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Contents of Second Part of Course

• Overview of KeY

• UML and its semantics

• Introduction to OCL

• Specifying requirements with OCL

• Modelling of Systems with Formal Semantics

• Propositional & First-order logic, sequent calculus

• OCL to Logic, horizontal proof obligations, using KeY

• Dynamic logic, proving program correctness

• Java Card DL

• Vertical proof obligations, using KeY

• Wrap-up, trends
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Philosophy of KeY Tool

Formal Methods must and can be integrated

into commercial processes , tools and languages

for software development
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Philosophy of KeY Tool

Formal Methods must and can be integrated

into commercial processes , tools and languages

for software development

Integrated tool for

Modeling

Development

Formal specification

Formal verification

of object oriented programs
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Technologies Used in this Course

Standard language for Modeling of Software

Unified Modeling Language — UML (Borland Together)

Visual language for OO Modeling
Standard of Object Management Group (OMG)

Object Constraint Language — OCL

Formal textual language for requirements specification
UML sub-standard

Modern industrial programming language

Java (Card)

Logic, Automated Deduction

First-order logic, Dynamic Logic, Theorem proving
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Other Interfaces

KeY plugin for Eclipse IDE

Java Modeling Language — JML

Formal Interface Specification Language for Java
Wide-spread in academic projects

Automatic Translation from OCL into English

To come soon:

Visual symbolic debugger based on symbolic program executi on
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The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
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The KeY System — UML Design, Java Coding

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
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Target Language: Java Card
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Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems
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Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems

Java Card is relevant target language for verification:

Restrictions admit complete coverage (more later)

Applications smallish F
ea

sa
bi

lit
y
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Target Language: Java Card

Java Card

Sun’s Java dialect for smart cards and embedded systems

Java Card is relevant target language for verification:

Restrictions admit complete coverage (more later)

Applications smallish F
ea

sa
bi

lit
y

Applications safety & security critical

Often impossible to update smart cards/embedded systems

S
ig
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How Works
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Conventional CASE-Based Development

UML Model
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Conventional CASE-Based Development

UML Model

CASE Tool

Java (Card)
(partial implementation)
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The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.9



The KeY System — Formal Specification

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

22c181: Formal Methods in Software Engineering – p.9



Specification Language: OCL

UML has textual specification language as sub-standard :

Object Constraint Language (OCL)

OOP-like syntax, ASCII

designed for easy navigation within UML class diagrams, etc .

strongly typed

formal semantics: translation to typed FOL

OCL expressions reduce legal instances of underlying UML di agram

Class invariants

Pre-/postconditions of operations and methods

Permits formal specification of functional requirements

Other specification languages: Alloy , JML , RSL, . . .
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Formal Specification in OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL
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Parsing OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST
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Parsing OCL

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API
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Where to Take Formal Specification from?

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

?
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(Library of Patterns and Idioms)

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms
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( OCL Library)

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)
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The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
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Tool
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BrowserKeY Plugin KeY Plugin
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The KeY System — Verification

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
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Tasks of Verification Component
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Tasks of Verification Component

• Translation OCL ⇒ logic

Need to simplify resulting formulas
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Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

Eg, structural subtyping
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Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

Eg, method invariants, total correctness
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Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

• Driving the deduction component
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Tasks of Verification Component

• Translation OCL ⇒ logic

• Synthesize FOL formulas from
horizontal verification tasks

• Synthesize Java Card DL formulas from
vertical verification tasks

• Driving the deduction component

• Correctness management
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Translation, Horizontal Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

First order logic
formula synthesis (horiz. verif.)
Translation
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Parsing Java

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

First order logic
formula synthesis (horiz. verif.)
Translation

RecodeR

Univ Karlsruhe

AST
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Translation, Vertical Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

Translation

RecodeR

Univ Karlsruhe

AST

Java Card DL
formula synthesis (vert. verif.)
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Deductive Verification

UML Model

CASE Tool

Java (Card)
(partial implementation)

Java (Card) OCL

OCL Parser
Univ Dresden

AST

XML
API

Patterns/Idioms

OCL
(partial specification)

Translation

RecodeR

Univ Karlsruhe

AST

Java Card DL
formula synthesis (vert. verif.)

Formal proof

Interactive/Automated Theorem Prover
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The KeY System

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
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The KeY System — Proving

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a
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The Program Logic: Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each Java (Card) program p

Statements about final state of p
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The Program Logic: Dynamic Logic

Syntax

Modal operators [p] and 〈〈〈p〉〉〉 for each Java (Card) program p

Statements about final state of p

Semantics

[p] F : If p terminates normally, then F holds in the final state
(partial correctness)

〈〈〈p〉〉〉F : p terminates normally and F holds in the final state
(total correctness)
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Java vs. Java Card

Java features that are not present in Java Card
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Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency
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Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .
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Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification
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Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification

Graphical/buffered I/O

formal specification Swing classes?
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Java vs. Java Card

Java features that are not present in Java Card

Threads

unrestricted concurrency

Floating point arithmetic

IEEE standard 754 is huge . . .

Dynamic class loading

Implementation must be known before verification

Graphical/buffered I/O

formal specification Swing classes?
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