
22c181:
Formal Methods in Software Engineering

The University of Iowa

Spring 2008

Overview of the KeY System

Copyright 2007-8 Reiner Hähnle and Cesare Tinelli.

Notes originally developed by Reiner Hähnle at Chalmers Uni versity and modified by Cesare Tinelli at the University of Io wa. These notes

are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current f orm or modified

form without the express written permission of one of the cop yright holders.

22c181: Formal Methods in Software Engineering – p.1

Contents of Second Part of Course

• Overview of KeY

• UML and its semantics

• Introduction to OCL

• Specifying requirements with OCL

• Modelling of Systems with Formal Semantics

• Propositional & First-order logic, sequent calculus

• OCL to Logic, horizontal proof obligations, using KeY

• Dynamic logic, proving program correctness

• Java Card DL

• Vertical proof obligations, using KeY

• Wrap-up, trends

22c181: Formal Methods in Software Engineering – p.2

Philosophy of KeY Tool

Formal Methods must and can be integrated

into commercial processes , tools and languages

for software development

22c181: Formal Methods in Software Engineering – p.3

Philosophy of KeY Tool

Formal Methods must and can be integrated

into commercial processes , tools and languages

for software development

Integrated tool for

Modeling

Development

Formal specification

Formal verification

of object oriented programs

22c181: Formal Methods in Software Engineering – p.3

Technologies Used in this Course

Standard language for Modeling of Software

Unified Modeling Language — UML (Borland Together)

Visual language for OO Modeling
Standard of Object Management Group (OMG)

Object Constraint Language — OCL

Formal textual language for requirements specification
UML sub-standard

Modern industrial programming language

Java (Card)

Logic, Automated Deduction

First-order logic, Dynamic Logic, Theorem proving

22c181: Formal Methods in Software Engineering – p.4

Other Interfaces

KeY plugin for Eclipse IDE

Java Modeling Language — JML

Formal Interface Specification Language for Java
Wide-spread in academic projects

Automatic Translation from OCL into English

To come soon:

Visual symbolic debugger based on symbolic program executi on

22c181: Formal Methods in Software Engineering – p.5

The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.6

The KeY System — UML Design, Java Coding

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.6

Target Language: Java Card

22c181: Formal Methods in Software Engineering – p.7

Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems

22c181: Formal Methods in Software Engineering – p.7

Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems

Java Card is relevant target language for verification:

Restrictions admit complete coverage (more later)

Applications smallish F
ea

sa
bi

lit
y

22c181: Formal Methods in Software Engineering – p.7

Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems

Java Card is relevant target language for verification:

Restrictions admit complete coverage (more later)

Applications smallish F
ea

sa
bi

lit
y

Applications safety & security critical

Often impossible to update smart cards/embedded systems

S
ig

ni
fic

an
ce

22c181: Formal Methods in Software Engineering – p.7

How Works

22c181: Formal Methods in Software Engineering – p.8

Conventional CASE-Based Development

UML Model

22c181: Formal Methods in Software Engineering – p.8

Conventional CASE-Based Development

UML Model

CASE Tool

Java (Card)
(partial implementation)

22c181: Formal Methods in Software Engineering – p.8

Conventional CASE-Based Development

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card)

22c181: Formal Methods in Software Engineering – p.8

The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.9

The KeY System — Formal Specification

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.9

Specification Language: OCL

UML has textual specification language as sub-standard :

Object Constraint Language (OCL)

OOP-like syntax, ASCII

designed for easy navigation within UML class diagrams, etc .

strongly typed

formal semantics: translation to typed FOL

OCL expressions reduce legal instances of underlying UML di agram

Class invariants

Pre-/postconditions of operations and methods

Permits formal specification of functional requirements

Other specification languages: Alloy , JML , RSL, . . .
22c181: Formal Methods in Software Engineering – p.10

Formal Specification in OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

22c181: Formal Methods in Software Engineering – p.11

Parsing OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

22c181: Formal Methods in Software Engineering – p.11

Parsing OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

22c181: Formal Methods in Software Engineering – p.11

Where to Take Formal Specification from?

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

?

