they represent

Are binary decision trees compact?

Algorithm for Building Binary Decision Trees

```
procedure bdt(A)
input: propositional formula A
output: a binary decision tree
parameters: function select_next_var
begin
    A := simplify(A)
    if A=\perp then return 0
    if }A=\top\mathrm{ then return 1
    p := select_next_var(A)
    return tree(bdt( (A \perp
end
```

- simplify (A) as in the splitting procedure
- $\operatorname{tree}\left(T_{1}, p, T_{2}\right)$ builds the tree:

Algorithm for Building Binary Decision Trees

```
procedure bdt(A)
input: propositional formula A
output: a binary decision tree
parameters: function select_next_var
begin
A := simplify(A)
if A=\perp then return 0
if }A=\top\mathrm{ then return 1
p := select_next_var(A)
return tree(bdt( (AAp
end
```

- simplify (A) as in the splitting procedure
- $\operatorname{tree}\left(T_{1}, p, T_{2}\right)$ builds the tree:

Note resemblance to the splitting procedure!

Example

Splitting Procedure

> BDT Procedure

$$
(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q
$$

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Explored search tree (conceptual)

Example

Splitting Procedure

BDT Procedure

Returned decision tree (actual data structure)

Explored search tree (conceptual)

Redundant Tests

Are binary decision trees compact?

Redundant Tests

Are binary decision trees compact? No

Redundant Tests

Are binary decision trees compact? No
They may contain redundant tests (nodes):

Isomorphic Subtrees

Are binary decision trees compact? No

Isomorphic Subtrees

Are binary decision trees compact? No
They may contain isomorphic subtrees:

Binary Decision Diagrams

A binary decision diagram, or BDD, is a directed acyclic graph (built like a BDT but) containing

- no redundant nodes
- no isomorphic subgraphs

From BDTs to BDDs
Binary Decision Tree
\Rightarrow
Binary Decision Diagram

From BDTs to BDDs

Binary Decision Tree

\Rightarrow
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree

\Rightarrow
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree

Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree

\Rightarrow
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

1. Merge isomorphic subgraphs
2. Eliminate redundant node

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

The original diagram and the reduced one represent the same Boolean function

From BDTs to BDDs

Binary Decision Tree
Binary Decision Diagram

The original diagram and the reduced one represent the same Boolean function
Compact formula for that function: $(\neg q \wedge \neg r) \vee q$
Even more compact formula: $\neg r \vee q$

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)
- Some Boolean operations (\wedge)

Properties

What is the complexity of satisfiability, validity and equivalence checking for BDDs?

- Satisfiability checking can be done in constant time
- Validity checking can be done in constant time
- Equivalence checking is still very hard (exponential in the number of vars)
- Some Boolean operations (\wedge) are still hard to implement

Ordered BDDs

Ordered BDDs

Problem: variables are checked in a different order on different branches

Ordered BDDs

Problem: variables are checked in a different order on different branches Idea:

- introduce an order > on variables
- perform tests in this order in each branch

Ordered BDDs

Problem: variables are checked in a different order on different branches Idea:

- introduce an order > on variables
- perform tests in this order in each branch

We then we obtain ordered binary decision diagrams, or OBDDs

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time
- Equivalence checking in constant time

OBDDs Properties

- Satisfiability checking in constant time
- Validity checking in constant time
- Equivalence checking in constant time
- Boolean operations (\wedge) easy to implement

Integrating a node in a dag

All OBDD algorithms will use the same procedure for integrating a node in a dag

Integrating a node in a dag

procedure integrate (n_{1}, p, n_{2})
parameters: global dag D
input: variable p, nodes n_{1}, n_{2} in D representing formulas F_{1}, F_{2} output: node n in (modified) D representing if p then F_{1} else F_{2}

Integrating a node in a dag

procedure integrate $\left(n_{1}, p, n_{2}\right)$
parameters: global dag D
input: variable p, nodes n_{1}, n_{2} in D representing formulas F_{1}, F_{2} output: node n in (modified) D representing if p then F_{1} else F_{2} begin
if $n_{1}=n_{2}$ then return n_{1}

