
A TUTORIAL OF LUSTRE
Nicolas HALBWACHS, Pascal RAYMONDJanuary 24, 2002

Contents1 Basic language 21.1 Simple control devices . 21.2 Numerical examples . 81.3 Tuples . 112 Clocks 113 Arrays and recursive nodes 133.1 Warning . 133.2 A binary adder . 133.3 The exclusive node . 163.4 The delay node with arrays . 173.5 The delay node with recursion . 173.6 Two recursive networks . 184 Veri�cation 194.1 Program comparison . 194.2 Proof of safety properties . 204.3 Numerical values . 21Bibliography 23
This document is an introduction to the language Lustre V4 and its as-sociated tools. We will not give a systematic presentation of the language, buta complete bibliography is added. The basic references are [8, 12]. The mostrecent features (arrays, recursive nodes) are described in [32].

1

EDGEYX
Figure 1: A Node

1 Basic languageA Lustre program or subprogram is called a node. Lustre is a functionallanguage operating on streams. For the moment, let us consider that a streamis a �nite or in�nite sequence of values. All the values of a stream are of the sametype, which is called the type of the stream. A program has a cyclic behavior.At the nth execution cycle of the program, all the involved streams take theirnth value. A node de�nes one or several output parameters as functions of oneor several input parameters. All these parameters are streams.1.1 Simple control devices1.1.1 The raising edge nodeAs a very �rst example, let us consider a Boolean streamX = (x1; x2; : : : ; xn; : : :).We want to de�ne another Boolean stream Y = (y1; y2; : : : ; yn; : : :) correspond-ing to the rising edge of X, i.e., such that yn+1 is true if and only if xn is falseand xn+1 is true (X raised from false to true at cycle n+ 1). The correspondingnode (let us call it EDGE) will take X as an input parameter and return Y asan output parameter The interface of the node is the following:node EDGE (X: bool) returns (Y: bool);The de�nition of the output Y is given by a single equation:Y = X and not pre(X);This equation de�nes \Y" (its left-hand side) to be always equal to the right-hand side expression \X and not pre(X)". This expression involves the inputparameter X and three operators:� \and" and \not" are usual Boolean operators, extended to operate point-wise on streams: if A = (a1; a2; : : : ; an; : : :) and B = (b1; b2; : : : ; bn; : : :) aretwo Boolean streams, then A and B is the Boolean stream (a1 ^ b1; a2 ^ b2; : : : ; an ^ bn; : : :).Most usual operators are available in that way, and are called \data-operators". Here is the list of built-in data operators in Lustre-V41:1Most of them have obvious meanings. \xor" is the exclusive \or", \#" takes any numberof Boolean parameters, and returns true at cycle n if and only if at most one of its parametersis true. \int" and \real" are explicit conversion operators.
2

Figure 2: Simulating a node
and or xor not #if...then...else... + -* / div mod =<> < <= > >=int real� The \pre" (for \previous") operator allows to refer at cycle n to the valueof a stream at cycle n�1: if A = (a1; a2; : : : ; an; : : :) is a stream, pre(A) isthe stream (nil; a1; a2; : : : ; an�1; : : :). Its �rst value is the unde�ned valuenil, and for any n > 1, its nth value is the (n� 1)th value of A.� The \->" (followed by) operator allows to initialize streams. If A =(a1; a2; : : : ; an; : : :) and B = (b1; b2; : : : ; bn; : : :) are two streams of the sametype, then \A->B" is the stream (a1; b2; : : : ; bn; : : :), equal to A at the �rstinstant, and then forever equal to B. In particular, this operator allows tomask the \nil" value introduced by the pre operator.As a consequence, if X= (x1; x2; : : : ; xn; : : :) the expression \X and not pre(X)"represents the stream (nil; x2 ^ :x1; : : : ; xn ^ :xn�1; : : :). In order to avoid the\nil" value, let us use the -> operator, and the built-in constant false 2.The complete de�nition of the node EDGE is the following:node EDGE (X: bool) returns (Y: bool);letY = false -> X and not pre(X);tel1.1.2 Simulating a nodeLet us write the node EDGE in a �le F.lus and call the graphical simulator,giving the name of the �le and the name of the node representing the mainprogram (Fig. 2):2A lustre constant denotes an in�nite stream of a same value. Pre-de�ned constants arefalse, true, and immediate arithmetic values. For instance, the expression 3.14 denotes(3:14; 3:14; 3:14; :::).

