
22c181:
Formal Methods in Software Engineering

The University of Iowa

Spring 2008

Introduction to OCL

Copyright 2007-8 Reiner Hähnle and Cesare Tinelli.

Notes originally developed by Reiner Hähnle at Chalmers Uni versity and modified by Cesare Tinelli at the University of Io wa. These notes

are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current f orm or modified

form without the express written permission of one of the cop yright holders.

22c181: Formal Methods in Software Engineering – p.1/39

Contents

Overview of KeY

UML and its semantics

Introduction to OCL

Specifying requirements with OCL

Modelling of Systems with Formal Semantics

Propositional & First-order logic, sequent calculus

OCL to Logic, horizontal proof obligations, using KeY

Dynamic logic, proving program correctness

JAVA CARD DL

Vertical proof obligations, using KeY

Wrap-up, trends

22c181: Formal Methods in Software Engineering – p.2/39

Object Constraint Language (OCL)

Part of the UML standard

Formal Specification Language

Standardized formal semantics from OCL 2.0 onwards

In this course: OCL 1.5

• Semantics by mapping to typed FOL

• Not all features realized, some extra features

OCL syntax less mathematical,
more programming language-oriented than Z, RSL, FOL, etc.

Why OCL? UML is not expressive enough!

22c181: Formal Methods in Software Engineering – p.3/39

UML is not enough . . .

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

How old must a car owner be?

How to express that a person can own at most own one black car?

How to specify that value of age is i after calling setAge(i)?

UML unsuitable to express semantics of design

22c181: Formal Methods in Software Engineering – p.4/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner. age >= 18

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle - - context declaration for all instances of this class

inv : self . owner. age >= 18 - - ’self’ is like J AVA ’s ’this’

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner . age >= 18 - - navigate to instance of supplier

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner. age >= 18

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner. age >= 18

22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner. age >= 18

What does that mean, instead? Relation between the constrai nts?

context Person

inv : self.age >= 18
22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples I

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“A vehicle owner must be at least 18 years old”:

context Vehicle

inv : self. owner. age >= 18

“A car owner must be at least 18 years old”:

context Car

inv : self.owner.age >= 18
22c181: Formal Methods in Software Engineering – p.5/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“No person owns more than 3 vehicles”:

22c181: Formal Methods in Software Engineering – p.6/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“No person owns more than 3 vehicles”:

context Person

inv : self.fleet –> size() <= 3
or change multiplicity

22c181: Formal Methods in Software Engineering – p.6/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“All vehicles of a person are black”:

22c181: Formal Methods in Software Engineering – p.6/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“All vehicles of a person are black”:

context Person

inv : self.fleet– >forAll(v | v.colour = Colour.black)

22c181: Formal Methods in Software Engineering – p.6/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“All vehicles of a person are black”:

context Person

inv : self.fleet– >forAll(v | v.colour = Colour.black)

“No person owns more than 3 black vehicles”:

22c181: Formal Methods in Software Engineering – p.6/39

Some OCL examples II

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

“All vehicles of a person are black”:

context Person

inv : self.fleet– >forAll(v | v.colour = Colour.black)

“No person owns more than 3 black vehicles”:

context Person

inv : self.fleet– >select(v | v.colour = Colour.black)– >size() <= 3
22c181: Formal Methods in Software Engineering – p.6/39

The Classifier Context

context [instanceName :] classPath – – class from UML model

inv [invariantName] : oclExpression

context aCar:Car

inv minimumAge : aCar.owner.age >= 18

Class classPath is context of invariant constraint

Invariant must hold for all instances of classPath at all times

Instances can be named invariantName (not in Together)

May declare invariantName for the constraint (not in Together)

Type of oclExpression must be Boolean

22c181: Formal Methods in Software Engineering – p.7/39

The Classifier Context

context [instanceName :] classPath – – class from UML model

inv [invariantName] : oclExpression

context [instanceName :] classPath

inv [invariantName 1] : oclExpression 1

. . .

. . .

inv [invariantName n] : oclExpression n

More than one invariant can be declared in same context

22c181: Formal Methods in Software Engineering – p.7/39

When Do Invariants Hold?

