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This paper describes the language LUSTRE which is a data flow 
synchronous language, designed for programming reactive sys- 
tems-uch as automatic control and monitoring sy s t emsas  well 
as for describing hardware. The data flow aspect of LUSTRE makes 
it very close to usual description tools in these domains (block- 
diagrams, networks of operators, dynamical sample-systems, etc.), 
and its synchronous interpretation makes it well suited for han- 
dling time in programs. Moreover, this synchronous interpretation 
allows it to be compiled into an efficient sequential program. 
Finally, the LUSTRE formalism is very similar to temporal logics. 
This allows the language to be used for both writing programs 
and expressing program properties, which results in an original 
program verification methodology. 

I. INTRODUCTION 

A.  Reactive Systems 

Reactive systems have been defined as computing sys- 
tems which continuously interact with a given physical 
environment, when this environment is unable to synchro- 
nize logically with the system (for instance it cannot wait). 
Response times of the system must then meet requirements 
induced by the environment. This class of systems has 
been proposed [6], [21] so as to distinguish them from 
transformational systems-i.e., classical programs whose 
data are available at their beginning, and which provide 
results when terminating-and from interactive systems 
which interact continuously with environments that possess 
synchronization capabilities (for instance operating sys- 
tems). Reactive systems apply mainly to automatic process 
control and monitoring, and signal processing,-but also to 
systems such as communication protocols and man-machine 
interfaces when required response times are very small. 
Generally, these systems share some important features: 
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Parallelism: First, their design must take into account 
the parallel interaction between the system and its 
environment. Second, their implementation is quite 
often distributed for reasons of performance, fault 
tolerance, and functionality (communication protocols 
for instance). Moreover, it may be easier to imagine 
a system as comprised of parallel modules cooperat- 
ing to achieve a given behavior, even if it is to be 
implemented in a centralized way. 
Time constraints: These include input frequencies and 
input-output response times. As said above, these 
constraints are induced by the environment, and should 
be imperatively satisfied. Therefore, these should be 
specified, taken into account in the design, and verified 
as an important item of the system’s correctness. 
Dependability: Most of these systems are highly criti- 
cal ones, and this may be their most important feature. 
Just think of a design error in a nuclear plant control 
system, and in a commercial aircraft flight control sys- 
tem! This domain of application requires very careful 
design and verification methods and it may be one 
of the domains where formal methods should be used 
with higher priority; design methods and tools that 
support formal methods should be chosen even if these 
imply certain limitations. 

B. The Synchronous Approach 

In our opinion, most programming tools used in designing 
reactive systems are not satisfactory. Clearly, assembly 
languages do not, though they are widely used for rea- 
sons of code efficiency. Other methods include the use 
of classical languages for programming sequential tasks 
that cooperate and synchronize using services provided 
by a real-time operating system, and the use of parallel 
languages that provide their own real-time communication 
services. Even the later, which seems more promising, has 
been criticized [6] since the services being provided are low 
level; this does not allow programs to be easily designed 
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properties. Also, reuse is made easier, which is an 
interesting feature for reliable programming concerns. 

synchronization constraints arise from data dependen- 
cies. This is a nice feature which allows the natural 
derivation of parallel implementations. It is also inter- 
esting to notice that, in the above domain, people were 
accustomed to parallelism, at much earlier times than 
in other areas in computer science. 

+ It is a parallel model, where any sequencing and 
x = 2.Y + 2 

w = x + 1  +&--gjy 
Fig. 1. A data flow description and its associated equations. 

and validated, while appears to be rather expensive at run 
time. Synchronous languages have been recently proposed 
in order to deal with these problems: such languages D. Synchronous Data Flow 
provide “idealized” primitives allowing programmers to 
think of their programs as reacting instantaneously to 
external events. Thus each internal event of a program 
takes place at a known time with respect to the history of 
external events. This feature, together with the limitation to 
deterministic constructs, results in deterministic programs 
from both functional and temporal points of view. In 
practice, the synchronous hypothesis amounts to assuming 
that the program is able to react to an external event, before 
any further event occurs. If it is possible to check that this 
hypothesis holds for given program and environment, then 
this ideal behavior represents a sensible abstraction. The 
pioneering work on ESTEREL has led to propose a general 
structure for the object code of synchronous programs: 
a finite automaton whose transition consists of executing 
a linear piece of code and corresponds to an elementary 
reaction of the program. Since the transition code has no 
loop, its execution time can be quite accurately evaluated 
on a given machine; this enables us to accurately bound the 
reaction time of the program, thus allowing the synchronous 
hypothesis to be checked. Synchronous languages include 
(see this issue) ESTEREL, SIGNAL, STATECHARTS, SML, and 
several hardware description languages [ 101. 

C. The Data Flow Approach 

One method for reliable programming is to use high level 
languages, i.e., languages that allow a natural expression 
of problems as programs. Within the domain of reactive 
programming, many people are used with automatic control 
and electronic circuits; traditionally, these people model 
their systems by means of networks of operators transform- 
ing flows of data-gates, switches, analog devices-and 
from a higher level, by means of boolean functions and 
transfer functions with block-diagram structures, and finally 
by means of systems of dynamical equations which capture 
the behavior of these networks. Such formalisms look quite 
similar to what computer scientists call “data flow” systems 
[25], [26] (cf. Fig. 1). 

Therefore data flow can be considered as a high level par- 
adigm in that field. Furthermore, as a basis of a high level 
programming language, it possesses several advantages. 

It is a functional model with its subsequent mathemat- 
ical cleanness, and particularly with no complex side 
effects. This makes it well adapted to formal verifica- 
tion and safe program transformation, since functional 
relations over data flows may be seen as time invariant 

It may thus seem appealing to develop a data flow 
approach to reactive programming. However, up until now 
data flow has been thought of as essentially asynchronous, 
whereas a synchronous approach seems necessary to tackle 
the problem of time, for instance by relating time with the 
index of data in flows. This was the first concern of the 
LUSTRE [14] project which is reported here. It resulted in 
proposing primitives and structures which restrict data flow 
systems to only those that can be implemented as bounded 
memory automata-like programs in the sense of ESTEREL. 
The language, together with programming examples, will 
be presented in Section 11. Then compiling and efficient 
code generation matters will be discussed in Section 111. 

The second main concern of the project is to take 
advantage of the approach in developing techniques of 
formal verification (Section IV). The idea is to consider 
LUSTRE as a specification language as well, thanks to its 
declarative aspect. It is then shown that the same compiler 
can be used as a tool for verifying program correctness with 
respect to such specifications. Section V presents several 
other current activities of the project, related to hardware 
and distributed implementations. Finally comparisons with 
existing approaches are discussed. 

11. THE LUSTRE LANGUAGE 

A.  Flaws and Clocks 

In LUSTRE any variable and expression denotes a flow, 

a possibly infinite sequence of values of a given type; 
a clock, representing a sequence of times. 