3

luciole F.lus EDGEThe simulator opens a window containing:� a label corresponding to the output of the node Y; this widget behaves asa \lamp", it is highligted when the output is \true".� a widget corresponding to the input of the node X. This widget behavesdi�erently depending on the mode: in the auto-step mode, inputs aresupposed to be exclusive, so activating a input button provoques a singlereaction of the program; in the compose mode, inputs behaves as \check-buttons", so several inputs can be selected, without provoquing a reaction.Whatever is the mode, the step button provoques a single reaction. Themenu \Clocks" allows the user to switch between the \auto-step" and the\compose" mode.In this example, the mode is not very important, since there is only oneinput. Try, for instance, the auto-step mode:� pressing X provoques a reaction with X = true� pressing STEP provoques a reaction with X = false1.1.3 Compiling a nodeThe graphical simulator is based on an interpretor of Lustre programs. Youcan also simulate the program by compiling it into a C program. Let us callthe compiler giving the name of the �le and the name of the main node:lustre F.lus EDGEWe get a �le EDGE.oc which contains the object code written in the Esterel-Lustre common format oc [23]. We can simulate this program using the Luxsimulator, by typing:lux EDGE.ocThe oc code is translated into an instrumented program EDGE.c. A standardmain loop program is also generated in a �le EDGE loop.c. Then the two �lesare compiled and linked into an executable program EDGE. Calling EDGE we get##### STEP 1 ##################X (true=1/false=0) ?asking for a �rst value of X, of type bool. We type \1", and get##### STEP 1 ##################X (true=1/false=0) ? 1Y = false##### STEP 2 ##################X (true=1/false=0) ? 1
4

The �rst value of Y is false, and a new value is wanted for X. We can thencontinue the simulation, and terminate it by \^C".Let us have a look at the C code, in the �le EDGE.c. The �le contains somedeclarations, and the procedure EDGE step, shown below, which implements thegenerated automaton. The procedure selects the code to be executed accordingto the value of the context variable \ctx->current state", which is initializedto 0.void EDGE_step(EDGE_ctx* ctx){switch(ctx->current_state){case 0:ctx->_V2 = _false;EDGE_O_Y(ctx->client_data, ctx->_V2);if(ctx->_V1){ctx->current_state = 1; break;} else {ctx->current_state = 2; break;}break;case 1:ctx->_V2 = _false;EDGE_O_Y(ctx->client_data, ctx->_V2);if(ctx->_V1){ctx->current_state = 1; break;} else {ctx->current_state = 2; break;}break;case 2:if(ctx->_V1){ctx->_V2 = _true;EDGE_O_Y(ctx->client_data, ctx->_V2);ctx->current_state = 1; break;} else {ctx->_V2 = _false;EDGE_O_Y(ctx->client_data, ctx->_V2);ctx->current_state = 2; break;}break;} /* END SWITCH */EDGE_reset_input(ctx);}
1.1.4 Minimizing an automatonThe automaton corresponding to EDGE.oc is drawn in Fig. 3. The program isin the state 0 at the initial instant. In this state, the output is false whatever5

0
2 :x/:y

:x/:y
x/y

x/:y 1
x/:y :x/:y

Figure 3: The automaton of the node EDGE
be the input, but, depending on the value of X, the next state will be either 1(corresponding to pre X = false) or 2 (corresponding to pre X = true). Thestate 1 behaves like the initial state. In the state 2, the next state is computedlike in the other ones, but the value of Y depends on the the value of X. One cannote that this automaton is not \minimal" since states 0 and 1 are equivalent.There is two ways to obtain a minimal automaton:� The oc code can be minimized by calling:ocmin EDGE.oc -vThe -v option sets the verbose mode, and we get:Loading automaton ...=> done : 3 statesMinimizing (algo no 1) ...=> done : 3 => 2 (2 steps)That means that the automaton was not minimal, and a minimal one,with only two states, was written in the �le EDGE min.oc.� The Lustre compiler can directly produce a minimal automaton usingthe -demand option3:lustre F.lus EDGE -demand -vWe get:DONE => 2 states 4 transitions3Two algorithms for the construction of automata are implemented in the compiler. The�rst one is called \data driven" (the default one), and the result is in general non minimal.The second is called \demand driven", it takes more time, and the result is minimal.

6

1.1.5 Re-using nodesOnce a node has been de�ned, it can be called from another node, using it asa new operator. For instance, let us de�ne another node, computing the fallingedge of its input parameter:node FALLING_EDGE (X: bool) returns (Y: bool);letY = EDGE(not X);telWe can add this node declaration to our �le F.lus, call the compiler withFALLING EDGE as the main node:lustre F.lus FALLING_EDGEand simulate the resulting code:lux FALLING_EDGE.oc1.1.6 The switch nodeThe EDGE node is of very common usage for \deriving" a Boolean stream, i.e.,transforming a \level" into a \signal". The converse operation is also veryuseful, it will be our second example: We want to implement a \switch", takingas input two signals \set" and \reset" and an initial value \initial", andreturning a Boolean \level". Any occurrence of \set" rises the \level" totrue, any occurrence of \reset" resets it to false. When neither \set" nor\reset" occurs, the \level" does not change. \initial" de�nes the initialvalue of \level". In Lustre, a signal is usually represented by a Booleanstream, whose value is true whenever the signal occurs. Below is a �rst versionof the program:node SWITCH1 (set, reset, initial: bool) returns (level: bool);letlevel = initial -> if set then trueelse if reset then falseelse pre(level);telwhich speci�es that the \level" is initially equal to \initial", and then for-ever,� if \set" occurs, then it becomes true� if \set" does not occur but \reset" does, then \level" becomes false� if neither \set" nor \reset" occur, \level" keeps its previous value(notice that \level" is recursively de�ned).However, this program has a
aw: It cannot be used as a \one-button" switch,whose level changes whenever its unique button is pushed. Let \change" be aBoolean stream representing a signal, then the call7