Integrating a node in a dag

procedure integrate $\left(n_{1}, p, n_{2}\right)$
parameters: global dag D
input: variable p, nodes n_{1}, n_{2} in D representing formulas F_{1}, F_{2} output: node n in (modified) D representing if p then F_{1} else F_{2} begin
if $n_{1}=n_{2}$ then return n_{1}
if D contains a node n having the form

then return n
end

Integrating a node in a dag

procedure integrate $\left(n_{1}, p, n_{2}\right)$

parameters: global dag D
input: variable p, nodes n_{1}, n_{2} in D representing formulas F_{1}, F_{2} output: node n in (modified) D representing if p then F_{1} else F_{2} begin
if $n_{1}=n_{2}$ then return n_{1}
if D contains a node n having the form

then return n
else add to D a new node n of the form

return n
end

Building OBDDs

procedure obdd (F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F begin
F := simplify (F)
// usual simplifications with rewrite rules
if $F=\perp$ then return 0]
if $F=\top$ then return 1
p := max_variable(F) // var of F highest in variable ordering
$n_{1}:=\operatorname{obdd}\left(F_{p}^{\perp}\right)$
$n_{2}:=\operatorname{obdd}\left(F_{p}^{\top}\right)$
return integrate $\left(n_{1}, p, n_{2}\right)$
end

Building OBDDs

procedure obdd (F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F begin
$F:=\operatorname{simplify}(F)$
// usual simplifications with rewrite rules
if $F=\perp$ then return 0]
if $F=\top$ then return 1
p := max_variable(F) // var of F highest in variable ordering
$n_{1}:=\operatorname{obdd}\left(F_{p}^{\perp}\right)$
$n_{2}:=\operatorname{obdd}\left(F_{p}^{\top}\right)$
return integrate $\left(n_{1}, p, n_{2}\right)$
end

- obdd puts together the algorithms for building BDTs and for eliminating redundancies

Building OBDDs

procedure obdd (F)
input: propositional formula F
parameters: global dag D
output: a node n in (modified) D which represents F begin
$F:=\operatorname{simplify}(F)$
// usual simplifications with rewrite rules
if $F=\perp$ then return 0]
if $F=\top$ then return 1
p := max_variable(F) // var of F highest in variable ordering
$n_{1}:=\operatorname{obdd}\left(F_{p}^{\perp}\right)$
$n_{2}:=\operatorname{obdd}\left(F_{p}^{\top}\right)$
return integrate $\left(n_{1}, p, n_{2}\right)$
end

- obdd puts together the algorithms for building BDTs and for eliminating redundancies
- Redundancy elimination is performed by integrate

Building OBDDs, Example

$$
\operatorname{obdd}((q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q)
$$

Global dag D

Building OBDDs, Example

Building OBDDs, Example

Global dag D

We return the new node rooted at q

Building OBDDs, Example

Global dag D

We return the new node rooted at q
Note: The application of this procedure modified the global dag

Algorithms on OBDDs

Let $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} x_{1} \vee \ldots \vee x_{n}$
Let D_{1}, \ldots, D_{n} be OBDDs representing formulas F_{1}, \ldots, F_{n}, respectively

Algorithms on OBDDs

Let $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} x_{1} \vee \ldots \vee x_{n}$
Let D_{1}, \ldots, D_{n} be OBDDs representing formulas F_{1}, \ldots, F_{n}, respectively
How do we compute the OBDD representing $f\left(F_{1}, \ldots, F_{n}\right)$?

Algorithms on OBDDs

Let $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} x_{1} \vee \ldots \vee x_{n}$
Let D_{1}, \ldots, D_{n} be OBDDs representing formulas F_{1}, \ldots, F_{n}, respectively
How do we compute the OBDD representing $f\left(F_{1}, \ldots, F_{n}\right)$?

- We fix the same variable ordering for all OBDDs

Algorithms on OBDDs

Let $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} x_{1} \vee \ldots \vee x_{n}$
Let D_{1}, \ldots, D_{n} be OBDDs representing formulas F_{1}, \ldots, F_{n}, respectively
How do we compute the OBDD representing $f\left(F_{1}, \ldots, F_{n}\right)$?

