
CS:4350 Logic in Computer Science

Introduction

Cesare Tinelli

Spring 2021

1 / 14



Credits

These slides are largely based on slides originally developed by Andrei Voronkov
at the University of Manchester. Adapted by permission.

2 / 14



What is mathematical logic?

A branch of science that

• formalizes valid methods of reasoning

• was developed to formalize mathematics

• provides the mathematical foundations of CS

• drives several applications in CS and beyond

3 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



A bit of history

Logic as a discipline in Western thought dates back to the ancient Greeks

Aristotle and Stoic philosophers formulated systems of reasoning in the 4th
century BCE

Independent studies were done in China (MoZi or Micius, 4th c. BCE) and India
(Dignaga, 6th c. CE)

Christian (Boethius 6th c.; Ockham, 14th c.) and Islamic (Ibn Sina or Avicenna, 10th
c.) philosophers advanced Aristotle’s idea in the middle ages

A major leap occurred in the 19th century in Europe with the goal of formalizing
mathematics (Boole, Frege, Peano, . . . )

In the 20th century, European (Göedel, Turing, . . . ), and American (Tarski, Church,
Scott, . . . ) logicians e�ectively laid down the foundations of CS, largely before
computers were invented!

Presently,mathematical logic has become to CS what calculus is to physics

4 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logic as the foundation of Computer Science

Logical methods are used to define

• the very idea of computation and computability
• the semantics of logical gates and circuits
• the operational semantics of programming languages
• the computational complexity of algorithms
• types systems and type checking
• distributed systems and protocols
• database semantics
• knowledge representation in AI
• . . .

5 / 14



Logics

A logic is also a formal mathematical construct

Each logic is characterized by its own:

• syntax and semantics
• inference mechanisms
• proof theory andmodel theory

Many such logics have been developed

We will study several logics used in CS

6 / 14



Logics

A logic is also a formal mathematical construct

Each logic is characterized by its own:

• syntax and semantics
• inference mechanisms
• proof theory andmodel theory

Many such logics have been developed

We will study several logics used in CS

6 / 14



Logics

A logic is also a formal mathematical construct

Each logic is characterized by its own:

• syntax and semantics
• inference mechanisms
• proof theory andmodel theory

Many such logics have been developed

We will study several logics used in CS

6 / 14



Logics

A logic is also a formal mathematical construct

Each logic is characterized by its own:

• syntax and semantics
• inference mechanisms
• proof theory andmodel theory

Many such logics have been developed

We will study several logics used in CS

6 / 14



Logics

A logic is also a formal mathematical construct

Each logic is characterized by its own:

• syntax and semantics
• inference mechanisms
• proof theory andmodel theory

Many such logics have been developed

We will study several logics used in CS

6 / 14



Motivation: computational systems and correctness

Suppose we design a complex system containing various
components such as sensors, networks, computers.

All of these components are using so�ware.

We have requirements on how the system should function,
for example safety, reliability, security, availability, absence of
deadlocks, etc.

How can one ensure that the system satisfies these requirements?

Most modern computer systems are unreliable.

7 / 14



Motivation: computational systems and correctness

Suppose we design a complex system containing various
components such as sensors, networks, computers.

All of these components are using so�ware.

We have requirements on how the system should function,
for example safety, reliability, security, availability, absence of
deadlocks, etc.

How can one ensure that the system satisfies these requirements?

Most modern computer systems are unreliable.

7 / 14



Motivation: computational systems and correctness

Suppose we design a complex system containing various
components such as sensors, networks, computers.

All of these components are using so�ware.

We have requirements on how the system should function,
for example safety, reliability, security, availability, absence of
deadlocks, etc.

How can one ensure that the system satisfies these requirements?

Most modern computer systems are unreliable.

7 / 14



Motivation: computational systems and correctness

Suppose we design a complex system containing various
components such as sensors, networks, computers.

All of these components are using so�ware.

We have requirements on how the system should function,
for example safety, reliability, security, availability, absence of
deadlocks, etc.

How can one ensure that the system satisfies these requirements?

Most modern computer systems are unreliable.

7 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);

for (i = 0;i <= length;i++)
array[i] = 0;

return array;
}

Is this program correct?

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);

for (i = 0;i <= length;i++)
array[i] = 0;

return array;
}

Is this program correct? Hardly: it writes into memory that has not been
allocated.

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);

for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct?

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length); // may return 0!

for (i = 0;i < length;i++)
array[i] = 0;

return array;
}

Is this program correct? No: it may write to the null address.

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);
if (!array) return 0;
for (i = 0;i < length;i++)

array[i] = 0;
return array;

}

Is this program correct?

