
22c181:
Formal Methods in Software Engineering

The University of Iowa
Spring 2008

Verifying Safety Property of Lustre
Programs: Temporal Induction

Copyright 2008 Cesare Tinelli. These notes are copyrighted materials and may not be used

in other course settings outside of the University of Iowa in their current form or modified form

without the express written permission of one of the copyright holders.
22c181: Formal Methods in Software Engineering – p.1/21

Semantics of Lustre programs

A Lustre program is in essence a set of constraints
between its input streams and output streams.

These constraints operate in an algebra of streams

But they can also seen as Boolean and arithmetic
constraints over instantaneous configurations of the
program.

Important observation: A stream x containing values of type
T is essentially a function x : N → T .
For each n ∈ N,

x(n)

is the value of x at position (or, instant) n.

22c181: Formal Methods in Software Engineering – p.2/21

Instantaneous Configuration

Let L be a Lustre program. Let

x1, . . . , xp be streams given in input to L, and

xp+1, . . . , xp+q be the non-input (i.e., local and output)
streams computed by P .

For each n ∈ N, the tuple of values

〈x1(n), x2(n), . . . , xp+q(n)〉

is a configuration (of L at instant n).

22c181: Formal Methods in Software Engineering – p.3/21

Instantaneous Configuration: Example

node counter (R:bool, X:int) returns (Y:bool);

var C: int;

let

C = X -> if R then X else pre(C) + 1;

Y = (C = 5);

tel;

0 1 2 3 4 5 . . .

R = (false, false, false, true, false, false, . . .

X = (0, 4, 5, 1, 0, 11, . . .

C = (0, 1, 2, 1, 2, 3, . . .

Y = (false, false, false, false, false, false, . . .

〈R(3), X(3), C(3), Y (3)〉 = 〈true, 1, 1, false〉 is the configuration
at instant 3.

22c181: Formal Methods in Software Engineering – p.4/21

Instantaneous Configuration: Example

node counter (R:bool, X:int) returns (Y:bool);
var C: int;
let
C = X -> if R then X else pre(C) + 1;
Y = (C = 5);

tel;

The program above can be seen as the following set of
constraints for all n ∈ N .

C(n) = if n = 0 then X(n)

else if R(n) then X(n)

else C(n − 1) + 1

Y (n) = C(n) = 5

22c181: Formal Methods in Software Engineering – p.5/21

Proving Properties

node test(X: bool) returns (P : bool);
var A, B : bool;
let
A = X -> pre A;
B = not (not X -> pre (not B));

--- A and B are identical streams
P = A = B;

tel;

Conjecture: test always returns that constantly true stream.

How do we prove that?

22c181: Formal Methods in Software Engineering – p.6/21

Proving Properties by Induction

Mathematically, the program test expresses, for all
n ∈ N, the constraints set ∆n:

A(n) = if n = 0 then X(n) else A(n − 1)

B(n) = not (if n = 0 then not X(n) else not B(n − 1))
P (n) = A(n) = B(n)

We want to show that P (n) = true for all n ∈ N.

To do that, we can reason by induction on n:
1. First, we prove that P (0)’s value is always true.
2. Then, we prove that whenever P (n) is true for an

arbitrary n then P (n + 1) is also true.

22c181: Formal Methods in Software Engineering – p.7/21

Proving Properties by Induction

Induction proof:

Base case) Prove that ∆0 ⇒ P (n)

Induction Step) Prove that ∆n ∧ ∆n+1 ∧ P (n) ⇒ P (n + 1)

We have 3 possibilities.

1. Both the base case and the induction step hold. Then, we
can conclude that P is always true.

2. The base case does not hold. Then, clearly, P is
sometimes false.

3. The base case holds but the induction step does not.
Then, we cannot conclude anything about P .

22c181: Formal Methods in Software Engineering – p.8/21

Induction Proof: Example

∆n:

A(n) = if n = 0 then X(n) else A(n − 1)

B(n) = not (if n = 0 then not X(n) else not B(n − 1))

P (n) = A(n) = B(n)

Base case) ∆0 is equivalent to:

A(0) = X(0)

B(0) = not (not X(0))

P (0) = A(0) = B(0)

Clearly, P (0) = true

22c181: Formal Methods in Software Engineering – p.9/21

Induction Proof: Example

∆n:

A(n) = if n = 0 then X(n) else A(n − 1)

B(n) = not (if n = 0 then not X(n) else not B(n − 1))

P (n) = A(n) = B(n)

Induction Step) Assume that A(n), B(n), C(n) are defined as
in ∆n. ∆n+1 is equivalent to:

A(n + 1) = A(n)

B(n + 1) = not (not B(n))

P (n + 1) = A(n + 1) = B(n + 1)

If we assume that P (n) is true, it must be that A(n) = B(n).