- We fix the same variable ordering for all OBDDs
- We assume isomorphic subdags are shared across different OBDDs

Algorithms on OBDDs

Let $f\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} x_{1} \vee \ldots \vee x_{n}$
Let D_{1}, \ldots, D_{n} be OBDDs representing formulas F_{1}, \ldots, F_{n}, respectively
How do we compute the OBDD representing $f\left(F_{1}, \ldots, F_{n}\right)$?

- We fix the same variable ordering for all OBDDs
- We assume isomorphic subdags are shared across different OBDDs
- We use one fundamental property of if _ then _ else _

Exercise in Compiler Optimization

- Consider the expression in Java

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x>0) ? y 1: y 2)+((x>0) ? z 1: z 2)
$$

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

- Can we simplify it?

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then, ($(x>0)$? y1 : y2) evaluates to $y 1$ and $((x>0)$? $z 1: z 2)$ evaluates to $z 1$, so the sum evaluates to $y 1+z 1$

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then, ($(x>0)$? y1 : y2) evaluates to $y 1$ and $((x>0)$? $z 1: z 2)$ evaluates to $z 1$, so the sum evaluates to $y 1+z 1$
- Suppose $\mathrm{x}>0$ evaluates to false. Then, ($(x>0)$? y1 : y2) evaluates to $y 2$ and ($(\mathrm{x}>0)$? z 1 : z 2) evaluates to z 2 , so the sum evaluates to $\mathrm{y} 2+\mathrm{z} 2$

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then, ($(x>0)$? y1 : y2) evaluates to $y 1$ and $((x>0)$? $z 1: z 2)$ evaluates to $z 1$, so the sum evaluates to $y 1+z 1$
- Suppose $\mathrm{x}>0$ evaluates to false. Then, ($(x>0)$? y1 : y2) evaluates to y 2 and ($(\mathrm{x}>0)$? $\mathrm{z} 1: \mathrm{z} 2$) evaluates to z 2 , so the sum evaluates to $\mathrm{y} 2+\mathrm{z} 2$
- To simplify the expression, we could use the following property:
$\left(E\right.$? $\left.E_{1}: E_{2}\right)+\left(E\right.$? $\left.F_{1}: F_{2}\right)=E ?\left(E_{1}+F_{1}\right):\left(F_{2}+F_{2}\right)$

Exercise in Compiler Optimization

- Consider the expression in Java (C, C++, Perl, ...)

$$
((x \text { > 0) ? y1 : y2) + ((x > 0) ? z1 : z2) }
$$

- Can we simplify it?
- Suppose x > 0 evaluates to true. Then, ($(x>0)$? y1 : y2) evaluates to $y 1$ and $((x>0)$? $z 1: z 2)$ evaluates to $z 1$, so the sum evaluates to $y 1+z 1$
- Suppose $\mathrm{x}>0$ evaluates to false. Then, ($(x>0)$? y1 : y2) evaluates to $y 2$ and ($(\mathrm{x}>0)$? $\mathrm{z} 1: \mathrm{z} 2$) evaluates to z 2 , so the sum evaluates to $\mathrm{y} 2+\mathrm{z} 2$
- To simplify the expression, we could use the following property:
$\left(E\right.$? $\left.E_{1}: E_{2}\right)+\left(E\right.$? $\left.F_{1}: F_{2}\right)=E ?\left(E_{1}+F_{1}\right):\left(F_{2}+F_{2}\right)$
That is, (E ? _ : _) commutes with +

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then l_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then l_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$
(Proof? By case analysis on P)

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then l_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$

Hence, to apply f to n OBDDs rooted at variable p,

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then l_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$

Hence, to apply f to n OBDDs rooted at variable p,

1. Apply f to the subdags corresponding to $p=0$, obtaining a dag D_{0}

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then I_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$

Hence, to apply f to n OBDDs rooted at variable p,

1. Apply f to the subdags corresponding to $p=0$, obtaining a dag D_{0}
2. Apply f to the subdags corresponding to $p=1$, obtaining a dag D_{1}