Consider insert() operation for List type with attribute length : int

Assume the invariant of List states that

the number of nodes in a list is equal to the value of length

During execution of insert() usually the invariant is violated

Therefore, semantics of invariants in KeY and OCL:

Invariants hold at all times before and after execution of op erations

How to relax this rigid requirement is topic of active resear ch

22c181: Formal Methods in Software Engineering – p.8/39

The Operator Context: Contract

Specifying the semantics of operations: their contract

context [instanceName :]

classPath ::opName (p1: type 1; . . . ;pk: type k)[:resultType]

{pre [preName] : oclExpression }

{post [postName] : oclExpression }

22c181: Formal Methods in Software Engineering – p.9/39

The Operator Context: Contract

Specifying the semantics of operations: their contract

context [instanceName :]

classPath ::opName (p1: type 1; . . . ;pk: type k)[:resultType]

{pre [preName] : oclExpression }

{post [postName] : oclExpression }

Example

“Calling getName() returns the current value of the attribute name”

context Person::getName():String

post : result = name

Special variable result contains return value, has type resultType

22c181: Formal Methods in Software Engineering – p.9/39

Together 6.2 Syntax for OCL Context Declarations

Classifiers

/**

* @invariants OCLExpression

*/

Operators

/**

* @preconditions OCLExpression

* @postconditions OCLExpression

*/

At most one may be present, connect multiple conditions with and.

Write constraints in .java file directly before feature they apply to.
22c181: Formal Methods in Software Engineering – p.10/39

Design by Contract

Pre-/postconditions like clauses in a contract about an operation

If the caller fulfills the precondition before the operation is called,

then the called object ensures the postcondition to hold
after execution of the operation

22c181: Formal Methods in Software Engineering – p.11/39

Design by Contract

Pre-/postconditions like clauses in a contract about an operation

If the caller fulfills the precondition before the operation is called,

then the called object ensures the postcondition to hold
after execution of the operation

NOT
“Before executing an operation its precondition must hold”

or

“Whenever the precondition holds, the operation is called”

22c181: Formal Methods in Software Engineering – p.11/39

Constraints with Attributes

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

context Person

inv : age ≥ 18

22c181: Formal Methods in Software Engineering – p.12/39

Equivalent notational variations

context Person

inv : self.age ≥ 18

22c181: Formal Methods in Software Engineering – p.13/39

Equivalent notational variations

context Person

inv : self.age ≥ 18

context p:Person

inv : p.age ≥ 18

22c181: Formal Methods in Software Engineering – p.13/39

Equivalent notational variations

context Person

inv : self.age ≥ 18

context p:Person

inv : p.age ≥ 18

context p:Person

inv minimumAge : p.age ≥ 18

22c181: Formal Methods in Software Engineering – p.13/39

Equivalent notational variations

context Person

inv : self.age ≥ 18

context p:Person

inv : p.age ≥ 18

context p:Person

inv minimumAge : p.age ≥ 18

context Person

inv minimumAge : age ≥ 18

Beware: variants using named instances not possible in Togther

22c181: Formal Methods in Software Engineering – p.13/39

Operator Constraint: Contract

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

context Person::setAge(newAge: int):int

pre : self.age ≥ 0 and newAge ≥ 0

post : self.age = newAge

22c181: Formal Methods in Software Engineering – p.14/39

Which implementation satisfies the contract?

context Person::setAge(newAge: int):int

pre : self.age ≥ 0 and newAge ≥ 0

post : self.age = newAge

i n t setAge(i n t newAge) {

i f (age>=0 && newAge>=0) { t h i s.age = newAge; }

return t h i s.age;

}

i n t setAge(i n t newAge) {

return t h i s.age = newAge;

}

i n t setAge(i n t newAge) {

t h i s.age = newAge;

return -1;

}
22c181: Formal Methods in Software Engineering – p.15/39

OCL Types

UML class types

User-defined classes from context diagram of an OCL constraint
Each class of UML context diagram is legal type in OCL constraint