22c181: Formal Methods in Software Engineering – p.11

(Library of Patterns and Idioms)

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

22c181: Formal Methods in Software Engineering – p.12

(OCL Library)

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

22c181: Formal Methods in Software Engineering – p.12

The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.13

The KeY System — Verification

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.13

Tasks of Verification Component

22c181: Formal Methods in Software Engineering – p.14

Tasks of Verification Component

• Translation OCL ⇒ logic

Need to simplify resulting formulas

22c181: Formal Methods in Software Engineering – p.14

Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

Eg, structural subtyping

22c181: Formal Methods in Software Engineering – p.14

Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

Eg, method invariants, total correctness

22c181: Formal Methods in Software Engineering – p.14

Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

• Driving the deduction component

22c181: Formal Methods in Software Engineering – p.14

Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

• Driving the deduction component

• Correctness management

22c181: Formal Methods in Software Engineering – p.14

Translation, Horizontal Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

First order logic
formula synthesis (horiz. verif.)
Translation

22c181: Formal Methods in Software Engineering – p.15

Parsing Java

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

First order logic
formula synthesis (horiz. verif.)
Translation

RecodeR

Univ Karlsruhe

AST

22c181: Formal Methods in Software Engineering – p.15

Translation, Vertical Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

Translation

RecodeR

Univ Karlsruhe

AST

Java Card DL
formula synthesis (vert. verif.)

22c181: Formal Methods in Software Engineering – p.15

Deductive Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

Translation

RecodeR

Univ Karlsruhe

AST

Java Card DL
formula synthesis (vert. verif.)

Formal proof

Interactive/Automated Theorem Prover

22c181: Formal Methods in Software Engineering – p.15

The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.16

The KeY System — Proving

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.16

The Program Logic: Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each Java (Card) program p

Statements about final state of p

22c181: Formal Methods in Software Engineering – p.17

The Program Logic: Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each Java (Card) program p

Statements about final state of p

Semantics

[p] F : If p terminates normally, then F holds in the final state
(partial correctness)

〈〈〈p〉〉〉F : p terminates normally and F holds in the final state
(total correctness)

22c181: Formal Methods in Software Engineering – p.17

Java vs. Java Card

Java features that are not present in Java Card

22c181: Formal Methods in Software Engineering – p.18

Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

22c181: Formal Methods in Software Engineering – p.18

Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

22c181: Formal Methods in Software Engineering – p.18

Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification

22c181: Formal Methods in Software Engineering – p.18

Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification

Graphical/buffered I/O

formal specification Swing classes?

22c181: Formal Methods in Software Engineering – p.18

Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification

Graphical/buffered I/O

formal specification Swing classes?

2

22c181: Formal Methods in Software Engineering – p.18

	
	Contents of Second Part of Course
	Philosophy of KeY Tool
	KeYLogoColor {} Technologies Used in this Course
	Other KeYLogoColor Interfaces
	The KeY System �romSlide {2}{
ed --- UML Design, Java Coding}
	Target Language: javaCard
	onlySlide *{1}{How KeYLogoColor {} Works}�romSlide *{2}{Conventional CASE-Based Development}
	The KeY System �romSlide {2}{green --- Formal Specif{i}cation}
	Specif{i}cation Language: OCL
	onlySlide *{1}{Formal Specif{i}cation in OCL}onlySlide *{2}{Parsing OCL}onlySlide *{3}{Parsing OCL}onlySlide *{4}{
ed Where to Take Formal Specif{i}cation from?}
	onlySlide *{1}{(Library of Patterns and Idioms)}onlySlide *{2}{(KeYLogoColor OCL Library)}
	The KeY System �romSlide {2}{�lue --- Verif{i}cation}
	Tasks of Verif{i}cation Component
	onlySlide *{1}{Translation, Horizontal Verif{i}cation}onlySlide *{2}{Parsing java {}}onlySlide *{3}{Translation, Vertical Verif{i}cation}onlySlide *{4}{Deductive Veri{f}{i}cation}
	The KeY System �romSlide {2}{color {it} --- Provingcolor {black}}
	The Program Logic: Dynamic Logic
	java vs. javaCard {}