A flow takes the nth value of its sequence of values at the 
nth time of its clock. Any program, or piece of program 
has a cyclic behavior, and that cycle defines a sequence 
of times which is called the basic clock of the program: a 
flow whose clock is the basic clock takes its nth value at the 
nth execution cycle of the program. Other, slower, clocks 
can be defined, thanks to boolean-valued flows: the clock 
defined by a boolean flow is the sequence of times at which 
the flow takes the value true. For instance Table 1 displays 
the time-scales defined by a flow C whose clock is the basic 
clock, and by a flow C’ whose clock is defined by C. 

It should be noticed that the clock concept is not nec- 
essarily bound to physical time. As a matter of fact, the 
basic clock should be considered as setting the minimal 
“grain” of time within which a program cannot discriminate 

i.e., a pair made of 
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Table 1 Boolean Flows and Clocks 

basic 
time- 
scale 

Table 2 Sampling and Interpolating 

1 2 3 4 5 6 7 8 
B 

X 

false true false true false false true true 

X 1  X2 X 3  I4 X 5  X6 2 7  1 i t; false tr; tr; false t r y  false t r y  

time- 
scale 

Y = X when X4 2 7  I 8  
B 

1; 1 false tr; false tr; tr; 

time- 
scale 

the expression 

if X > 0 then Y + 1 else 0 

external events, and which corresponds to its response 
time. If “real time” is required, it can be implemented 
as an input boolean flow: for instance a flow whose true 
value indicates the occurrence of a “millisecond” signal. 
This point of view provides a multiform concept of time: 
“millisecond” becomes a time-scale of the program among 
others. 

B. Variables, Equations, Expressions, Assertions 

Variables should be declared with their types, and vari- 
ables which do not correspond to inputs should be given 
one and only one definition, in the form of equations. These 
are considered in a mathematical sense: the equation “X = 
E ; ” defines variable X as being identical to expression E. 
Both have the same sequence of values and clock. However 
such an equation is oriented in the sense that it defines 
X. The way it is used in other equations cannot give it 
more properties than those which arise from its definition. 
This provides one important principle of the language, the 
substitutionprinciple: X can be substituted to E anywhere in 
the program and conversely. As a consequence, equations 
can be written in any order, and extra variables can be 
created so as to give names to subexpressions, without 
changing the meaning of the program. LUSTRE has only 
few elementary basic types: boolean, integer, real, and one 
type constructor: tuple. However, complex types can be 
imported from a host language and handled as abstract types 
(A similar mechanism exists in ESTEREL). 

Constants are those of the basic types and those imported 
from the host language (for instance constants of imported 
types). Corresponding flows have constant sequences of 
values and their clock is the basic one. Usual operators 
over basic types are available (arithmetic: +, -, * , / , 
div , mod ; boolean: and, or , not ; relational: = , 
< , < =, >, >= ; conditional: if then else) and 
functions can be imported from the host language. These 
are called data operators and only operate on operands 
sharing the same clock; they operate pointwise on the 
sequences of values of their operands. For instance, if X and 
Y are on the basic clock, and their sequences of values are 
respectively (z~:Q, .  . . ,z,, . . .) and (y1,y2,. . . , y n r . .  .), 

is a flow on the basic clock whose nth value for any 
integer n is: 

if Z, > 0 then y, + 1 else 0. 

Besides these operators, LUSTRE has four more which are 
called “temporal” operators, and which operate specifically 
on flows: 

pre (“previous”) acts as a memory: if (el ,  e2, . . . , e,, 
. . .) is the sequence of values of expression E, pre ( E  ) 
has the same clock as E, and its sequence of values 
is (nil,  e l ,  e2 , .  . . , e,-1,. . .), where nil represents an 
undefined value denoting an uninitialized memory. 
-> (“followed by”): if E and F are expressions 
with the same clock, with respective sequences 
(e1,e2.. . . ,e,, . . .) and ( f 1 ,  f i , .  . . , f,,. . .), then E- 
>F is an expression with the same clock as E and F, 
and whose sequence is (el ,  f 2 ,  f 3 .  . . , f,, . . .). In other 
words, E->F is always equal to F, but at the first time 
of its clock. 

Table 2 shows the effect of the last two operators: 
when “samples” an expression according to a slower 
clock: if E is an expression and B is a boolean 
expression with the same clock, then E when B is 
an expression whose clock is defined by B, and whose 
sequence is extracted from the one of E by keeping 
only those values of indexes corresponding to true 
values in the sequence of B. In other words, it is the 
sequence of values of E when B is true. 
current “interpolates” an expression on the clock 
immediately faster than its own. Let E be an expression 
whose clock is not the basic one, and let B be the 
boolean expression defining this clock. Then cur- 
rent E has the same clock C that B has, and its 
value at any time of this clock C, is the value of E at 
the last time when B was true. 

Besides being made of equations, the body of a LUSTRE 
program may contain assertions. These generalize equa- 
tions and consist of boolean expressions that should be 
always true. Their primary use is to give to the compiler 
indications in order to optimize the code when the environ- 

HALBWACHS et a1 SYNCHRONOUS DATAFLOW PROGRAMMING LANGUAGE LUSTRE 

~ ~ ____- .- 

1307 

~- 



Such a node can be functionally instanced in any expres- 
sion. For instance, 

s- 
even = COUNTER(0,2,false); 
modulo5 = COUNTER(O,l,pre(modulo5)=4); 

n 
1 

Fig. 2. Counter network. 

ment of the program possesses some known properties (see 
Section 111-D). For instance, if we know that two input 
events represented by boolean variables x and y never 
occur at the same time, we shall write: 

assert not (x and y); 

Similarly, the assertion 

assert (true -> not(x and pre(x))); 

says that event x never occurs twice in a row. Note the 
initialization to true, which prevents the occurrence of 
value nil, which is forbidden in assertions, clocks, and 
output sequences (cf. Section 111-A). Besides their use 
in code optimization, assertions play a important role in 
program verification (cf. Section IV). 

C. Program Structure 

A LUSTRE system of equations can be represented graph- 
ically as a network of operators. For instance, the equation: 

define the sequence of even numbers and the cyclic 
sequence of modulo 5 numbers, over the basic clock. 
Similarly, if gamma is an acceleration expressed in 
meter / secon ,d2 ,  and its clock’s rate is onepersecond,  one 
could have 

speed = COUNTER(O,gamma,false); 
position = COUNTER(O,speed,false); 

According to the substitution principle, this is equivalent to: 

position = COUNTER(O,COUNTER(O,gamma, 
false), 
false) ; 

A node may have several outputs; in that case, the output 
is a tuple. For instance, 

node D-INTEGRATOR(gamma: int) returns 

let 
(speed,position:int); 

speed = COUNTER(O,gamma,false); 
position = COUNTER(O,speed,false); 

tel. 
is instanced as 

(v,x) = D-INTEGRATOR(g); 

Concerning clocks, the basic clock of a node is defined 
by its inputs, so as to be consistent with the data flow point 
of view. For instance, expression: 

n = 0 -> pre(n) + 1; 
COUNTER( (O,l,false) when B ) 

which defines a counter of basic clock cycles, corresponds 
to the network of Fig. 2. This naturally suggests some 
notion of subroutine: a subnetwork can be encapsulated as 
a new reusable operator which is called a node. A node 
declaration consists of an interface specification-providing 
input and output parameters with their types and possibly 
their clocks-optional internal variables declarations, and 
a body made of equations and assertions defining outputs 
and internal variables as a function of inputs. 