21

0

:set/:level:reset/level
reset/:level
set/level

:initial/:levelinitial/level

Figure 4: The automaton of the node SWITCH
state = SWITCH1(change,change,true);will compute the always true stream: \state" is initialized to true, and neverchanges because the \set" formal parameter has been given priority (Try it).To get a node that can be used both as a \two-buttons" and a \one-button"switch, we have to make the program a bit more complex: the \set" signalmust be considered only when the switch is turned o�. We get the followingprogram:node SWITCH (set, reset, initial: bool) returns (level: bool);letlevel = initial -> if set and not pre(level) then trueelse if reset then falseelse pre(level);telCompiling this node, we get the automaton drawn in Fig. 4. The nodesSWITCH and SWITCH1 behave the same as long as \set" and \reset"1.2 Numerical examples1.2.1 The counter nodeIt is very easy in Lustre to write a recursive sequence. For instance the de�ni-tion C = 0 -> pre C + 1; de�nes the sequence of natural. Let us complicatethis de�nition to build a integer sequence, whose value is, at each instant, thenumber of \true" occurences in a boolean
ow X:C = 0 -> if X then (pre C + 1) else (pre C);This de�nition does not meet exactly the speci�cation, since it ignores the initialvalue of X. A well initialized counter of X occurences is for instance:

8

PC = 0 -> pre C;C = if X then (PC + 1) else PC;Let us complicate this example to obtain a general counter with additionnalinputs:� an integer init which is the initial value of the counter.� an integer incr to add to counter each time X is true,� a boolean reset which sets the counter to the value of init, whatever isthe value of X.The complete de�nition of the counter is:node COUNTER(init, incr : int; X, reset : bool) returns (C : int);var PC : int;letPC = init -> pre C;C = if reset then initelse if X then (PC + incr)else PC;telThis node can be used to de�ne the sequence of odd integers:odds = COUNTER(0, 2, true, true->false);Or the integers modulo 10:reset = true -> pre mod10 = 9;mod10 = COUNTER(0, 1, true, reset);1.2.2 The integrator nodeThis example involves real values. Let f be a real function of time, that we wantto integrate using the trapezoid method. The program receives two real-valuedstreams F and STEP, such thatFn = f(xn) and xn+1 = xn + STEPn+1It computes a real-valued stream Y, such thatYn+1 = Yn + (Fn + Fn+1) � STEPn+1=2The initial value of Y is also an input parameter:node integrator(F,STEP,init: real) returns (Y: real);letY = init -> pre(Y) + ((F + pre(F))*STEP)/2.0;telTry this program on the example shown in Fig. 5.9

-1 2 22
0 1 11-121 0FSTEPinit

Y 1.5 3.5 3 630
Figure 5: Use of the integrator

1.2.3 The sinus/cosinus nodeOne can try to loop two such integrators to compute the functions sin(!t) andcos(!t) in a simple-minded way:node sincos(omega:real) returns (sin, cos: real);letsin = omega * integrator(cos, 0.1, 0.0);cos = 1 - omega * integrator(sin, 0.1, 0.0);telCalled on this program, the compiler complains that there is a deadlock. As amatter of fact, the variables sin and cos instantaneously depend on each other,i.e., the computation of the nth value of sin needs the nth value of cos, andconversely. We have to cut the dependence loop, introducing a \pre" operator:node sincos(omega:real) returns (sin, cos: real);letsin = omega * integrator(cos, 0.1, 0.0);cos = 1 - omega * integrator(0.0 -> pre(sin), 0.1, 0.0);telTry this program, and observe the divergence (with omega = 1:0 for instance)!
10

1.3 Tuples1.3.1 Nodes with several outputsThe node sincos 1.2.3 does not work very well, but it is interesting, becauseit returns more than one output. In order to call such nodes, Lustre syntaxallows to write tuples de�nition. Let s, c and omega be tree real variables,(s, c) = sincos(omega) is a correct Lustre equation de�ning s and c tobe respectively the �rst and the second result of the call. The following nodecompute how the node sincos (badly) meets the Pythagore theorem:node pythagore(omega : real) returns (one : real);var s, c : real;let(s, c) = sincos(omega);one = s*s + c*c;tel1.3.2 Tuple expressionsThe left hand side of a tuple de�nition consists of a list of variables. The righthand side of a tuple de�nition must be an expression denoting a tuple of
ows.A tuple expression is either:� the call of a node returning more than one output,� an explicit tuple of expressions (for instance (true->false , 1.0) is atuple composed by a boolean
ow and a real
ow),� a \if ... then ... else" whose two last operands are tuples. The\if" operator is the only built-in operator which is polymorphic.Tuples can be used to \factorise" the de�nitions, like in the following nodeminmax:node minmax(x, y : int) return (min, max : int);let(min, max) = if (x < y) then (x, y) else (y, x);tel
2 ClocksLet us consider the following control device: it receives a signal \set", andreturns a Boolean \level" that must be true during \delay" cycles after eachreception of \set". The program is quite simple:node STABLE (set: bool; delay: int) returns (level: bool);var count: int;letlevel = (count>0);