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);
if (!array) return 0;
for (i = 0;i < length;i++)

array[i] = 0;
return array;

}

Is this program correct? No: it initializes the array by zeros

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);
if (!array) return 0;
for (i = 0;i < length;i++)

array[i] = 0;
return array;

}

Is this program correct?

We discussed correctness of a programwithout ever defining what it means

8 / 14



Small Example: So�ware
Consider the following fragment of a C program:

/* Returns a new array of integers of a given
length initialized by a non-zero value */

int* allocateArray(int length)
{

int i;
int* array;
array = malloc(sizeof(int)*length);
if (!array) return 0;
for (i = 0;i < length;i++)

array[i] = 0;
return array;

}

Is this program correct?

We discussed correctness of a programwithout ever defining what it means

8 / 14

So, what is correctness?



Note

• We could spot the first two errors without knowing anything
about the intendedmeaning of the program.

• However, we had to understand the meaning of C programs in
general and some specific properties of programming in C.

• To understand the last errorwe had to know something about
the program’s intended behavior.

9 / 14



Note

• We could spot the first two errors without knowing anything
about the intendedmeaning of the program.

• However, we had to understand the meaning of C programs in
general and some specific properties of programming in C.

• To understand the last errorwe had to know something about
the program’s intended behavior.

9 / 14



Note

• We could spot the first two errors without knowing anything
about the intendedmeaning of the program.

• However, we had to understand the meaning of C programs in
general and some specific properties of programming in C.

• To understand the last errorwe had to know something about
the program’s intended behavior.

9 / 14



Another example: circuit design

Wewould like to replace a circuit C1 in a processor by another circuit
C2 (because, say, C2 results in a lower energy consumption).

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is su�icient to prove that C2 is
functionally equivalent to C1.

10 / 14



Another example: circuit design

Wewould like to replace a circuit C1 in a processor by another circuit
C2 (because, say, C2 results in a lower energy consumption).

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is su�icient to prove that C2 is
functionally equivalent to C1.

10 / 14



Another example: circuit design

Wewould like to replace a circuit C1 in a processor by another circuit
C2 (because, say, C2 results in a lower energy consumption).

We want to be sure that C2 is correct, that is, it will behave according
to some specification.

If we know that C1 is correct, it is su�icient to prove that C2 is
functionally equivalent to C1.

10 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14



How to establish correctness of a system

1. Consider the system as a mathematical object by building a
formal model of the system.

2. Find a formal languageL for expressing intended properties.

3. The language must have a formal semantics, defining the
possible interpretations of the sentences ofL.

• The semantics is normally based on notions of truth and satisfiability.

4. Write a specification, that is, intended properties of the system
in this language.

5. Prove formally that the systemmodel satisfies the specification.

11 / 14

All of this can be done with the proper logic



Logics, formally

A logic is a triple (L,S,R)where

• L, the language, is
a class of sentences described by a formal grammar

• S , the semantics, is
a formal specification for assigning meaning to sentences inL

• R, the inference system, is
a set of axioms and inference rules to infer (i.e., generate)
sentences ofL from given sentences ofL

12 / 14



Logics, formally

A logic is a triple (L,S,R)where

• L, the language, is
a class of sentences described by a formal grammar

• S , the semantics, is
a formal specification for assigning meaning to sentences inL

• R, the inference system, is
a set of axioms and inference rules to infer (i.e., generate)
sentences ofL from given sentences ofL

12 / 14



Logics, formally

A logic is a triple (L,S,R)where

• L, the language, is
a class of sentences described by a formal grammar

• S , the semantics, is
a formal specification for assigning meaning to sentences inL

• R, the inference system, is
a set of axioms and inference rules to infer (i.e., generate)
sentences ofL from given sentences ofL

12 / 14



Logics, formally

A logic is a triple (L,S,R)where

• L, the language, is
a class of sentences described by a formal grammar

• S , the semantics, is
a formal specification for assigning meaning to sentences inL

• R, the inference system, is
a set of axioms and inference rules to infer (i.e., generate)
sentences ofL from given sentences ofL

12 / 14



Inference Systems

Important theoretical questions:

Consistency It is impossible to infer both a sentence
and its negation

Independence No axiom is derivable from the others

Soundness All derived sentences are semantically valid
(e.g., true)

Completeness All valid sentences are derivable

13 / 14



My God, it’s full of logics!

There are many, many logics: propositional, first-order, higher-
order, modal, temporal, intuitionistic, linear, non-monotonic,
many-valued, . . .

We will concentrate on a few, starting with propositional logic

14 / 14



My God, it’s full of logics!

There are many, many logics: propositional, first-order, higher-
order, modal, temporal, intuitionistic, linear, non-monotonic,
many-valued, . . .

We will concentrate on a few, starting with propositional logic

14 / 14