Fundamental property of if-then-else

In fact, for any predicate P,
if P then _ else _ commutes with any function f :
$f\left(\right.$ if P then l_{1} else r_{1}, \ldots, if P then I_{n} else $\left.r_{n}\right)=$ if P then $f\left(l_{1}, \ldots, l_{n}\right)$ else $f\left(r_{1}, \ldots, r_{n}\right)$

Hence, to apply f to n OBDDs rooted at variable p,

1. Apply f to the subdags corresponding to $p=0$, obtaining a dag D_{0}
2. Apply f to the subdags corresponding to $p=1$, obtaining a dag D_{1}
3. Build and return the dag

Negation
$\neg($ if p then L else $R) \equiv$ if p then $\neg L$ else $\neg R$

Negation

$$
\neg(\text { if } p \text { then } L \text { else } R) \equiv \text { if } p \text { then } \neg L \text { else } \neg R
$$

```
procedure negation(n)
parameters: global dag D
input: node }n\mathrm{ representing formula F in D
begin
    if }n\mathrm{ is 1 then return 0
    if n is 0 then return 1
    p := max_variable(n)
    (l,r) := (neg(n),pos(n))
    l' := negation(l)
    r' := negation(r)
    return integrate(l', p, r')
end
```

output: a node n^{\prime} representing $\neg F$ in (modified) D

Negation

$$
\neg(\text { if } p \text { then } L \text { else } R) \equiv \text { if } p \text { then } \neg L \text { else } \neg R
$$

```
procedure negation(n)
parameters: global dag D
input: node n representing formula F in D
output: a node n' representing }\negF\mathrm{ in (modified) }
begin
    if }n\mathrm{ is 1 then return 0
    if n is 0 then return 1
    p := max_variable(n)
    (l,r) := (neg(n),\operatorname{pos}(n))\quad// negative and positive subdiagram of n
    l' := negation(l)
    r' := negation(r)
    return integrate(l', p, r')
end
```


Disjunction

(if p then L_{1} else $\left.R_{1}\right) \vee\left(\right.$ if p then L_{1} else $\left.R_{1}\right) \equiv$ if p then $L_{1} \vee L_{2}$ else $R_{1} \vee R_{2}$

Disjunction

```
    (if p then LL
procedure disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
parameters: global dag D
input:1 or more nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}\vee\cdots\vee\mp@subsup{F}{m}{}\mathrm{ in (modified) D
begin
    if m=1 then return n
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is then return disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}
    p := max_variable( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall i=1 ...m
    if ni is labelled by p
        then (li, ri}):=(\operatorname{neg}(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (n, n, ni) // (*)
    l := disjunction( (l, ,.., lm)
    r := disjunction (r
    return integrate(l,p,r)
end
```


Disjunction

```
    (if p then LL
procedure disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
parameters: global dag D
input:1 or more nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}\vee\cdots\vee\mp@subsup{F}{m}{}\mathrm{ in (modified) D
begin
    if m=1 then return n
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is then return disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}
    p := max_variable( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall i=1 ...m
    if ni}\mathrm{ is labelled by p
        then (li, ri}):=(\operatorname{neg}(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni) // (*)
    l := disjunction (l },\ldots,\ldots,\mp@subsup{l}{m}{}
    r := disjunction( }\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}
```

(*) Consider fictitious
redundant node k_{i} with

$$
n_{i}=n e g\left(k_{i}\right)=\operatorname{pos}\left(k_{i}\right)
$$

 return integrate (l, p,r)

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

$$
\operatorname{disj}(a, b)
$$

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

Example: Disjunction

Computing $(\neg p \wedge r) \vee(p \wedge r)$ where a represents $\neg p \wedge r$ and b represents $p \wedge r$:

$$
\operatorname{dis}(a, b)=c
$$

Exercise
Compute $(\neg p \wedge r) \vee r$ where a represents $\neg p \wedge r$ and c represents r :
$\operatorname{disj}(a, c)$