For instance, the following node defines a general pur- 
pose counter, having as inputs an initial-and-reset value, an 
increment value, and a reset event: 

node COUNTER(va1-init, Val-incr: int; 

let 
reset: bool) returns (n: int); 

n = Val-init -> if reset then 
Val-init else pre(n) + Val-incr; 

tel. 

counts only when B is true. In the example, operator when 
applies to the tuple ( 0,1, false) .l Table 3 shows the 
result of the expression, and the difference with expression 
(COUNTER( 0 ,  1 , false) ) when B , where sampling 
applies to the output of the node instead of its inputs. 

This example also stresses the interest of clocks in reuse; 
had clocks not been available, the only way of getting the 
same effect would have required to modify the node by 
adding a “do-nothing” input. 

A node may admit input parameters with distinct clocks. 
Then the faster one is the basic clock of the node, and all 
other clocks must be in the input declaration list. In the 
following example: 
node N (mil1isecond:bool; (x:int ; 
y : bool ) 
when millisecond) returns... 

when B) 
’This is equivalent to COUNTER( 0 when B,  1 when B ,  false 
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Table 3 Nodes and Clocks 

B 

( 0,1, false ) 
when B 

COUNTER 
((O,l,false) 
when B) 

COUNTER 
( 0,1, false) 

(COUNTER 
(O,l,false)) 
when B 

true false true false true 

(0,lfulse) (0,1 false)  (0, l f a l se )  

0 1 2 

0 1 3 3 4 

0 2 4 

the basic clock of the node is the one of millisec- 
ond, and the clock of x and y is the one defined by 
millisecond. 

Outputs of a node may have clocks different from its 
basic clock. Then these clocks should be visible from the 
outside of the node. Note also that these clocks are certainly 
slower than the basic one. 

D. Some Programming Examples 

1) Linear Systems: Translating sampled linear systems 
into LUSTRE programs is quite an obvious task: if systems 
are expressed in z-transform equations, it amounts to trans- 
lating the z - l  operator into 0 . 0  -> pre ( ) .  For instance, 
consider the second-order filter: 

az2 + bz + c 
z 2  + dz + e ‘ 

H ( z )  = 

The output y = H ( z ) z  can be written: 

y = ax + (b:c - ciy)z-l + (ex - ey)z-’ 

and yields the following program: 

const afblc,dfe: real. 

node SECOND-ORDER(x: real) returns 

var u,v: real; 
let 

(y: real); 

y = a*x + (0.->pre(u)); 
U = b*x - d*y + (0.->pre(v)); 
v = c*x -e*y; 

tel. 

Furthermore, clocks allow an easy extension to multiply 
sampled systems. 

3) Logical Systems: From the previous discussion, data 
flow programs of signal processing systems are very close 
to their specification in terms of systems of dynamical 
equations. However, many systems have an important log- 
ical component, and some of them, for instance monitoring 
systems, are essentially logical systems. Such systems are 
most often described in terms of automata, parallel au- 
tomata (STATECHARTS for instance), and Petri nets, i.e., 
imperative formalisms which describe states and transitions 
between states. The question about the adequacy of data 
flow paradigms to provide easy descriptions of such sys- 
tems should therefore be carefully checked. The following 
examples are intended to show that these paradigms may 
allow easy, incremental and modular descriptions of logical 
systems. In this subsection we shall consider three versions 
of a “watchdog,” i.e., a device that monitors response times. 
The first version receives three events: set and reset 
commands, and deadline occurrence. The output is an 
alarm that must be raised whenever a deadline occurs 
and the last received command was a set. 
As usual, events are represented by boolean variables 

whose value true denotes the presence of an event. The 
watchdog will be a LUSTRE node having three boolean 
inputs set, reset and deadline and emitting a boolean 
output alarm. As the order of equations is unimportant, 
we begin by defining the output: alarm is true when 
deadline is true and the last true command is set. Let 
is-set be a local boolean variable expressing the latter 
condition. Then, we can write: 

alarm = deadline and is-set; 

It remains to define is-set, which becomes true any time 
set is true, and false any time reset is true. Initially, 
it is true if set is true and false otherwise: 

is-set = set -> if set then true else if 
reset then false else pre(is-set); 

We can furthermore assume that set and reset commands 
never take place at the same time, which can be expressed 
by an assertion. The full program is: 

node WD1 (set, reset, deadline: bool) 

var is-set: bool; 
let 

returns (alarm: bool); 

alarm = deadline and is-set; 
is-set = set -> if set then true 

else if reset then 
false else pre(is-set); 

2) Nonlinear and Time-Varying Systems: Letting a b c I d e assert not ( set and reset) ; 
be parameters of the SECOND-ORDER node, instead of 
constants, yields a time-varying filter. Nonlinear systems 
are also easy to describe. For instance: Let us consider now a second version which receives the 

same commands, but raises the alarm when no reset 
has occurred for a given time since the last set, this y = rho c cos(theta0- > pre( the ta) ) ;  
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time being given as a number of basic clock cycles. This 
new program reuses node WD1, by providing it with an 
appropriate deadline parameter: on reception of a set 
event, a register is initialized, which is then decremented. 
Deadline occurs when the register value reaches zero; it is 
built from a general purpose node EDGE which returns true 
at each rising edge of its input: 

node EDGE (b: bool) returns (edge: bool); 
let 

edge = false -> (b and not pre(b)); 
tel. 

node WD2 (set, reset: bool; delay: int) 

var remain: int; deadline: bool; 
let 

returns (alarm: bool); 

alarm = WDl(set, reset, deadline); 
deadline = false -> EDGE(remain = 0 ) ;  
remain = if set then delay 

else if pre(remain)>O 
then pre(remain)-1 
else pre(remain); 

tel. 

Assume now that the delay is expressed according to 
a given time-scale, i.e., as a number of occurrences of an 
event time-unit. We just have to call WD2 with an appro- 
priate clock: WD2 must catch any time units time-unit, 
any commands, and must be properly initialized so that 
alarm never yields nil: 

node WD3 (set, reset, time-unit: bool; 

var clock: bool; 
let 

delay: int) returns (alarm: bool); 

alarm = current(WD2((set,reset,delay) 

clock = true -> (set or reset or 
when clock)); 

time-unit); 
tel. 

Coming back to the question raised at the beginning of 
the section, we can see that programs have been written 
without referring to transitions between states, but rather by 
describing states in terms of state variables, and by stating 
the strongest invariant property of each state variable. Then, 
all state variables will evolve in parallel, thus recreating the 
global state of the system. It has been shown in [8] that any 
finite state machine can be described by a boolean LUSTRE 
program. 
4) Mixed Logical and Signal Processing Systems: Finally, 
mixing signal processing and logical systems is quite an 
easy task: Signal processing parts provide logical ones 
with boolean expressions by using relational operators, 
and conversely, logical components control signal flows by 
means of conditional operators: if then else, when 
and current. 

