CS:4420 Artificial Intelligence Spring 2017

First-Order Logic

Cesare Tinelli

The University of Iowa

Copyright 2004-17, Cesare Tinelli and Stuart Russell ${ }^{a}$

[^0]
Readings

- Chap. 8 of [Russell and Norvig, 2012]

Pros and cons of Propositional Logic

+PL is declarative: pieces of syntax correspond to facts

+ PL allows partial/disjunctive/negated information (unlike most data structures and databases)
+ Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
+ Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: father of, best friend, third inning of, one more than, end of...

Syntax of FOL: Basic elements

Constants KingJohn, 2, UCB,...
Predicates Brother, $>, \ldots$
Functions Sqrt, LeftLegOf,...
Variables $\quad x, y, a, b, \ldots$
Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$
Equality $=$
Quantifiers $\quad \forall \exists$

Atomic sentences

$$
\begin{aligned}
\text { Atomic sentence }= & \text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or } \text { term }_{1}=\text { term }_{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Term }= & {\text { function }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right)} \text { or constant or variable }
\end{aligned}
$$

E.g., Brother(KingJohn, RichardTheLionheart)
$>($ Length $($ LeftLegOf(Richard $))$, Length $($ LeftLegOf(KingJo)

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, \quad S_{1} \wedge S_{2}, \quad S_{1} \vee S_{2}, \quad S_{1} \Rightarrow S_{2}, \quad S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Language of FOL: Grammar

Sentence	$=$ AtomicS \| ComplexS	
AtomicS	$=$ True \mid False \mid RelationSymb (Term, ...) \| Term = Term	
ComplexS	$=$ (Sentence) \mid Sentence Connective Sentence $\mid \neg$ Sentence	
	Quantifier Sentence	
Term	$=$ FunctionSymb (Term, ...) \| ConstantSymb	Variable
Connective	$::=\wedge\|\vee\| \Rightarrow \mid \leftrightarrow$	
Quantifier	\forall Variable $\mid \exists$ Variable	
Variable	$::=a\|b\| \cdots\|x\| y \mid$.	
ConstantSymb	$=A\|B\| \cdots \mid$ John $\|0\| 1\|\cdots\| \pi \mid$	
FunctionSymb	$=F\|G\| \cdots \mid$ Cosine \mid Height \mid FatherOf $\|+\|$.	
RelationSymb	$::=P\|Q\| \cdots \mid$ Red \mid Brother \mid Apple $\|>\| \cdots$	

Truth in first-order logic

Sentences are true with respect to a model and an interpretation Model contains ≥ 1 objects (domain elements) and relations among them
Interpretation specifies referents for
constant symbols \rightarrow objects
predicate symbols \rightarrow relations
function symbols \rightarrow functional relations
An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{1}, \ldots$, term m_{n} are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which
Richard \rightarrow Richard the Lionheart
John \rightarrow the evil King John
Brother \rightarrow the brotherhood relation
Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Semantics of First-Order Logic

(A little) more formally:
An interpretation is a pair (\mathcal{D}, σ) where

- \mathcal{D} is a set of objects, the universe (or domain);
- σ is mapping from variables to objects in \mathcal{D};
- $C^{\mathcal{D}}$ is an object in \mathcal{D} for every constant symbol C;
- $F^{\mathcal{D}}$ is a function from \mathcal{D}^{n} to \mathcal{D} for every function symbol F of arity n;
- $R^{\mathcal{D}}$ is a relation over \mathcal{D}^{n} for every relation symbol R of arity n;

An Interpretation I in the Blocks World

Constant Symbols: $\quad A, B, C, D, E, T$
Function Symbols: Support
Relation Symbols: On, Above, Clear

$A^{H}=A, B^{H}=B, C^{H}=C, D^{H}=D, E^{H}=E, T^{H}=T$

Support ${ }^{H}=\{\langle A, T\rangle,\langle B, A\rangle,\langle C, B\rangle,\langle D, C\rangle,\langle E, D\rangle\}$
$O n^{H}=\{\langle A, T\rangle,\langle B, A\rangle,\langle C, B\rangle,\langle D, C\rangle,\langle E, D\rangle\}$
Above ${ }^{H}=\{\langle E, D\rangle,\langle D, C\rangle, \ldots\}$
Clear $^{H}=\{\langle E\rangle\}$

Semantics of First-Order Logic

Let (\mathcal{D}, σ) be an interpretation and E an expression of FOL. We write $\llbracket E \rrbracket_{\sigma}^{\mathcal{D}}$ to denote the meaning of E in the domain \mathcal{D} under the variable assignment σ.