11

count = if set then delayelse if false->pre(level) then pre(count)-1else 0;telNow, suppose we want the \level" to be high during \delay" seconds, insteadof \delay" cycles. The second will be provided as a Boolean input \second",true whenever a second elapses. Of course, we can write a new program whichfreezes the counter whenever the \second" is not there:node TIME_STABLE1(set,second:bool; delay:int) returns (level:bool);var count: int;letlevel = (count>0);count = if set then delayelse if second thenif false->pre(level) then pre(count)-1else 0else (0->pre(count));telWe can also reuse our node \STABLE", calling it at a suitable clock, by �lteringits input parameters. It consists of changing the execution cycle of the node,activating it only at some cycles of the calling program. For the delay becounted in seconds, the node \STABLE" must be activated only when either a\set" signal or a \second" signal occurs. Moreover, it must be activated at theinitial instant, for initialization purposes. So the activation clock is:ck = true -> set or second;Now a call \STABLE((set,delay) when ck)" will feed an instance of\STABLE" with rare�ed inputs, as shown by the following table:
(set,delay) (s1; d1) (s2; d2) (s3; d3) (s4; d4) (s5; d5) (s6; d6) (s7; d7)ck true false false true true false true(set,delay) when ck (s1; d1) (s4; d4) (s5; d5) (s7; d7)According to the data-
ow philosophy of the language, this instance of \STABLE"will have a cycle only when getting input values, i.e., when ck is true. As aconsequence, the inside counter will have the desired behavior, but the outputwill also be delivered at this rare�ed rate. In order to use the result, we have�rst to project it onto the clock of the calling program. The resulting node isnode TIME_STABLE(set, second: bool; delay: int) returns (level: bool);var ck: bool;letlevel = current(STABLE((set,delay) when ck));ck = true -> set or second;tel 12

Here is a simulation of this node:
(set,delay) (tt,2) (�,2) (�,2) (�,2) (�,2) (�,2) (�,2) (tt,2) (�,2)(second) � � tt � tt � � � ttck tt � tt � tt � � tt tt(set,delay)when ck (tt,2) (�,2) (�,2) (tt,2) (�,2)STABLE((set,delay)when ck) tt tt � tt ttcurrent(STABLE(set,delay)when ck)) tt tt tt tt � � � tt tt

3 Arrays and recursive nodes3.1 WarningArrays and recursive nodes have been introduced in Lustre as a syntacticfacility. They do not increase the descriptive power of the language, and theuser must be aware of the fact that the compiler Lustre-V4 expands arraysinto as many variables as they have elements, and unfolds recursive nodes intoregular node instanciations4. As a consequence, the array dimensions must beknown at compile-time, and so do the parameters controling the recursivity.A compile-time expression is either an explicit constant (e.g., true, 45) oran expression made of explicit constants and formal parameters whose actualcounterparts are always explicit constants.3.2 A binary adderAssume we want to describe a binary adder, working on two 4-bits integers Aand B. Using the basic language, we will have 8 input parameters (one for eachbit), and we could write (see Fig. 6):node FIRST_ADD4 (a0,a1,a2,a3: bool; b0,b1,b2,b3: bool)returns (s0,s1,s2,s3:bool; carry: bool);var c0,c1,c2,c3: bool;let(s0,c0) = ADD1(a0,b0,false);(s1,c1) = ADD1(a1,b1,c0);(s2,c2) = ADD1(a2,b2,c1);(s3,c3) = ADD1(a3,b3,c2);carry = c3;tel4In particular, if the recursivity does not stop, neither does the compilation of the program!
13

c3c2c1c00
s3s2s1s0

ADD1ADD1ADD1ADD1
carry

b3a3b2a2b1a1b0a0

Figure 6: 4-bits adder
where the 1-bit adder ADD takes as input two bits and an input carry, andreturns their sum and an output carry:node ADD1(a,b,c_i: bool) returns (s,c_o: bool);lets = a xor b xor c_i;c_o = (a and b) or (b and c_i) or (c_i and a);telInstead, we can consider A and B as arrays, made of 4 Booleans. \bool^4"denotes the type of \arrays of 4 Booleans", indexed from 0 to 3 (the \^" operatorhere refers to Cartesian power). The adder node becomes (see Fig. 7):node ADD4 (A,B: bool^4) returns (S: bool^4; carry: bool);var C: bool^4;let(S[0],C[0]) = ADD1(A[0],B[0],false);(S[1..3],C[1..3]) = ADD1(A[1..3],B[1..3],C[0..2]);carry = C[3];telThe �rst equation de�nes the �rst components of S and C using the standardindexation notation (notice that arrays can only be indexed by compile-timeexpressions). The second equation is less standard, and makes use of slicingand polymorphism:� the notation \S[1..3]" refers to the \slice" of the array S, made of ele-ments 1 to 3 of S, i.e., the array X of type bool^3 such thatX[0] = S[1] , X[1] = S[2] , X[2] = S[3]� From its declaration, the node ADD1 takes three Booleans as input param-eters, and returns 2 Booleans. Here, it is called with three Boolean arrays(of the same size) as input parameters, and returns 2 Boolean arrays (of