111. THE LUSTRE COMPILER 
Let us describe now the main techniques used in the 

LUSTRE-v2 compiler [30]. This prototype compiler has been 
written in Le-Lisp by John Plaice. 

A.  Static Verifications 
Static well-formedness checking is clearly an important 

issue within the framework of reliable programming, and 
aims at avoiding the overhead of dynamic checks at run 
time. Besides classical type checking, the main checks 
performed by the compiler are: 

Definition checking: any local and output variable 
should have one and only one equational definition. 
Absence of recursive node call: in view of obtaining 
automata-like executable programs, LUSTRE allows up 
to now only static networks to be described. The 
problem of structuring recursive calls so that the above 
property is maintained, has not yet been investigated. 
Clock consistency, which will be more intensively 
discussed in the following. 
Absence of uninitialized expressions (yielding nil val- 
ues). Such expressions are accepted as far as these do 
not concern clocks, outputs, and assertions. 
Absence of cyclic definitions: any cycle in the network 
should contain at least one pre operator. In the sense 
of [25] an equation such that: X = 3 * X  + 1 has a 
meaning which is the least solution with respect to the 
prefix ordering of sequences; in this case, the solution 
for X is the empty sequence, and it can be interpreted 
as a deadlock. It is therefore rejected. Note also that 
LUSTRE also rejects structural deadlocks which are not 
true ones, such that: 

X = if C the Y else 2; 
Y = if C then 2 else X;  

The reason is that the analysis of such networks is 
undecidable, in general. 

Let us discuss now the clock calculus which represents 
an original aspect of LUSTRE with respect to data flow 
languages. The following program illustrates the reason for 
such a calculus: 

b = true-> not pre b; 
y = x + (x when b); 

In the second equation, a data operator combines two 
flows of distinct clocks. According to standard data flow 
philosophy, such a program has a meaning. However, it 
is easy to see that the computation of the 2nth value of 
y needs both the 2nth and the nth values of 2. Since a 
reactive system may be assumed to run for ever, its required 
memory will certainly overflow. Such a program could 
not be compiled into a bounded memory object code, not 
to speak of the physical incoherence consisting of adding 
something at time n with something at time 2n. 

The clock calculus consists of associating a clock with 
each expression of the program, and of checking that any 
operator applies to appropriately clocked operands: 
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Fig. 3. A cyclic call. 

any primitive operator with more than one argument 
applies to operands sharing the “same” clock; 
the clock of any operand of a current operator is 
not the basic clock of the node it belongs to;2 
the clocks of a node operands should obey the clocks 
requirements stated in the node definition header. 

Let us define here what we mean by “the same clock.” 
Ideally, it could mean the same boolean flow, but this may 
require semantic analysis which are undecidable in general. 
Thus the compiler uses a more restricted notion of equality: 
two boolean expressions define the same clock if and only if 
these can be unified by means of syntactical substitutions. 
Consider the example: 
x = a when (y > z); 

y = b+c; 

U = d when (b+c > z); 
v = e when ( z  < y); 
x and U share the same clock, which is considered to be 
distinct from the clock of v. 

The rules of the clock calculus are formally described in 
1141, 1301. 

B. Node Expansion 

The LUSTRE compiler produces purely sequential code. 
This raises the question of compiling separated nodes which 
are used in other nodes. The following example shows this 
cannot be easily done for LUSTRE: 

node two-copies (a, b: int) returns 

let x = a ; y = b ; end. 
(x, y: int); 

Clearly, there are two possible sequential codes for 
a basic cycle of this node, either x:=a;y:=b; or 
y:=b;x:=a; 
But the choice between those two programs may depend 

on the way the node is used within another node; for 
instance: 
(xly) = two-copies(a,x) 

corresponding to Fig. 3. In this case, only the former 
program is correct. 

Thus before compiling a program, the compiler first ex- 
pands recursively all the nodes called by that program, i.e., 
formal parameters are substituted with actual ones, local 

21n contrast with SIGNAL, LUSTRE does not allow basic clock time 
intervals to be split into smaller ones. 

variables are given an unique name (so as to distinguish 
that node call from other instances of the same node) and 
then the called node body is inserted into the calling node 
body. The code generation step will then start from a “flat” 
node which does not call any other node.3 

C. Single-Loop Code 

An obvious way of associating an imperative program 
with a LUSTRE node consists of constructing an infinite 
loop whose body implements the inputs to outputs trans- 
formation performed at any basic cycle of the node. This 
is done by: 

choosing variables to be computed (the output ones 
and the least possible number of local ones, which 
implement either memories or temporary buffers); 
defining the actions which update these variables; 
choosing an ordering of these actions, according to 
the dependencies between variables induced by the 
network structure of the node. 

As an example, let us consider a modified version of the 
watchdog WD3: 

node WD4 (set,reset,u-tps:bool; delay: 
int) returns (a1arm:bool; 
var is-set: bool; remain:int; 
let 

alarm = is-set and (remain = 0) and 
pre(remain) > 0; 
is - set = false -> if set the true 

else if reset then 
false 
else pre(is-set); 

else if u-tps and 
pre(remain) > 0 

then 
pre(remain)-1 

remain = 0 -> if set then delay 

else pre(remain); 
assert not(set and reset); 

tel. 

The single-loop body, which is executed at each program 
reaction. looks like: 

if -init then % first cycle % 
is-set := false; remain := 0; 
alarm :=false; -init := false 

if set then is-set:= true; remain:= 

else 

else % other cycles % 

delay 

if reset then is_set:= false endif; 
if u-tps and (-pre-remain>O) then 

remain := - pre-remain-1 endif; 
endif 

3However, we shall see in Section V-A that some separate compiling 
technique can also apply. 
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alarm := is-set and (remain=O) and 
(-pre-remain > 0); 

endif 
write(a1arm); -pre-remain := remain; 

1) Remarks: 
The compiler has defined auxiliary variables: the vari- 
able Anit-which is assumed to be initialized to true 
and is used to implement the operator ->-and the 
memory variable -pre-remain. Note that the expres- 
sion pre( is-set) did not result in the creation of 
a memory variable since the compiler found a way to 
avoid it. 
Although it is easy to find an ordering of actions 
which meets the dependency relations between vari- 
ables (static checks described above ensure that such 
an order exists), the choice of a “good” order is quite 
difficult: particularly, the order according to which 
conditional statements are opened and closed is critical 
with respect to code length. 
The code speed could be improved. Note for instance 
that at any cycle the program tests whether this is the 
first one or not, and this is particularly awkward. A 
solution consists of using more complex control struc- 
tures than the single-loop structure. This is discussed 
in the following section. 