But then, we can conclude that P (n + 1) is true.

22c181: Formal Methods in Software Engineering – p.9/21

Limits of Simple Induction

node counter (R: bool) returns (P: bool);
var C: int;
let
C = 0 -> if (R or pre(C) = 2) then 0

else pre(C) + 1;

P = C <= 4;
tel;

Observe:

C is never more than 2, so P is constantly true.

However, simple induction is unable to prove that.

The problem is that the induction step does not hold.
22c181: Formal Methods in Software Engineering – p.10/21

Why the induction step does not hold

∆n:

C(n) = if n = 0 then 0 else

if R(n) or C(n − 1) = 2 then 0 else C(n − 1) + 1

P (n) = C(n) ≤ 4

∆n+1:
C(n + 1) = if R(n + 1) or C(n) = 2 then 0 else C(n) + 1

P (n + 1) = C(n + 1) ≤ 4

We need to show that the following implication holds:

∆n ∧ ∆n+1 ∧ P (n) ⇒ P (n + 1) (∗)

However, if we set, e.g., n to 10, C(n − 1) to 3, and R(n) and
R(n + 1) to false, we can satisfy ∆n ∧ ∆n+1 ∧ P (n) and falsify
P (n + 1).

22c181: Formal Methods in Software Engineering – p.11/21

Why the induction step does not hold

∆n:

C(n) = if n = 0 then 0 else

if R(n) or C(n − 1) = 2 then 0 else C(n − 1) + 1

P (n) = C(n) ≤ 4

∆n+1:
C(n + 1) = if R(n + 1) or C(n) = 2 then 0 else C(n) + 1

P (n + 1) = C(n + 1) ≤ 4

Problem:

a value of 3 for C(n − 1) is impossible in the program

but the premise of (∗) is not strong enough to rule it out

22c181: Formal Methods in Software Engineering – p.11/21

Why the induction step does not hold

∆n:

C(n) = if n = 0 then 0 else

if R(n) or C(n − 1) = 2 then 0 else C(n − 1) + 1

P (n) = C(n) ≤ 4

∆n+1:
C(n + 1) = if R(n + 1) or C(n) = 2 then 0 else C(n) + 1

P (n + 1) = C(n + 1) ≤ 4

Problem:

a value of 3 for C(n − 1) is impossible in the program

but the premise of (∗) is not strong enough to rule it out

Solution:

look at a few more preceding configurations
22c181: Formal Methods in Software Engineering – p.11/21

k-induction: Induction with Depth

Fix some k ≥ 0

Base case) Prove that

∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k)

Induction Step) Prove that

∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1)

We have again 3 possibilities:

22c181: Formal Methods in Software Engineering – p.12/21

k-induction: Induction with Depth

Fix some k ≥ 0

Base case) Prove that

∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k)

Induction Step) Prove that

∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1)

We have again 3 possibilities:

1. Both the base case and the induction step hold.
Then, we can conclude that P is always true.

22c181: Formal Methods in Software Engineering – p.12/21

k-induction: Induction with Depth

Fix some k ≥ 0

Base case) Prove that

∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k)

Induction Step) Prove that

∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1)

We have again 3 possibilities:

2. The base case does not hold.
Then, P is false for some m ∈ {0, . . . , k}.

22c181: Formal Methods in Software Engineering – p.12/21

k-induction: Induction with Depth

Fix some k ≥ 0

Base case) Prove that

∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k)

Induction Step) Prove that

∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1)

We have again 3 possibilities:

3. The base case holds but the induction step does not.
Then, we cannot conclude anything about P .

But we can increase k and start again.
22c181: Formal Methods in Software Engineering – p.12/21

Previous Example

∆n:

C(n) = if n = 0 then 0 else

if R(n) or C(n − 1) = 2 then 0 else C(n − 1) + 1

P (n) = C(n) ≤ 4

∆n+1:
C(n + 1) = if R(n + 1) or C(n) = 2 then 0 else C(n) + 1

P (n + 1) = C(n + 1) ≤ 4

With k-induction we can prove that P is always true.

Exercise: Find the smallest value of k that will do.

22c181: Formal Methods in Software Engineering – p.13/21

The k-induction Procedure

1: k := 0;
2: while true do
3: check validity of

∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k);
4: if counter-example found then
5: return counter-example
6: end if;
7: check validity of

∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1);
8: if valid then
9: return "Property holds"

10: end if;
11: k := k + 1;
12: end while

22c181: Formal Methods in Software Engineering – p.14/21

Features of the k-induction Procedure

When ∆ contains no multiplications, the validity tests in
lines 3 and 7 can be performed completely automatically.