14

false ADD1ADD1

BA

S
C

carry
Figure 7: 4-bits adder, with arrays

the same size as the input arrays), obtained by applying ADD1 componen-twise to the input arrays. Such a polymorphic extension is available forany operator of the language.So, the equation \(S[1..3],C[1..3]) = ADD1(A[1..3],B[1..3],C[0..2])"stands for(S[1],C[1]) = ADD1(A[1],B[1],C[0]);(S[2],C[2]) = ADD1(A[2],B[2],C[1]);(S[3],C[3]) = ADD1(A[3],B[3],C[2]);The expansion of this node is the �rst task of the compiler. It consists, moreor less, in translating ADD4 into FIRST ADD4, by replacing any array element bya variable de�ned by its own equation.Now, we can also de�ne a general binary adder, taking the size of the arraysas a parameter:node ADD (const n: int; A,B: bool^n)returns (S: bool^n; carry: bool);var C: bool^n;let(S[0],C[0]) = ADD1(A[0],B[0],false);(S[1..n-1],C[1..n-1]) = ADD1(A[1..n-1],B[1..n-1],C[0..n-2]);carry = C[n-1];tel
15

Such a node cannot be compiled alone. As a matter of fact, the compiler needsan actual value to be given to the parameter n, in order to be able to expandthe program. A main node must be written, for instance:node MAIN_ADD (A,B: bool^4) returns (S: bool^4);var carry: bool;let(S, carry) = ADD(4,A,B);telor, better, de�ning the size as a constant:const size = 4;node MAIN_ADD (A,B: bool^size) returns (S: bool^size);var carry: bool;let(S, carry) = ADD(size,A,B);tel3.3 The exclusive nodeLet us show another example making use of arrays: In x4.2 we will need anextension of the \#" (exclusion) operator to arrays, i.e., an operator taking aBoolean array X as input, and returning \true" if and only if at most one of X'selement is true. We use two auxiliary Boolean arrays: An array EX whose ithelement is true if there is at most one true element in X[0..i], and an arrayOR to compute the cumulative disjunction of X's elements:EX[i] = jfj � i s.t. X[j] = truegj � 1OR[i] = _j�i X[j]In other words:EX[i+1] = EX[i] ^ :(OR[i] ^ X[i+1]) with EX[0] = trueOR[i+1] = OR[i] _ X[i+1] with OR[0] = X[0]One can write the corresponding node as follows:node exclusive (const n: int; X: bool^n) returns (exclusive: bool);var EX, OR: bool^n;letexclusive = EX[n-1];EX = [true] | (EX[0..n-2] and not(OR[0..n-2] and X[1..n-1]));OR = [X[0]] | (OR[0..n-2] or X[1..n-1]);telIn this program we used two new operators on arrays:� The constructor \[.]": If X:�^m and Y:�^n are two arrays, \X|Y" is theirconcatenation, of type �^(m+n).
16

� The concatenation \|": If E0, E1, ..., En are n expressions of the sametype � , then \[E0, E1, ...,En]" is the array of type �^(n+1) whose ithelement is Ei (i = 0 : : : n).In the equation de�ning \EX", the Boolean \true" has been converted intothe array of one Boolean \[true]" to be given to the concatenation operator.3.4 The delay node with arraysAs a last example with arrays, we will build a general \delay" operator, takingas (static) parameter an integer d (d � 0) and a Boolean stream X, and returninga \delayed" version of X, i.e., a Boolean stream Y such that yn = xn�d, for anyn > d. Let us assume yn = false, for n � d (initialization). We use an auxiliaryarray A of type bool^d, such that A[i]n=Xn�i. The resulting node is:node DELAY (const d: int; X: bool) returns (Y: bool);var A: bool^(d+1);letA[0] = X;A[1..d] = (false^(d)) -> pre(A[0..d-1]);Y = A[d];telThe expression \false^(d)" denotes an array of size d, all the elements of whichare false. It is the initial value of the slice A[1..d]. Notice the polymorphicextensions of the operators -> and pre. To compile this program, we have againto call it from a main node:node MAIN_DELAY (A: bool) returns (A_delayed: bool);letA_delayed = DELAY(10, A);telHowever, compiling such a program into an automaton is not a good idea (Tryit): The call \DELAY(10,A)" creates 10 Boolean memories (instances of a preoperator) wich will involve 210 states in the automaton. Instead, one can callthe compiler with the option \-0",lustre F.lus MAIN_DELAY -0which produces a single-loop code: The resulting automaton has only one stateand one (complicated) transition.3.5 The delay node with recursionAnother solution for the delay operator is to write a recursive node:node REC_DELAY (const d: int; X: bool) returns (Y: bool)letY = with d=0 then Xelse false -> pre(REC_DELAY(d-1,X));tel 17