The meaning $\llbracket t \rrbracket_{\sigma}^{\mathcal{D}}$ of a term t is an object of \mathcal{D}. It is inductively defined as follows.

$$
\begin{array}{lll}
\llbracket x \rrbracket_{\sigma}^{\mathcal{D}} & :=\sigma(x) & \text { for all variables } x \\
\llbracket C \rrbracket_{\sigma}^{\mathcal{D}} & :=C^{\mathcal{D}} & \text { for all constant symbols } C \\
\llbracket F\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\sigma}^{\mathcal{D}} & :=F^{\mathcal{D}}\left(\llbracket t_{1} \rrbracket_{\sigma}^{\mathcal{D}}, \ldots, \llbracket t_{n} \rrbracket_{\sigma}^{\mathcal{D}}\right) & \text { for all function symbols } F \\
& & \text { of arity } n
\end{array}
$$

Example

Consider the symbols MotherOf, SchoolOf, Bill and the interpretation (\mathcal{D}, σ) where

Mother $O f^{\mathcal{D}}$ is a unary fn mapping people to their mother
Fchild $O f^{\mathcal{D}}$ is a binary fn mapping a couple to their first child $\sigma \quad:=\{x \mapsto$ George W Bush, $y \mapsto$ Barbara Bush $\}$

What is the meaning of MotherOf(x) according to (\mathcal{D}, σ) ?
$\llbracket \operatorname{MotherOf}(x) \rrbracket_{\sigma}^{\mathcal{D}}=\llbracket$ Mother $O f \rrbracket_{\sigma}^{\mathcal{D}}\left(\llbracket x \rrbracket_{\sigma}^{\mathcal{D}}\right)=\operatorname{Mother} O f^{\mathcal{D}}(\sigma(x))=$ Barbara Bush

Semantics of First-Order Logic

The meaning $\llbracket \varphi \rrbracket_{\sigma}^{\mathcal{D}}$ of a formula φ is either True or False.
It is inductively defined as follows.

$$
\begin{array}{llll}
\llbracket t_{1}=t_{2} \rrbracket_{\sigma}^{\mathcal{D}} & :=\text { True } & \text { iff } & \llbracket t_{1} \rrbracket_{\sigma}^{\mathcal{D}} \text { is the same as } \llbracket t_{2} \rrbracket_{\sigma}^{\mathcal{D}} \\
\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\sigma}^{\mathcal{D}} & := & \text { True } & \text { iff }
\end{array}\left\langle\llbracket t_{1} \rrbracket_{\sigma}^{\mathcal{D}}, \ldots, \llbracket t_{n} \rrbracket_{\sigma}^{\mathcal{D}}\right\rangle \in R^{\mathcal{D}}, \text { True/False } \begin{array}{lll}
\text { iff } & \llbracket \varphi \rrbracket_{\sigma}^{\mathcal{D}}=\text { False } / \text { True } \\
\llbracket \neg \varphi \rrbracket_{\sigma}^{\mathcal{D}} & := & \text { True } \\
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}} & :=\text { True } & \text { iff } \\
\llbracket \varphi_{1} \rrbracket_{\sigma}^{\mathcal{D}}=\text { True or } \llbracket \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}}=\text { True } \\
\llbracket \exists x \varphi \rrbracket_{\sigma}^{\mathcal{D}} & :=\text { True } & \text { iff } \\
& \llbracket \varphi \rrbracket_{\sigma^{\prime}}^{\mathcal{D}}=\text { True for some } \sigma^{\prime} \text { the } \\
& & \\
& \text { same as } \sigma \text { except for } x
\end{array}
$$