The induction procedure is sound: if it says that the
property holds, then the property does hold.

However, the procedure is still incomplete: for some
properties that do hold it may loop forever.

The procedure can be made complete for some (large)
classes of Lustre programs, including finite state ones.

However, it is impossible to make the procedure complete
(and still automatic) for all Lustre programs.

22c181: Formal Methods in Software Engineering – p.15/21

Limits of k-induction

node counter2 (R, X: bool) returns (P: bool);

var C: int; let

C = 0 -> if (R or pre(C) = 2) then 0

else pre(C) + 1;

P = X or (C <= 4);

tel;

Observe:

Similar to counter but now P is X or (C <= 4)
instead of C <= 4, with X an additional input stream.

P is always true but k-induction is unable to prove that
for any k.

For each k, there is a counter-example for the induction
step, e.g., n = 10, C(n − 1) = 4, X(n) = true, . . . ,
X(n + k) = true, and X(n + k + 1) = false.

22c181: Formal Methods in Software Engineering – p.16/21

A Simplifying Assumption

Let us consider only Lustre programs where pre applies only
to variables.

Note: This is with no loss of generality. For example, the first
program below can be rewritten equivalently into the second:
node Foo (X,Y: int) returns (Z:int);

let

Z = 0 -> pre (X + Y);

tel;

node FooNorm (X,Y: int) returns (Z:int);

var U: int

let

U = X + Y;

Z = 0 -> pre(U);

tel;

22c181: Formal Methods in Software Engineering – p.17/21

Program State

If L is a Lustre program, let S be the tuple of L’s state
variables, non-input variables that occur within a pre.

Example. S = 〈A,C〉 for this program:
node test(X: bool) returns (P : bool);

var A, B, C : bool;

let

A = X -> pre A;

B = not (not X -> pre(C));

C = not B;

P = A = B;

tel;

The value Sn that the tuple S has at some instant n is the
state of L at instant n.

22c181: Formal Methods in Software Engineering – p.18/21

k-induction with Distinct States

We can make k-induction less incomplete, by considering
only configurations with distinct states.

Let D0,k be the formula stating that the states S0, . . . ,Sk

are pairwise distinct. (And similarly for Dn,n+k+1).

We can use

Base case)

D0,k ∧ ∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k)

Induction step)

Dn,n+k+1 ∧ ∆n ∧ · · · ∧∆n+k+1 ∧P (n)∧ · · · ∧P (n + k) ⇒ P (n + k + 1)

22c181: Formal Methods in Software Engineering – p.19/21

The k-induction Procedure with Distinct States

1: k := 0;
2: while true do
3: check validity of D0,k ∧ ∆0 ∧ · · · ∧ ∆k ⇒ P (0) ∧ · · · ∧ P (k);

4: if counter-example found then
5: return counter-example

6: end if;
7: check validity of

Dn,n+k+1 ∧ ∆n ∧ · · · ∧ ∆n+k+1 ∧ P (n) ∧ · · · ∧ P (n + k) ⇒ P (n + k + 1);

8: if valid then
9: return "Property holds"

10: end if;
11: k := k + 1;
12: check validity of ∆0 ∧ · · · ∧ ∆k ⇒ ¬D0,k;

13: if valid then
14: return "Property holds"

15: end if;
16: end while

22c181: Formal Methods in Software Engineering – p.20/21

k-induction with Distinct States

Adding the distinct states restriction to k-induction
preserves its soundness.

It makes it complete for programs where every legal
execution sequence with pairwise distinct states is
shorter than some positive integer d.

This is the case, for instance, for finite state programs,
programs whose state variables can take only finitely
many values.

But it is also the case for some infinite state programs like
counter2.

22c181: Formal Methods in Software Engineering – p.21/21

	
	Semantics of Lustre programs
	Instantaneous Configuration
	Instantaneous Configuration: Example
	Instantaneous Configuration: Example
	Proving Properties
	Proving Properties by Induction
	Proving Properties by Induction
	Induction Proof: Example
	Limits of Simple Induction
	Why the induction step does not hold
	k-induction: Induction with Depth
	Previous Example
	The k-induction Procedure
	Features of the k-induction Procedure
	Limits of k-induction
	A Simplifying Assumption
	Program State
	k-induction with Distinct States
	The k-induction Procedure with Distinct States
	k-induction with Distinct States