OR

A

(b)(a)
OR

A

Figure 8: Two nets for array disjunction
The recursivity is controlled by a static conditional operator \with...then...else...",which is executed at compile-time to unfold the recursivity: The call \REC DELAY(3,X)"will be expanded into something like:Y_3 = false -> pre(Y_2);Y_2 = false -> pre(Y_1);Y_1 = false -> pre(Y_0);Y_0 = X;3.6 Two recursive networksRecursive nodes can be used to describe complex regular networks. For instance,if we want to compute the disjunction of all the elements of a Boolean array,we can use a linear network (Fig. 8.a):node LIN_OR (const n: int; A: bool^n) returns (OR: bool);letOR = with n=1 then A[0]else A[0] or LIN_OR(n-1,A[1..n-1]);telor a tree structure (Fig. 8.b):node TREE_OR (const n: int; A: bool^n) returns (OR: bool);letOR = with n=1 then A[0]else TREE_OR(n div 2, A[0..(n div 2 -1)]) orTREE_OR((n+1)div 2, A[n div 2 .. n-1]);tel

18

4 Veri�cation4.1 Program comparison4.1.1 Building a comparison nodeThe simplest case of program veri�cation is the comparison of two purelyBoolean programs under some assumption about their environment. For in-stance, in x1.1.6 we built a �rst version of the switch, named SWITCH1, and wenoticed that it worked properly only if its input parameters \set" and \reset"are never simultaneously true. Then we wrote the more general version SWITCH.Now, let us verify that, when \set" and \reset" are never simultaneously true,the two programs behave the same. For that, we build a veri�cation programnode verif_switch(set, reset, initial: bool) returns (ok: bool);var level, level1: bool;letlevel = SWITCH (set, reset, initial);level1 = SWITCH1 (set, reset, initial);ok = (level = level1);assert not(set and reset);telwhich consists of� the parallel activation of the two nodes, fed with the same input param-eters;� the de�nition of a unique Boolean output, \ok", comparing the outputsof the nodes� an assertion that the input parameters \set" and \reset" are neversimultaneously true4.1.2 Verifying with the Lustre compilerNow, let us compile this program, �rst using the \data-driven" code generator:lustre F.lus verif_switch -data -vThis generator produces the automaton in a straightforward, enumerative,way. The result is drawn in Fig. 9.a. On this automaton (as in the C codeverif switch.c) it is clear that the output \ok" is always true, and thus thatthe results of the two nodes are always equal, whatever be the input parameterssatisfying the assertion. The result is even more obvious if we use the code gen-erator with the \-demand" option, which produces a minimal automaton [5, 19].The result is the one-state automaton shown in Fig. 9.b.

19

4.1.3 Verifying with the Lesar toolFor more complex veri�cation problems, the veri�cation tool Lesar is moree�cient than the compiler. It only traverses the automaton without generatingit explicitly. Several algorithms are available:� lesar F.lus verif switch -enum performs a traversal of the automa-ton using an enumerative strategy similar to the \data-driven" generationin the compiler; it is the default algorithm.� lesar F.lus verif switch -forward computes the set of reachablesstates with a symbolic methods.� lesar F.lus verif switch -backward computes (in a symbolic way)the set of states violating the property.One can also check that, without the assertion, the veri�cation fails: Theminimal automaton has 4 states, and assigns false to \ok" whenever \set" and\reset" are both true (except in the initial state). The veri�er also complains,and when called with the -diag option, it also outputs a (shortest) path to atransition where \ok" is false.4.2 Proof of safety propertiesLet us consider an extremely simple mutual exclusion algorithm: n processesp0; p1; : : : ; pn�1 compete for an exclusive resource. The arbiter receives a Booleanarray REQ, where REQ[i] is true whenever the process pi requests the resource| and returns an array GRANT, such that GRANT[i] is true whenever the re-source is granted to pi. The arbiter proceeds by letting a token travel aroundthe processes. When the process which has the token is requesting the resource,it takes the resource and keeps the token until it releases the resource.Let us describe the behavior of the arbitration part attached to one pro-cess: it receives the requests and the token as Boolean inputs, and returns thegranting and the passed token as Boolean outputs. The token is passed either
initial/ok:initial/ok