22c181: Formal Methods in Software Engineering – p.16/39

OCL Types

UML class types

User-defined classes from context diagram of an OCL constraint
Each class of UML context diagram is legal type in OCL constraint

Primitive types

Integer , Real , Boolean and String (Together: int , real , boolean)
int , real not in J AVA CARD, but int , short , byte work in KeY

22c181: Formal Methods in Software Engineering – p.16/39

OCL Types

UML class types

User-defined classes from context diagram of an OCL constraint
Each class of UML context diagram is legal type in OCL constraint

Primitive types

Integer , Real , Boolean and String (Together: int , real , boolean)
int , real not in J AVA CARD, but int , short , byte work in KeY

Enumeration types

User-defined enumeration types (not supported in Together a nd KeY)

22c181: Formal Methods in Software Engineering – p.16/39

OCL Types

UML class types

User-defined classes from context diagram of an OCL constraint
Each class of UML context diagram is legal type in OCL constraint

Primitive types

Integer , Real , Boolean and String (Together: int , real , boolean)
int , real not in J AVA CARD, but int , short , byte work in KeY

Enumeration types

User-defined enumeration types (not supported in Together a nd KeY)

Collection types

Set , Bag , Sequence

22c181: Formal Methods in Software Engineering – p.16/39

OCL Types

UML class types

User-defined classes from context diagram of an OCL constraint
Each class of UML context diagram is legal type in OCL constraint

Primitive types

Integer , Real , Boolean and String (Together: int , real , boolean)
int , real not in J AVA CARD, but int , short , byte work in KeY

Enumeration types

User-defined enumeration types (not supported in Together a nd KeY)

Collection types

Set , Bag , Sequence

Special types

e.g. OclAny , OclType 22c181: Formal Methods in Software Engineering – p.16/39

Type Conformance in OCL

Integer < Real (subtype relation)

22c181: Formal Methods in Software Engineering – p.17/39

Type Conformance in OCL

Integer < Real (subtype relation)

T1, T2 class types:

T1 < T2 holds exactly if T1 is a subclass of T2 in context diagram

22c181: Formal Methods in Software Engineering – p.17/39

Type Conformance in OCL

Integer < Real (subtype relation)

T1, T2 class types:

T1 < T2 holds exactly if T1 is a subclass of T2 in context diagram

For all type expressions T , not denoting a collection type:

– Set(T) < Collection(T)
– Bag(T) < Collection(T)
– Sequence(T) < Collection(T)

22c181: Formal Methods in Software Engineering – p.17/39

Type Conformance in OCL

Integer < Real (subtype relation)

T1, T2 class types:

T1 < T2 holds exactly if T1 is a subclass of T2 in context diagram

For all type expressions T , not denoting a collection type:

– Set(T) < Collection(T)
– Bag(T) < Collection(T)
– Sequence(T) < Collection(T)

If T is not a collection type: T < OCLAny

22c181: Formal Methods in Software Engineering – p.17/39

Type Conformance in OCL

Integer < Real (subtype relation)

T1, T2 class types:

T1 < T2 holds exactly if T1 is a subclass of T2 in context diagram

For all type expressions T , not denoting a collection type:

– Set(T) < Collection(T)
– Bag(T) < Collection(T)
– Sequence(T) < Collection(T)

If T is not a collection type: T < OCLAny

If T1 < T2 and C is any of the type constructors
Collection , Set , Bag , Sequence :

C(T1) < C(T2).

22c181: Formal Methods in Software Engineering – p.17/39

Typing Examples

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

context Person - - self.name has type String

- - self.age has type Integer

- - self.fleet has type Set(Vehicle)

context Vehicle - - self.colour has type Colour

context ... - - Colour.black has type Colour

22c181: Formal Methods in Software Engineering – p.18/39

Navigation: Accessing Properties

OCL Properties (functions that may occur in OCL expr)

Attributes from underlying UML model

Association ends from underlying UML model

Operations with stereotype ≪query ≫ from UML model

Predefined OCL properties

If argument has no collection type : dot notation (like J AVA)

If argument has collection type : arrow notation “– >”

Collection type has large number of predefined properties:

includes, intersection, forAll, etc.