D. Automaton-Like Code 
The search for more complex control structures is bor- 

rowed from the compiling technique of ESTEREL and is 
based on the following remarks: 

The classical concept of control of imperative pro- 
grams is represented in LUSTRE by means of boolean 
variables acting over conditional and clock handling 
operators. 
If a condition or a clock depends on values of a boolean 
variable computed at previous cycles (by means of an 
expression like pre(B) or current(B)) the code 
of the actual cycle could be made simpler if that 
value could be assumed to be known. One could then 
distinguish the code to be executed according to that 
value. 

The synthesis of the control structure consists of choosing 
a set of state variables of boolean type, whose values are 
expected to influence the code of future cycles. This set of 
variables is called the state of the program and it takes only 
a finite set of values. For each possible value of the state, 
one defines the sequential code which would be executed 
during a cycle if the state of the variables had the above 
values just before the execution of the cycle. Hence, starting 
from a given state and executing the corresponding code 
would result in computing the next state, and be ready for 
the execution of the next cycle. Finally, a static reachability 
analysis can be performed so as to delete state values and 
transitions which cannot be reached from the initial state 
(As a matter of fact, this reachability analysis is done while 

generating state values and transitions, so as to avoid 
generating useless items). The result is a finite state au- 
tomaton, whose transitions are labeled with the code of the 
corresponding reaction. 

State variables can be chosen in several ways among the 
following: 

boolean expressions resulting from pre and current 
operators, 
auxiliary variables like Lnit-C, associated with some 
clock C whose value is true at the first clock cycle 
and then f a l s e ,  and which allow the evaluation of -> 
operators. 

This control synthesis is illustrated on the watchdog exam- 
ple WD4 (cf. Section 111-C): The chosen state variables are 
pre ( is-set ) and -init. Then: 

The first cycle yields pre ( is-set ) =nil and 
-init=true. Let So be this initial state. Since 
-init=true in this state, the value of all 
-> operators is the one of their first operand. 
Thus is-set=false, and remain=O. Elementary 
boolean calculus yields alarm=f alse. Further- 
more, since is-set evaluates to false, this will be 
the value of pre( is-set) at the next state. The 
next state, 5’1, is then pre(is-set)=false and 
-init=false. State So code looks like: 

SO : remain := 0; 
alarm := false; 
pre-remain := remain; 
goto s1; 

In state SI, since pre(is-set) value is false, 
is-set evaluates to true if and only if the in- 
put set value is true. Let Sz be the state where 
pre ( is-set ) is true and -init is false. The code 
for state SI is: 

S1 : if set then 
remain := delay; 
alarm := (remain = 0) and 
(pre-remain > 0 ) ;  
pre-remain := remain; 
goto s2; 

remain := if u-tps and 
else 

pre-remain > 0 
then pre-remain-1 
else pre-remain; 

alarm := false; 
pre-remain := remain; 
goto s1; 

endif 

The code of state S2 (pre( is-set) is true and 
Anit is false), is as follows: 
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set 

Fig. 4. The watchdog control automaton. 

S2 : if set then 
remain := delay; 
alarm := (remain = 0) and 
(pre-remain 

pre-remain := remain; 
goto s2; 

> 0 ) ;  

else 
if reset then 

remain := if u-tps and 
pre-remain > 0 then 
pre-remain-1 

alarm := false; 
pre-remain := remain; 
goto s1; 

else pre-remain; 

else 
remain := if u-tps and 

pre-remain > 0 
then pre-remain-1 

else pre-remain; 
alarm := (remain = 0) and 

(pre-remain > 0 ) ;  
pre-remain := remain; 
goto s2; 

endif 
endif 

All reachable states being processed, this ends the code 

I )  Remarks: 

The obtained transition codes are much simpler than 
the single-loop code, particularly for SO and 5’1 codes. 
This reduction may be even more impressive for larger 
programs. 
In contrast, the overall length of the code may become 
very large. That is why, in practice, an action code 
table is built which uniquely identifies actions that 
may belong to several transitions, and transition codes 
refer to actions by means of their indexes in the table. 
Boolean expressions depending on non boolean vari- 
ables, which are needed for computing state variables 
(integer comparison for instance) are handled as inputs 
by means of tests on their value. 
This technique allows assertions to be fully taken into 
account. Assertions are computed in the same way 

generation. Figure 4 displays the resulting automaton. 

as state variables, and any branch yielding a false 
assertion is deleted. A state whose total code has been 
deleted is then declared unreachable, and branches 
already computed which lead to that state are recur- 
sively deleted. It should be noticed that assertions may 
increase the number of state variables and reachable 
states, as well as increase code length by inducing 
extra tests. 
In contrast with ESTEREL automata, the obtained 
LUSTRE automata are often far from being minimal 
(this question will be further discussed in Section V- 
A). This entails a need for minimization. 

E. The ESTERELILUSTRE Environment 

Automata produced by the LUSTRE compiler are ex- 
pressed in the OC format [32], which is also used by the 
ESTEREL compiler. Several common tools take this format 
as input: . 

. 

. 

IV. 

Code generators: Translators toward C, Le-Lisp, and 
ADA languages have been designed by the ESTEREL 
team. They produce the procedure which implements 
the code corresponding to a transition of the automa- 
tion. 
Automaton minimizer: The ALDEBARAN [ 161 mini- 
mizer has been interfaced with OC. It allows minimal 
equivalent automata to be obtained in OC, and this is 
particularly useful in the case of LUSTRE. 
Interfaces with proof tools: Automata are a common 
basic model in many analysis and verification tools 
for parallel systems. It was therefore appealing to 
experiment with the use of such tools operating on Oc 
automata. Thus OC has been interfaced with AUTO 
[39]. Some experiments have also been performed 
with EMC [13] and XESAR [36]. However, we shall 
see in Section IV other proof techniques which apply 
specifically to LUSTRE. 
Display tools: The OC language has been designed 
for internal code representation, and it thus lacks of 
readability. For checks and debugging purposes, trans- 
lators toward readable representations, and graphic 
display based on the AUTOGRAPH [34] code, have been 
developed. 

VERIFICATION 
As noted in the introduction, reactive systems often 

concern critical applications, and thus program verification 
is a key issue. However, many practitioners in the field 
are skeptical with the use of formal verification methods, 
and convincing arguments need to be provided in order to 
support our claim that indeed, such methods are of practical 
interest. This is the object of the following discussion. 
The research on program verification which started in the 
early seventies intended to provide complete proofs of 
very general programs. Though this work has led to im- 
portant contributions concerning programming techniques 
and language design, one should admit that its use in 
practice is very limited. However, our goal concerning 
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reactive systems may be less ambitious. Almost always, 
the safety of a critical application does not depend on 
the total correctness of its control program, but rather on 
an often small set of properties that the program should 

fulfill. For instance, the occurrence of a critical situation 
should raise an alarm within a given delay. From our 
experience, the proof of such properties can often be 
handled within the framework of simple decidable theories, 
as these properties seldom depend on numerical relations 
and computations. Furthermore, most of these properties 
are “safety” properties which state that a given situation 
should never appear, or that a given statement should 
always hold, in contrast with “liveness” properties which 
state that a given situation should eventually appear in the 
future. For instance, a relevant question is not that a train 
will eventually stop, but that it never crosses a red light. 
This is an important remark as proof techniques for safety 
properties are known to be much simpler than for liveness 
properties: 