set/ok
reset/ok :reset/ok:set/ok

(a)
/ok

(b)
Figure 9: Veri�cation automata

20

if it was received at the previous step, and the process is not requesting theresource, or if the process stops using the resource. The resource is grantedto the process if it requests it when receiving the token, and remains grantedto it until it stops requesting (remember the de�nition of nodes SWITCH andFALLING EDGE, x1.1.6):node process(request,token:bool) returns (grant,new_token:bool);letgrant = SWITCH(token and request,not request,token and request);new_token = false ->pre(token and not request) or FALLING_EDGE(grant);telThe whole arbiter is made of a ring of such processes, one of them owning thetoken at the initial instant:node mutex(const n: int; REQ: bool^n) returns (GRANT: bool^n);var TOK, NTOK: bool^n;let(GRANT, NTOK) = process(REQ, TOK);TOK[0] = true -> pre(NTOK[n-1]);TOK[1..n-1] = false^(n-1) -> pre(NTOK[0..n-2]);telNow, let us verify that the mutual exclusion is satis�ed, i.e, that at most oneelement of GRANT is true. We write the following veri�cation program, usingthe node \exclusive" we wrote in x3.3:const nb_proc = 4;node verif_mutex(REQ: bool^nb_proc) returns (ok: bool);var GRANT: bool^nb_proc;letGRANT = mutex(nb_proc, REQ);ok = exclusive(nb_proc, GRANT);telTry the compiler and the veri�er on this program for various values of\nb proc". On this example, the best way to verify the program is to usethe \forward symbolic" algorithm.4.3 Numerical valuesLet us consider a program which is supposed to mesure the \speed" of a train.This program has two inputs: the
ow \second" comes from some real-timeclock, the
ow \beacon" each time the train detect a beacon along the way.Normally, the train is supposed to detect a beacon each second. Let diff bethe di�erence between the number of beacons and the number of seconds; if diffis positive, the train is early, otherwise it is late. In order to avoid oscillation,the program has an hysteresis mecanism: the train becames early, when diff
21

time

di�

-10

10
early

late

Figure 10: The hysteresis mecanism
becomes greater than 10, and it remains early while diff stays greater than0. Conversely, the train becames late when diff becomes less than -10, andremains late while diff stays less than 0 (Fig. 10).The variable diff can be de�ned using the general counter1.2.1: the counteris modi�ed each time either second or beacon are true, but the incrementdynamically depends on those inputs (it can be 1, -1 or 0):node speed(beacon, second : bool) returns (late, early : bool);vardiff, incr : int;letincr = if (beacon and not second) then 1else if(second and not beacon) then -1else 0;diff = COUNTER(0, incr, (beacon or second), false);early = false -> if pre early then (diff > 0)else (diff >= 10);late = false -> if pre late then (diff < 0)else (diff <= -10);telA simple property (expected) for this program is that the train cannot be bothlate and early. The corresponding veri�cation node is, for instance:node verif_speed(beacon, second : bool) returns (ok : bool);22

var late, early : bool;let(late, early) = speed(beacon, second);ok = #(late, early);telThe veri�cation of this program fails wathever the employed method. Us-ing lesar F.lus verif speed -v -diag you get a (complicated) diagnosisinvolving linear constraints. With a little patience, one can �nd that this di-agnosis only shows unrealisable constraints on numerical values (for instance(x <= �10) _ (x >= 10)). This is quite disapointing, but just remenber thatLesar is a Boolean tool, and does not know anything about numerical prop-erties. A special algorithm has be added into Lesar in order to treat thisproblem:lesar F.lus verif_speed -polyThis algorithm is based on the enumerative one, but it use a polyedra library tocheck whether each linear constraints appearing in the automaton is realisableor not.Another property is that the train cannot pass directly form early to late:node verif_speed2(beacon, second : bool) returns (ok : bool);var late, early : bool;let(late, early) = speed(beacon, second);ok = true -> not late and pre early;telUnfortunatly, this property cannot be veri�ed, even with the -poly option.This property involves the dynamic behavior of numerical variables, and thisproblem is much more complicated than the previous one (in fact this problemis undecidable in general). This example shows the limits of the Lesar tool!
References[1] J-L. Bergerand. Lustre: un langage d�eclaratif pour le temps r�eel. Thesis,Institut National Polytechnique de Grenoble, 1986.[2] J-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E. Pilaud. Outlineof a real-time data-
ow language. In 1985 Real-Time Symposium, SanDiego, December 1985.[3] J-L. Bergerand, P. Caspi, N. Halbwachs, and J. Plaice. Automatic con-trol systems programming using a real-time declarative language. InIFAC/IFIP Symp. 'SOCOCO 86, Graz, May 1986.[4] B. Berkane. V�eri�cation des syst�emes mat�eriels num�eriques s�equentielssynchrones : Application du langage Lustre et de l'outil de v�eri�cationLesar. Thesis, Institut Polytechnique de Grenoble, October 1992.23