22c181: Formal Methods in Software Engineering – p.19/39

User-Defined Operations within Constraints

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

Only ≪query ≫ operations allowed to occur within OCL expressions

22c181: Formal Methods in Software Engineering – p.20/39

User-Defined Operations within Constraints

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

Only ≪query ≫ operations allowed to occur within OCL expressions

context Person

inv :self.name = self.getName()

Beware: parameterless properties with brackets, eg:

Set{1,2,3} –> sum()

22c181: Formal Methods in Software Engineering – p.20/39

Constraints that use Associations

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Vehicle

inv :owner <> driver - - ’self’ implicit!

22c181: Formal Methods in Software Engineering – p.21/39

Constraints that use Associations

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Vehicle

inv :owner <> driver - - ’self’ implicit!

context Person

inv :fleet –>intersection(drives) – >isEmpty()

inv :self.fleet – >intersection(self.drives) – >isEmpty()

22c181: Formal Methods in Software Engineering – p.21/39

Notational Variants of Collection Properties

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person - - all constraints are equivalent

inv :fleet –>collect(v:Vehicle | v.colour) – >size() = 1

inv :fleet –>collect(v | v.colour) – >size() = 1

inv :fleet –>collect(colour) – >size() = 1

inv :fleet.colour – >size() = 1 - - shorthand for ’collect’ in Together

22c181: Formal Methods in Software Engineering – p.22/39

The type OclType

What is the type of UML model types (eg, Person)?

OclType

OclType is metatype with predefined properties:

aType.name() gives name string of aType

Similar are attributes() , operations() , associationEnds()

aType.allInstances() gives all instances of aType in current

snapshot

allInstances needed to express properties relating to all currently

existing objects

22c181: Formal Methods in Software Engineering – p.23/39

Using allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – > forAll(p | p.age ≥ 0)

22c181: Formal Methods in Software Engineering – p.24/39

Using allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – > forAll(p | p.age ≥ 0)

Constraint is independent of model context — equivalent:

context Vehicle

inv :Person.allInstances – > forAll(p | p.age ≥ 0)

22c181: Formal Methods in Software Engineering – p.24/39

Using allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – > forAll(p | p.age ≥ 0)

Context declaration of invariant has implicit allInstance s/forAll:

context Person - - equivalent to constraint above

inv :self.age ≥ 0

22c181: Formal Methods in Software Engineering – p.24/39

Avoiding allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – >

forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

allInstances

. . . tends to make constraint difficult to read

. . . can give rise to unnecessarily difficult verification tas k
22c181: Formal Methods in Software Engineering – p.25/39

Avoiding allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – >

forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

Can be equivalently replaced with: (not in Together!)

context p1,p2:Person

inv :p1.name = p2.name implies p1 = p2
22c181: Formal Methods in Software Engineering – p.25/39

Avoiding allInstances

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Client Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person

inv :Person.allInstances – >

forAll(p1, p2 | p1.name = p2.name implies p1 = p2)

Often, collection of objects available via suitable associ ation:

context Client

inv : person –> forAll(p1, p2 | p1.name = p2.name implies p1 = p2)
22c181: Formal Methods in Software Engineering – p.25/39

The iterate Property

AccountEntry

movement:int

debits:boolean

turnover:int

balance:int

context AccountEntry

inv :AccountEntry.allInstances – >

iterate(a:AccountEntry ; m:Integer=0 | m+a.movement) =

AccountEntry.turnover

22c181: Formal Methods in Software Engineering – p.26/39

Syntax of the iterate Property

iterator variable expr of type T , initial expr

source expr t -> iterate(x : S; y : T = t0 | u)

subtype of
Collection(S)

result variable (accumulator) expr of type T , body
x and y occur in u

22c181: Formal Methods in Software Engineering – p.27/39

Java Pseudocode of iterate

t –>iterate(x:S; y:T=t 0 | u)

S x;

T y = t0;

for (Enumeration e = t.elements(); e.hasMoreElements()) {

x = e.nextElement();

y = u(x,y);