A safety property can be verified by simply check- 
ing properties of reachable states, without taking into 
account the transition relation (it is used only for 
constructing the reachable states). This allows the use 
of very efficient methods based on reachability 1151, 

A safety property can be checked on an abstraction 
of the actual program. Informally, if a safety property 
holds for a program, it also holds for programs whose 
set of behaviors is a subset of the initial one. Thus it is 
possible to abstract programs by ignoring details, for 
instance numerical computations; their set of behaviors 
will become larger and properties that hold on these 
abstractions will also hold on the actual programs. 
Safety properties can be checked modularly. Properties 
of submodules can be combined so as to derive a 
property of the whole module. This allows proof 
complexities to be reduced, thanks to modular decom- 
position according to a program structure. In view of 
this discussion, we will propose methods for specifying 
and checking simple safety properties about LUSTRE 
programs. 

1201. 

A.  Specification of Safety Properties 

Many formalisms have been proposed in order to ex- 
press properties of real time parallel programs. Two main 
approaches can be distinguished: those based on temporal 
logics 1281, [31] and those based on automata theory (Petri 
nets, STATECHARTS, timed graphs [I] and process calculi 
[27]). Such formalisms should clearly allow any interesting 
property to be expressed, but should also provide an easy 
and readable expression for it; proving a certain property 
is of poor interest if one cannot be convinced that it is 
actually the desired property of the system. This led us to 
investigate if it were possible to take advantage of LUSTRE’S 
declarative aspect, so as to use it for expressing properties 
of LUSTRE programs 1231. A positive answer is based on 
the following considerations: 

0 

. 

. 

Let 

LUSTRE can be considered as a subset of a temporal 

temporal property P by a boolean expression B, such 

during any execution path of the program. According 
to [8], any safety property can be expressed in such 
a way. 
The above proposal is easily implementable by using 
the assertion mechanism of LUSTRE: LUSTRE assertions 
are already a means of expressing properties of a 
program’s environment. 
The use of a programming language for expressing 
both programs and their properties is interesting since 
all the structuring facilities of the language become 
available for the sake of readability and expressiveness. 
For instance, as we will show, the node concept will 
allow the user to define its own temporal operators. 
us show here how some useful nontrivial temporal 

logic [8], [29]. Our proposal is then to express any 
that P holds i f  and  o n l y  if  enpresqion B i s  always t r r z e  

operators can be expressed as LUSTRE nodes. Consider the 
following property: 

“any occurrence of a critical situation must be 
followed by an alarm within a five seconds delay”. 

Such a property relates three events: the critical situation 
occurrence, the alarm, and the deadline. The latter can be 
provided externally as well as it can easily be expressed in 
LUSTRE. A general pattern for this property is the following 
one: 

“Any occurrence of event A is followed by an 
occurrence of event B before the next occurrence 
of event C.” 

However, this formulation is not directly translatable into 
LUSTRE, as it refers to what happens in the future following 
an A occurrence, while LUSTRE only allows references to 
the past with respect to the current instant. That is why we 
first translate it into the equivalent past expression: 

“Any time C occurs, either A has never occurred 
previously, or B has occurred since the last 
occurrence of A.” 

Let us define a node, taking three boolean input parameters 
A, B , C, and returning a boolean output X such that such 
that X is always true if and only if the property holds: 

node onceBfromAtoC(A,B,C: bool) 

let 
returns (X: bool ) ;  

X = implies(C, never(A) or 
since(B,A)); 

tel 

The . 

. 

equation defining x uses three auxiliary nodes: 
The nodes implies implements the ordinary logical 
implication: 

node implies(A, B: bool) returns 
(AimpliesB: bool); 
let AimpliesB = not A or B; tel. 
The node never returns the value true as long as its 
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input has never been equal to true. Then it returns false 
for ever: 

node never(B: bool) returns 
(neverB: bool); 
let 

neverB = (not B) -> (not B and 
pre(neverB)); 

tel. 

Finally, the node since has two inputs and it returns 
true if and only if, either its second input has still not 
been true, or its first input has been true at least once 
since the last true value of the second input: 

node since(X,Y: bool) returns 
(XsinceY: bool); 
let 

XsinceY = if Y then X else 
(true -> X or pre(XsinceY)); 

tel. 

A realistic example has been studied in [17]: Most critical 
properties of a nuclear plant monitoring program have been 
expressed in LUSTRE, thanks to a small set of general 
purpose temporal operators similar to onceBf romAtoC, 
never or since. 

B. Verification 
The proposed verification method is very similar to 

“model checking” [13], [36]: first, the state graph of the 
program is built (this assumes obviously a finite number 
of states), and then each property is checked on this state 
graph. The critical issue in this approach is clearly the num- 
ber of states which can be very large for realistic programs. 
We shall see that the restriction to safety properties, and 
the expression of properties in the same language as the 
program may help in solving this problem. 

In the LUSTRE case, a state graph already exists corre- 
sponding to the control automaton built by the compiler. 
This graph is an abstraction of the actual state graph since 
it expresses only the control and ignores many details 
concerning non boolean variables, and boolean ones which 
do not influence that control. As noticed above, if properties 
to be checked depend essentially on booleans taken into 
account in the control graph, and if these properties are 
safety ones, such an abstraction is a sensible one for 
checking purposes and yields in general much smaller 
graphs. An important observation for decreasing the total 
graph size consists of taking into account the property to 
be checked when building the state graph. In the case of 
LUSTRE this is easily achieved since the same language 
applies to properties and programs: in order to prove that 
an expression B is an invariant of the program P,  we build 
a new program P’ made of the body of P and of the system 

_ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - -  
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Fig. 5. Verification program. 

of equations defining B, and whose only output is B (cf. Fig. 
5). Since the compiler is then requested to only compute 
B, it will only take into account the part of the program 
which concerns that computation, and this can be expected 
to yield a smaller graph. Given that graph, verifying the 
property corresponds to check that in none of the states, 
the code performs an assignment of the output to false. 

A third issue in reducing the size of the graph consists 
of using assertions for expressing assumptions when the 
property to be checked is suspected to hold only on 
these assumptions. Assertions are also useful for expressing 
properties of numbers which otherwise would be ignored 
by the compiler. For instance, if a program uses numerical 
tests such as X<=Z and Y<=Z, the assertion: 

assert not(X<=Y and Y<=Z and not 
x<=z ) ; 

prevents the compiler from generating states satisfying 
z<x 5 Y 5 z, which of course would not be reachable 
by the actual program. As an example, let us consider the 
following general purpose node4 which represents a switch: 
its output alternates from true to false according to input 
events ON and OFF; a third input defines its initial value. 
A first version of this node could be: 

node SWITCH_l(ON, OFF, INIT: bool) 
returns (STATE: bool); 
let 

STATE = INIT -> if ON then true 
else if OFF then 
else pre(STATE); 

tel. 