Semantics of First-Order Logic

The meaning of formulas built with the other logical symbols can be defined by reduction to the previous symbols.

$$
\begin{array}{ll}
\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}} & :=\llbracket \neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \rrbracket_{\sigma}^{\mathcal{D}} \\
\llbracket \varphi_{1} \Rightarrow \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}} & :=\llbracket \neg \varphi_{1} \vee \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}} \\
\llbracket \varphi_{1} \leftrightarrow \varphi_{2} \rrbracket_{\sigma}^{\mathcal{D}} & :=\llbracket\left(\varphi_{1} \Rightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \Rightarrow \varphi_{1}\right) \rrbracket_{\sigma}^{\mathcal{D}} \\
\llbracket \forall x \varphi \rrbracket_{\sigma}^{\mathcal{D}} & :=\llbracket \neg \exists x \neg \varphi \rrbracket_{\sigma}^{\mathcal{D}}
\end{array}
$$

If a sentence is closed (no free variables), its meaning does not depend on the the variable assignment (although it may depend on the domain):

$$
\llbracket \forall x \exists y R(x, y) \rrbracket_{\sigma}^{\mathcal{D}}=\llbracket \forall x \exists y R(x, y) \rrbracket_{\sigma^{\prime}}^{\mathcal{D}} \quad \text { for any } \quad \sigma, \sigma^{\prime}
$$

Models, Validity, etc. for Sentences

An interpretation (\mathcal{D}, σ) satisfies a sentence φ, or is a model for φ, if $\llbracket \varphi \rrbracket_{\sigma}^{\mathcal{D}}=$ True.
A sentence is satisfiable if it has at least one model.
Examples: $\forall x x \geq y, \quad P(x)$
A sentence is unsatisfiable if it has no models.
Examples: $\quad P(x) \wedge \neg P(x), \quad \neg(x=x)$
A sentence φ is valid if every interpretation is a model for φ.
Examples: $\quad P(x) \Rightarrow P(x), \quad x=x$
φ is valid/unsatisfiable iff $\neg \varphi$ is unsatisfiable/valid.

Models, Validity, etc. for Sets of Sentences

An interpretation (\mathcal{D}, σ) satisfies a set Γ of sentences, or is a model for Γ, if it is a model for every sentence in Γ.

A set Γ of sentences is satisfiable if it has at least one model.

$$
\text { Ex: } \quad\{\forall x x \geq 0, \forall x x+1>x\}
$$

Γ is unsatisfiable, or inconsistent, if it has no models.

$$
\text { Ex: } \quad\{P(x), \neg P(x)\}
$$

As in Propositional Logic, Γ entails a sentence $\varphi(\Gamma \models \varphi)$, if every model of Γ is also a model of φ.

$$
\text { Ex: } \quad\left\{\forall x P(x) \Rightarrow Q(x), P\left(A_{10}\right)\right\} \models Q\left(A_{10}\right)
$$

Note: Again, $\Gamma \models \varphi$ iff $\Gamma \wedge \neg \varphi$ is unsatisfiable.

Possible Interpretations Semantics

Sentences can be seen as constraints on the set S of all possible interpretations.
A sentence denotes all the possible interpretations that satisfy it (the models of φ):
If φ_{1} denotes a set of interpretations S_{1} and φ_{2} denotes a set S_{2}, then

- $\varphi_{1} \vee \varphi_{2}$ denotes $S_{1} \cup S_{2}$,
- $\varphi_{1} \wedge \varphi_{2}$ denotes $S_{1} \cap S_{2}$,
- $\neg \varphi_{1}$ denotes $S \backslash S_{1}$,
- $\varphi_{1} \models \varphi_{2}$ iff $S_{1} \subseteq S_{2}$.

A sentence denotes either no interpretations or an infinite number of them!

Valid sentences do not tell us anything about the world. They are satisfied by every possible interpretation!

Models for FOL: Lots!