}

Type of x and y can be inferred from t and u

OCL’s iterate is also similar to the accumulate function of t he C++ STL

22c181: Formal Methods in Software Engineering – p.28/39

Quantifiers

t –>iterate(x:S; y:Boolean=true | y and a(x))

. . . where a(x) is an expression of type Boolean (with occurrence of x)

22c181: Formal Methods in Software Engineering – p.29/39

Quantifiers

t –>iterate(x:S; y:Boolean=true | y and a(x))

. . . where a(x) is an expression of type Boolean (with occurrence of x)

Can be equivalently expressed by

t –>forAll(x | a(x))

22c181: Formal Methods in Software Engineering – p.29/39

Quantifiers

t –>iterate(x:S; y:Boolean=true | y and a(x))

. . . where a(x) is an expression of type Boolean (with occurrence of x)

Can be equivalently expressed by

t –>forAll(x | a(x))

Similar:

t –>exists(x | a)

22c181: Formal Methods in Software Engineering – p.29/39

Selecting Elements

AccountEntry

movement:int

debits:boolean

turnover:int

balance:int

countPositiveEntries():int

0..*

entries

context AccountEntry::countPositiveEntries():int

pre : true
post : result = AccountEntry.allInstances – >

select(e | not e.debits) – > size()

22c181: Formal Methods in Software Engineering – p.30/39

Selecting Elements

AccountEntry

movement:int

debits:boolean

turnover:int

balance:int

countPositiveEntries():int

0..*

entries

context AccountEntry::countPositiveEntries():int

pre : true
post : result = AccountEntry.allInstances – >

select(e | not e.debits) – > size()

Alternative notation using self-association:

post : result = entries – > select(not debits) – > size()

22c181: Formal Methods in Software Engineering – p.30/39

Reducing select to iterate

Like all other collection properties select definable with iterate

s –> select(x:T | e) =

iterate(x:T; acc: Set(T) = Set {} |

if e then acc – > including(x) else acc)

s is of type Set(T)

e is an OCL expression of type Boolean

including in turn is definable with iterate

all built-in collection properties definable with iterate and includes

22c181: Formal Methods in Software Engineering – p.31/39

Referring to Previous Values

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

1 0..*

driver drives

context Person::birthday()

pre :age ≥ 0

post :age = age@pre + 1

User-defined properties qualified with @pre refer to value in prestate

22c181: Formal Methods in Software Engineering – p.32/39

Multiple Occurrences of @pre

Bank

void : m()

Customer
Employee

phone:int
1*

pa

*

*customer

1

*

employment

aCustomer.pa.phone new phone number
of current p.a.

aCustomer.pa@pre.phone new phone number
of previous p.a.

aCustomer.pa.phone@pre old phone number
of current p.a.

aCustomer.pa@pre.phone@pre old phone number
of previous p.a.

22c181: Formal Methods in Software Engineering – p.33/39

A Method Does More Than It Should

Person

name:String

age:int

≪query≫
getName():String

birthday()

setAge(newAge:int):int

Vehicle

colour:Colour

≪enumeration≫
Colour

black:Colour

white:Colour

red:Colour

Car Bike

1 0..*

ownershipowner fleet

context Person::setAge(newAge: int):int

pre : self.age ≥ 0 and newAge ≥ 0

post : self.age = newAge

i n t setAge(i n t newAge) { // correct implementation?!

name = "Jabberwocky";

return t h i s.age = newAge;

} 22c181: Formal Methods in Software Engineering – p.34/39

The Frame Problem

How to express that nothing else is changed than what is speci fied?

Known in AI as the Frame Problem

22c181: Formal Methods in Software Engineering – p.35/39

The Frame Problem

How to express that nothing else is changed than what is speci fied?

Known in AI as the Frame Problem

First Solution

context Person::setAge(newAge: int):int

pre : self.age ≥ 0 and newAge ≥ 0

post : self.age = newAge and name = name@pre

Done for all attributes visible for context class: very tedi ous!