However, this version has a flaw: in the call 

false 

state = SWITCH-l(button, button, init) 

the output does not change each time the button is pushed, 
as we might expect. Thus a more general version should 
take into account the previous STATE when checking the 
inputs ON and OFF: 

node SWITCH(ON, OFF, INIT: bool 
returns (STATE: bool); 
let 

4Such a node could have been used in defining the variable is-set in 
the CG1 (cf. Section 11-D) version of watchdogs. 
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(a) 
Fig. 7. Modular verification. 

Fig. 6 .  Assumption-dependent equivalence of programs. 

STATE = INIT -> if ON and not 
pre(STATE)then true 
else if OFF and 
pre(STATE) then false 
else pre(STATE); 

tel. 

We could wish to verify that this generalization is correct, 
in the sense that both versions behave in the same way as 
soon as the inputs ON and OFF are never true at the same 
time. This is achieved by constructing a comparison node 
which calls both nodes with same inputs and compares their 
outputs, under the assumption that ON and OFF inputs are 
exclusive (cf. Fig. 6): 

node COMPARE(ON, OFF, INIT: bool) 
returns (OK: bool); 

let 
var state, state-1 : bool; 

state = SWITCH(ON, OFF, INIT); 
State-1 = SWITCH_l(ON, OFF, INIT); 
OK = (state = state-1); 
assert not(0N and O F F ) ;  

tel. 

Compiling this node yields a five states automaton, each 
transition of which assigns the value true to the output OK. 

The last way to tackle the state explosion problem is 
modular verification. Having to prove that an expression B 
is always true during the execution of a program P, calling 
a node Q (cf. Fig. 7(a)), the idea is to decompose the proof 
into a sub-proof concerning Q, and a sub-proof concerning 
P without Q: 

Find (by intuition) a property of Q, i.e., an expression 
Con the input/output parameters of Q, and prove that 
C is always true during any execution of Q. 
Now, consider Q as being part of the environment of 
P, i.e., replace in P the call to Q by the assertion 
assert C. Then try to prove the invariance of B on 
the modified program (cf. Fig. 7(b)). 

An example making use of this modular decomposition 
may be found in [18]. 

A prototype verification tool called LESAR (by analogy 
with the CESAR family of model checkers) has been im- 
plemented: given a program with a single boolean output, 
it goes through the states and checks that the output is 
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never assigned false. It has been used to check the above 
mentioned nuclear plant control system [ 171. Though this 
program used computations on real numbers, the state 
graphs it needed to build appeared to be quite small (up 
to 1000 states). 

Of course, the validity of the proof relies on the satisfac- 
tion of the synchrony hypothesis: All the proof is performed 
“inside” the synchronous model, and has nothing to do with 
performance analysis. As mentioned before, checking the 
validity of the synchrony hypothesis amounts to evaluate 
the maximum reaction time of the program on a given 
machine. 

V. CURRENT ACTIVITIES 

A .  The Next Compiler Version 

In Section 111, the LUSTRE-V2 compiler currently available 
was described. However, from experiments conducted with 
this version, some serious drawbacks have been identified, 
and an improved version is currently being designed. We 
briefly discuss here the main trends adopted in this new 
design. 

Automata minimization: As indicated above, automata 
provided by the current compiler are far from being min- 
imal, while this is not the case with ESTEREL generated 
automata. The suspected reason for this may be the fol- 
lowing one: ESTEREL is an imperative language offering 
powerful control structures (sequencing, interruptions, etc.). 
Furthermore, it is a medium to large grain parallel language 
in the sense that its parallel construct is an explicit one, and 
its use may be tightly controlled by a pr~grammer .~  This 
allows “good programming” rules to be stated which lead 
to minimal automata. On the contrary, control in LUSTRE is 
hidden as it results from data dependencies, and LUSTRE is a 
fine grain parallel language in the sense that any expression 
is a potentially parallel construct. Thus minor changes in a 
program text may induce large variations in the automaton 
size, and though some causes of state explosion have been 
identified, these cannot be easily synthesized as sensible 
programming rules. The problem of efficiently compiling 
LUSTRE is therefore intrinsically difficult. Several solutions 
are currently investigated: 

A posteriori minimization: The use of an automaton 
minimizer such that ALDEBARAN (cf. Section 111-E) 
which has already been interfaced so as to process 
OC automata, is a low cost solution. But it applies 

‘Though the main ESTEREL assumption is that the synchronous product 
of automata limits state explosion with respect to an asynchronous product, 
it still may be the main cause of state growth. 
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only after a successful automaton generation, and this 
cannot be the case when a state explosion occurs. 
On the fly minimization: It is based on an analysis 
of state explosion. The main reason seems to be 
that LUSTRE variables are defined during the whole 
program execution, without taking much care of their 
effective use. Although this is a nice feature of the 
language from a programmer’s point of view, it leads 
the compiler to distinguish states which differ only on 
values that have no influence on the present and future 
sequence of outputs. This suggests a “demand driven” 
state generation strategy, where states are created if 
and only if their influence on the input output behavior 
of the program is asserted [7]. This strategy has been 
successfully implemented. 
Source code optimization: As mentioned above, some 
rules are known which could reduce the automaton 
size, but cannot be sensibly edicted as programming 
rules. The idea is then to take advantage of the large 
versatility of LUSTRE programs which is due to its 
mathematical aspect (for instance the definition princi- 
ple) so as to use these rules as optimizing rules. There 
are experiments being carried on in this direction as 
well. 

Transition code size: Besides the automaton size, it 
happens that the codes of transitions become exceedingly 
large. This results from an inadequacy of the scheduling 
algorithm which produces that sequential code. One of its 
tasks consists of transforming conditional expressions into 
conditional statements and the order according to which 
tests are opened and closed appears to be critical with 
respect to code size (cf. Section 111-C). Heuristics are being 
investigated so as to solve this problem. 

Modular compiler: It may also happen that a minimal 
automaton of a program still remains very large. This hap- 
pens when the program is made of many quasi-independent 
parts, and then its number of states become as large as 
the product of state numbers of the parts. A good solution 
in this case would consist of generating an automaton for 
each part and then of linking together these automata. This 
raises two problems. First, it has been noted (Section 111-B) 
that modularly compiling pieces of LUSTRE programs is in 
general impossible. However [33] proposed a method for 
identifying in a program those pieces that can be compiled 
separately. Second, this may result in a significant decrease 
of the code length, but at the expense of execution time. 
Although the method has not yet been implemented, it 
is foreseen that it should keep under the programmer’s 
control, so as to reach a satisfactory balance between code 
length and execution time. 