Disjunction (recall)

```
procedure disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
parameters: global dag D
input: }1\mathrm{ or more nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}\vee\cdots\vee\mp@subsup{F}{m}{}\mathrm{ in (modified) }
begin
    if m=1 then return n
    if some ni is 1 then return 1
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 0 then
    return disjunction( }n1,\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}
    p := max_variable( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall }i=1\ldots
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
        then (li, ri}):=(\operatorname{neg}(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni)
    I := disjunction( }\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{}
    r := disjunction(r},\ldots,\ldots,\mp@subsup{r}{m}{}
    return integrate(l,p,r)
end
```


Disjunction (recall)

```
procedure disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
parameters: global dag D
input: }1\mathrm{ or more nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}\vee\cdots\vee\mp@subsup{F}{m}{}\mathrm{ in (modified) }
begin
    if m}=1\mathrm{ then return n}\mp@subsup{n}{1}{
    if some ni is 1 then return 1 % F
    if some n}\mp@subsup{n}{i}{}\mathrm{ is then 
    return disjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}
    p := max_variable( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall }i=1\ldots.
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by }
        then (li, ri}):=(neg(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri}):=(\mp@subsup{n}{i}{},\mp@subsup{n}{i}{}
    l := disjunction( }\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{}
    r := disjunction( }\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}
    return integrate(l, p,r)
end
```


Conjunction

```
procedure conjunction( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
parameters: global dag D
input: }1\mathrm{ or more nodes }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}\mathrm{ representing }\mp@subsup{F}{1}{},\ldots,\mp@subsup{F}{m}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}\wedge\cdots\wedge\mp@subsup{F}{m}{}\mathrm{ in (modified) D
begin
    if m=1 then return n
    if some ni is 0 then return 0
    F^\perp\equiv\perp
    if some n}\mp@subsup{n}{i}{}\mathrm{ is 1 then
F^T\equivF
    return conjunction( }n1,\ldots,\mp@subsup{n}{i-1}{},\mp@subsup{n}{i+1}{},\ldots,\mp@subsup{n}{m}{}
    p := max_variable( }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{m}{}
    forall }i=1\ldots
    if }\mp@subsup{n}{i}{}\mathrm{ is labelled by p
        then (li, ri}):=(\operatorname{neg}(\mp@subsup{n}{i}{}),\operatorname{pos}(\mp@subsup{n}{i}{})
        else (li, ri) := (ni,ni)
    I := conjunction ( }\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{m}{}
    r := conjunction( }\mp@subsup{r}{1}{},\ldots,\mp@subsup{r}{m}{}
    return integrate(l, p,r)
end
```


Other connectives

procedure implication $\left(n_{1}, n_{2}\right)$
parameters: global dag D
input: nodes n_{1}, n_{2} representing formulas F_{1}, F_{2} in D
output: a node n representing $F_{1} \rightarrow F_{2}$ in (modified) D
begin
return disjunction(negation $\left(n_{1}\right), n_{2}$)
end

Other connectives

```
procedure implication( }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\mathrm{ representing formulas }\mp@subsup{F}{1}{},\mp@subsup{F}{2}{}\mathrm{ in }
output: a node n representing F}\mp@subsup{F}{1}{}->\mp@subsup{F}{2}{}\mathrm{ in (modified) D
begin
    return disjunction(negation( }\mp@subsup{n}{1}{}),\mp@subsup{n}{2}{}\mathrm{ )
end
procedure bi_implication( }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}
parameters: global dag D
input: nodes }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{}\mathrm{ representing formulas }\mp@subsup{F}{1}{},\mp@subsup{F}{2}{}\mathrm{ in D
output: a node n representing F}\mp@subsup{F}{1}{\leftrightarrow}\leftrightarrow\mp@subsup{F}{2}{}\mathrm{ in (modified) D
begin
    return conjunction(implication( }\mp@subsup{n}{1}{},\mp@subsup{n}{2}{})\mathrm{ , implication( }\mp@subsup{n}{2}{},\mp@subsup{n}{1}{})\mathrm{ )
end
```