22c181: Formal Methods in Software Engineering – p.35/39

The Frame Problem

How to express that nothing else is changed than what is speci fied?

Known in AI as the Frame Problem

Second Solution

context Person::setAge(newAge: int):int

pre : self.age ≥ 0 and newAge ≥ 0

post : self.age = newAge

modifies: self.age

The OCL to FOL compiler creates an efficient representation

KeY extension to OCL, not in the standard

22c181: Formal Methods in Software Engineering – p.35/39

Snapshots and OCL Constraints

OCL constraints evaluated relative to a snapshot I

(Recall that snapshot determines an object diagram)

OCL expressions have type Boolean ⇒ they are true or false wrt I

OCL constraints restrict legal snapshots of UML diagram

Possibility to express intended semantics of diagram

OCL expressions can be evaluated and checked wrt given snaps hot

Don’t give formal semantics of OCL in terms of snapshots

Tell later how UML/OCL is translated into FOL/DL

22c181: Formal Methods in Software Engineering – p.36/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black)

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black) 4

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black) 4
inv: fleet– >select(colour = Colour.black) – >size() <= 3

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black) 4
inv: fleet– >select(colour = Colour.black) – >size() <= 3 �

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black) 4
inv: fleet– >select(colour = Colour.black) – >size() <= 3 �
inv: Car.allInstances – >exists(colour = Colour.red)

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Vehicle
inv: self.owner.age >= 18 �
context Person
inv: fleet– >forAll(colour = Colour.black) 4
inv: fleet– >select(colour = Colour.black) – >size() <= 3 �
inv: Car.allInstances – >exists(colour = Colour.red) 4

22c181: Formal Methods in Software Engineering – p.37/39

Object Diagrams and OCL Constraints

id0815:Person

name = ‘‘Jane’’

age = 5

harley17:Bike

colour = idBlack

idBlack:Colour

black() = idBlack

white() = idWhite

red() = idRed

id0825:Person

name = ‘‘Paul’’

age = 25

bmw3:Car

colour = idWhite

idWhite:Colour

black() = idBlack

white() = idWhite

red() = idRed

idRed:Colour

black() = idBlack

white() = idWhite

red() = idRed

ownership

ownership

context Person::getName()
post: result = name ?
context Person::birthDay()
pre: age ≥ 0
post: age = age@pre + 1 ?

22c181: Formal Methods in Software Engineering – p.38/39

Why (Formal) Specification?

Importance of Requirements Specification

Advantages of formal requirements spec before implementation:

No need to decide on algorithm, but sufficient to describe res ult

Parts of behaviour can be left open (underspecification)

Possibility of code generation, platform/technology inde pendency
model-driven development

Formalisation exhibits bugs & missing requirements in earl y stage

Two independent formal models (specification, code):

Possibility of formal verification

Find more bugs

More trust in resulting system
22c181: Formal Methods in Software Engineering – p.39/39

	
	Contents
	Object Constraint Language (OCL)
	UML is not enough~ldots
	Some OCL examples I
	Some OCL examples II
	The Classifier Context
	When Do Invariants Hold?
	The Operator Context: ed Contract
	Together 6.2 Syntax for OCL Context Declarations
	Design by Contract
	Constraints with Attributes
	Equivalent notational variations
	Operator Constraint: Contract
	Which implementation satisfies the contract?
	OCL Types
	Type Conformance in OCL
	Typing Examples
	Navigation: Accessing Properties
	User-Defined Operations within Constraints
	Constraints that use Associations
	Notational Variants of Collection Properties
	The type OclType
	Using ocl {allInstances}
	Avoiding ocl {allInstances}
	The ocl {iterate} Property
	Syntax of the {em iterate} Property
	Java Pseudocode of {em iterate}
	Quantifiers
	Selecting Elements
	Reducing {em select} to {em iterate}
	Referring to Previous Values
	Multiple Occurrences of @pre
	A Method Does More Than It Should
	The Frame Problem
	Snapshots and OCL Constraints
	Object Diagrams and OCL Constraints
	Object Diagrams and OCL Constraints
	Why (Formal) Specification?