We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞ For each k-ary predicate P_{k} in the sentence For each possible k-ary relation on n objects For each constant symbol C in the sentence For each one of n objects mapped to C

Enumerating models is not going to be easy!

Universal quantification

$\forall\langle$ variables $\rangle\langle$ sentence \rangle
Everyone at Berkeley is smart:
$\forall x \operatorname{At}(x$, Berkeley $) \Rightarrow \operatorname{Smart}(x)$
$\forall x P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn, Berkeley }) \Rightarrow \operatorname{Smart}(\text { KingJohn })) \\
\wedge & (\text { At }(\text { Richard }, \text { Berkeley }) \Rightarrow \operatorname{Smart}(\text { Richard })) \\
\wedge & (\text { At }(\text { Berkeley }, \text { Berkeley }) \Rightarrow \operatorname{Smart}(\text { Berkeley })) \\
\wedge & \ldots
\end{aligned}
$$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall
Common mistake: using \wedge as the main connective with \forall :

$$
\forall x \text { At }(x, \text { Berkeley }) \wedge \operatorname{Smart}(x)
$$

means "Everyone is at Berkeley and everyone is smart"

Existential quantification

$\exists\langle$ variables $\rangle\langle$ sentence \rangle
Someone at Stanford is smart:
$\exists x \operatorname{At}(x, \operatorname{Stanford}) \wedge \operatorname{Smart}(x)$
$\exists x P \quad$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

$$
\begin{aligned}
& (\text { At }(\text { KingJohn }, \text { Stanford }) \wedge \operatorname{Smart}(\text { KingJohn })) \\
\vee & (\text { At }(\text { Richard }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Richard })) \\
\vee & (\text { At }(\text { Stanford }, \text { Stanford }) \wedge \operatorname{Smart}(\text { Stanford })) \\
\vee & \ldots
\end{aligned}
$$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists
Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \quad \text { At }(x, \text { Stanford }) \Rightarrow \operatorname{Smart}(x)
$$

is true if there is anyone who is not at Stanford!

Properties of quantifiers

$\forall x \forall y$ is the same as $\forall y \forall x$ (why?)
$\exists x \exists y$ is the same as $\exists y \exists x$ (why?)
$\exists x \forall y$ is not the same as $\forall y \exists x$
$\exists x \forall y \operatorname{Loves}(x, y)$
"There is a person who loves everyone in the world"
$\forall y \exists x \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person"
Quantifier duality: each can be expressed using the other

$$
\begin{array}{lr}
\forall x \operatorname{Likes}(x, \text { IceCream }) & \neg \exists x \neg \operatorname{Likes}(x, \text { IceCream }) \\
\exists x \operatorname{Likes}(x, \text { Broccoli }) & \neg \forall x \neg \operatorname{Likes}(x, \text { Broccoli })
\end{array}
$$

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling

Fun with sentences

Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Rightarrow \operatorname{Sibling}(x, y)$.
"Sibling" is symmetric
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$.
One's mother is one's female parent
$\forall x, y \operatorname{Mother}(x, y) \Leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y))$.
A first cousin is a child of a parent's sibling
$\forall x, y \operatorname{FirstCousin}(x, y) \Leftrightarrow \exists p, p s \operatorname{Parent}(p, x) \wedge \operatorname{Sibling}(p s, p) \wedge$ Parent $(p s, y)$

Equality

term $m_{1}=$ term $_{2}$ is true under a given interpretation if and only if term ${ }_{1}$ and term m_{2} refer to the same object

$$
\begin{array}{ll}
\text { E.g., } & 1=2 \text { and } \forall x \times(\operatorname{Sqrt}(x), \operatorname{Sqr} t(x))=x \text { are satisfiable } \\
& 2=2 \text { is valid }
\end{array}
$$

E.g., definition of (full) Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$
$\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

[^0]: ${ }^{a}$ These notes were originally developed by Stuart Russell and are used with permission. They are copyrighted material and may not be used in other course settings outside of the University of Iowa in their current or modified form without the express written consent of the copyright holders.