[5] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-tel. Minimal state graph generation. Science of Computer Programming,18:247{269, 1992.[6] C. Buors. S�emantique op�erationnelle du langage Lustre. DEA Report,University of Grenoble, June 1986.[7] P. Caspi. Clocks in data
ow languages. Theoretical Computer Science,94:125{140, 1992.[8] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarativelanguage for programming synchronous systems. In 14th ACM Symposiumon Principles of Programming Languages, POPL'87, Munchen, January1987.[9] A. Girault and P. Caspi. An algorithm for distributing a �nite transitionsystem on a shared/distributed memory system. In PARLE'92, Paris, July1992.[10] A-C. Glory. V�eri�cation de propri�et�es de programmes
ots de donn�ees syn-chrones. Thesis, Universit�e Joseph Fourier, Grenoble, France, December1989.[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. Programmationet v�eri�cation des syst�emes r�eactifs �a l'aide du langage
ot de donn�eessynchrone Lustre. Technique et Science Informatique, 10(2), 1991.[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronousdata
ow programming language Lustre. Proceedings of the IEEE,79(9):1305{1320, September 1991.[13] N. Halbwachs and F. Lagnier. S�emantique statique du langage lustre -version 3. Technical Report SPECTRE L15, IMAG, Grenoble, February1991.[14] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regu-lar networks of processes by modular model checking. Acta Informatica,29(6/7):523{543, 1992.[15] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by means of the synchronous data-
ow programming lan-guage Lustre. IEEE Transactions on Software Engineering, Special Issueon the Speci�cation and Analysis of Real-Time Systems, September 1992.[16] N. Halbwachs, A. Lonchampt, and D. Pilaud. Describing and designingcircuits by means of a synchronous declarative language. In IFIP Work-ing Conference \From HDL Descriptions To Guaranteed Correct CircuitDesigns", Grenoble, September 1986.[17] N. Halbwachs and D. Pilaud. Use of a real-time declarative language forsystolic array design and simulation. In International Workshop on SystolicArrays, Oxford, July 1986. 24

[18] N. Halbwachs, D. Pilaud, F. Ouabdesselam, and A.C. Glory. Specifying,programming and verifying real-time systems, using a synchronous declar-ative language. In Workshop on Automatic Veri�cation Methods for FiniteState Systems, Grenoble. LNCS 407, Springer Verlag, June 1989.[19] N. Halbwachs, P. Raymond, and C. Ratel. Generating e�cient code fromdata-
ow programs. In Third International Symposium on ProgrammingLanguage Implementation and Logic Programming, Passau (Germany),August 1991. LNCS 528, Springer Verlag.[20] D. Pilaud and N. Halbwachs. From a synchronous declarative language toa temporal logic dealing with multiform time. In M. Joseph, editor, Sym-posium on Formal Techniques in Real-Time and Fault-Tolerant Systems,Warwick, September 1988. LNCS 331, Springer Verlag.[21] J. A. Plaice. S�emantique et compilation de Lustre, un langage d�eclaratifsynchrone. Thesis, Institut National Polytechnique de Grenoble, 1988.[22] J. A. Plaice and N. Halbwachs. Lustre-v2 user's guide and referencemanual. Technical Report SPECTRE L2, IMAG, Grenoble, October 1987.[23] J. A. Plaice and J-B. Saint. The Lustre-Esterel portable format. Un-published report, INRIA, Sophia Antipolis, 1987.[24] C. Ratel. Etude de la conformit�e d'un programme Lustre et de ses sp�eci�-cations en logique temporelle arborescente. DEA Report, Institut NationalPolytechnique de Grenoble, June 1988.[25] C. Ratel. D�e�nition et r�ealisation d'un outil de v�eri�cation formelle deprogrammes Lustre: Le syst�eme Lesar. Thesis, Universit�e Joseph Fourier,Grenoble, June 1992.[26] C. Ratel, N. Halbwachs, and P. Raymond. Programming and verifyingcritical systems by means of the synchronous data-
ow programming lan-guage Lustre. In ACM-SIGSOFT'91 Conference on Software for CriticalSystems, New Orleans, December 1991.[27] P. Raymond. Compilation s�epar�ee de programmes Lustre. TechnicalReport SPECTRE L5, IMAG, Grenoble, June 1988.[28] P. Raymond. Compilation e�cace d'un langage d�eclaratif synchrone : Leg�en�erateur de code Lustre-v3. Thesis, Institut National Polytechnique deGrenoble, November 1991.[29] F. Rocheteau. Programmation d'un circuit massivement parall�ele �a l'aided'un langage d�eclaratif synchrone. Technical Report SPECTRE L10,IMAG, Grenoble, June 1989.[30] F. Rocheteau. Extension du langage Lustre et application �a la conceptionde circuits: Le langage Lustre-V4 et le syst�eme Pollux. Thesis, InstitutNational Polytechnique de Grenoble, June 1992.
25

[31] F. Rocheteau and N. Halbwachs. Implementing reactive programs on cir-cuits, a hardware implementation of Lustre. In Rex Workshop on Real-Time: Theory in Practice, DePlasmolen (Netherlands), pages 195{208.LNCS 600, Springer Verlag, June 1991.[32] F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware de-sign environment. In P. Quinton and Y. Robert, editors, Conference onAlgorithms and Parallel VLSI Architectures II, Chateau de Bonas, June1991.[33] G. Thuau and B. Berkane. Using the language Lustre for sequential cir-cuit veri�cation. In International Workshop on Designing Correct Circuits,Lingby (Denmark), January 1992.[34] G. Thuau and D. Pilaud. Using the declarative language Lustre forcircuit veri�cation. In Workshop on Designing Correct Circuits, Oxford,September 1990.

26