B. Distributed Programming 

Up until now, the only execution scheme considered for 
LUSTRE programs is a purely sequential one. This does not 
seem very consistent with the highly parallel aspect of the 
language and with the fact that most parallel languages 
such that OCCAM and ADA have parallel and concurrent 
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execution schemes. There can be at least two reasons for 
that discrepancy: 

Parallelism in LUSTRE is intended toward expressive- 
ness and adequacy with the culture of control systems 
engineers, and this is independent of any execution 
scheme. 
In contrast with the above mentioned languages, paral- 
lelism in LUSTRE is a fine grain one, and its concurrent 
execution would be rather inefficient. On the contrary, 
we have seen that very efficient sequential codes 
(with respect to execution time) can be generated, and 
furthermore, sequential execution allows the transition 
time to be accurately bounded. 

However, many control and monitoring systems which 
constitute the main application domain of LUSTRE, are 
distributed systems for several reasons: performances, fault 
tolerance, location of sensors and actuators, etc., and these 
systems are most often programmed separately. This may 
not be a bad solution, as it may correspond to a modular 
decomposition of systems, but it frequently raises difficult 
debugging problems, and an overall validation of such 
systems is usually impossible. An alternative method can 
be based on an automated tool producing distributed code 
from LUSTRE programs and user-provided distribution com- 
mands (for instance, “compute variable X on location Ll”). 
This would allow a whole application to be programmed 
in LUSTRE, without taking care of distribution problems, 
and then, this application could be easily debugged and 
validated using standard LUSTRE methods. Provided the au- 
tomatically produced distributed program preserves LUSTRE 
semantics, it can be expected that any debugging and 
validation performed on the centralized program will also 
hold for the distributed one. Such a tool, called OC2REP, is 
described in [4], and has been implemented. Given an OC 
program and a set of distribution commands, it automat- 
ically produces several OC programs which communicate 
through FIFO queues thanks to statements such that: 

put-type(i:location; exp:type); 

whose execution at location j consists of inserting the value 
of exp in the queue j of location i, and: 

get-type(j:location; var x:type); 

whose execution at location i consists of waiting if queue j 
is empty, and else, of assigning the head of the queue to x. 

Note that the queue mechanism and the fact that puts 
and gets are inserted in convenient order allow messages 
not to identify the transmitted values, but only the sending 
and destination locations. The distributed programs are 
well synchronized, deadlock free, and meet the functional 
semantics of  LUSTRE^. Experiments also show that this 
method avoids difficult distributed debugging problems. 
However, accurate bounds on the transition times are diffi- 
cult to get, and their evaluation constitutes a real problem. 

6This also applies to Esterel since the input of the tool is an OC program. 
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C. Hardware Issues 
The adequacy of LUSTRE for the description of digital 

circuits has been shown in several papers [19], [22], [38]. 
Moreover, it can be expected that circuit proof and valida- 
tion may benefit from LUSTRE proof techniques. Another 
interesting issue is hardware design from boolean LUSTRE 
specifications and descriptions. Some work on this topic is 
currently undertaken in cooperation with Digital Equipment 
“Paris Research Laboratory” [35]. The idea is to implement 
on hardware the network of operators corresponding to the 
program, and successful achievements have been obtained 
in this direction, using “programmable active memory” 
circuits [12]. 

VI. CONCLUSION 
In this paper, the LUSTRE language, its main applications, 

and its associated tools have been presented. As concluding 
remarks, we will compare the LUSTRE approach with some 
alternative approaches, from both programming language 
and verification points of view. 

A. Related Programming Languages 

1) Data Flow: The data flow model has been a basis of 
several programming languages, for instance [3], [9], [ l l ] ,  
[26] and it has been given a nice formal definition by Kahn 
in [25]. When trying to locate LUSTRE within the data flow 
world, it looks very close to LUCID from a syntactical point 
of view. This similarity is not casual since LUCID was the 
first main reference in the design of LUSTRE. However, the 
final language is quite different from its model. This is 
due to the choice of the Kahn model as the basic one for 
LUSTRE: in this model, newly computed values can only 
be appended at the end of a sequence of already computed 
values, while LUCID model allows them to be appended 
anywhere in the sequence. This raises a lot of problems 
when efficient execution mechanisms are required, and it 
poorly meets the point of view of reactive systems. Thus 
LUSTRE can be first seen as some restriction of LUCID to the 
Kahn model. But the latter soon appeared still too general 
when bounded memory and bounded reaction time were 
required. Clearly, recursive node call had to be forbidden, 
but also the use of sampling and blocking operators had to 
be strictly restricted for that purpose. This originated the 
concept of LUSTRE clocks which is the final distinguishing 
feature of the language. 

2) Signal: Another language quite similar to LUSTRE is 
SIGNAL (see this issue), and comparing both is not an easy 
task. A main issue here is their distinct semantic model; 
in our opinion SIGNAL does not belong to the Kahn family 
of languages, which is based on functions over sequences, 
and on functional composition, but on a concept of “pro- 
gramming by constraints”: each SIGNAL construct denotes 
a finite-memory relation between “hiatonised” sequences, 
and a program is the intersection of such relations. A 
program has a bounded memory but it can be relational 
(i.e., non deterministic), and the object of SIGNAL clock 
calculus consists of finding an execution scheme such that 

the program be deterministic and deadlock-free. The free 
use of hiatons (i.e., “absent” data symbols) in the semantics 
makes SIGNAL a more powerful language than LUSTRE in 
the sense that the internal clock of program can be faster 
than the inputs faster clock. In our opinion, the drawback of 
the approach lies in the fact that the clock calculus is much 
more complex, and can hardly be mentally performed by 
a programmer. 

3) Imperative Synchronous Languages: Most synchronous 
models and languages are imperative ones-e.g., SCCS 
[27], ESTEREL, SML, STATECHARTS-and therefore their 
programming style is very different. Comparison ex- 
periments undertaken with ESTEREL showed that some 
problems could fit better with the imperative style, while 
others did not. This seems to indicate that a good reactive 
programming tool box should offer the possibility of 
mixing both approaches. As both languages share many 
tools in common, this may become a practical objective 
in the future. It should also be noted that the data-flow 
aspect of LUSTRE makes it less dependent on synchronous 
execution schemes than imperative languages. For instance 
a denotational semantics of LUSTRE is given in [5], which 
does not impose a synchronous execution. This may open 
the door to many asynchronous execution schemes together 
with their semantic interpretation. 

B. Proof Techniques 

The use of LUSTRE as a language for expressing program 
properties allows it to be compared with so-called “real- 
time” logics [2], [24], [28], [37]. These logics are mainly 
obtained by adding a quantitative time dimension to ordi- 
nary temporal logics where time is only seen as an ordering 
of events. Our proposal differs in that we remain within the 
framework of temporal logics, and consider time as a given 
external event. This presents two advantages: first, the logic 
does not grow in complexity, and it allows a multiform con- 
cept of time to be handled. On the same topic, we have also 
stressed in the paper the interest of using the same language 
for both writing programs, and expressing properties to be 
satisfied by these programs. Concerning proof techniques, 
we first began by considering inductive methods, based 
on an axiomatic approach. Though some work has been 
done in that direction [14], it soon appeared that methods 
based on state enumeration (“model checking”) could be 
more efficient. Several improvements of the method in the 
particular case of LUSTRE are described in the paper. 
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