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Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds
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Exercises

Model a switch with two buttons, Set and Reset.

node Switch( Set , Reset , Init : bool ) returns (
State : bool );

such that:

pressing Set turns the switch on;

pressing Reset turns the switch off;

the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch( Set , Reset , Init : bool )
returns ( X : bool );
let

X = if Set then true
else if Reset then false
else (Init -> pre X);

tel
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Exercises

Model a switch with two buttons, Set and Reset.

node Switch( Set , Reset , Init : bool ) returns (
State : bool );

such that:

pressing Set turns the switch on;

pressing Reset turns the switch off;

the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

Equivalently:

node Switch( Set , Reset , Init : bool )
returns ( X : bool );
let

X = Set or (not Reset and (Init -> pre X)) ;
tel
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Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel
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Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;

out = if r then 0
else if b then pre_out + 1
else pre_out;

tel
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Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2, 3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2, 3, 0,

1 , 2, 3, 0, 1 . . .

7 / 1



Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);
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Modularity

A node can have several outputs:

node MinMax( X : real ) returns ( Min , Max : real );
let

Min = X -> if (X < pre Min) then X else pre Min ;
Max = X -> if (X > pre Max) then X else pre Max ;

tel

node minMaxAverage ( X: real ) returns ( Y: real ) ;
var Min , Max: real ;
let

Min , Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;

tel

8 / 1



Complete example: specification

Stopwatch:

one integer output: time “to display”;

three input buttons:
on_off starts and stops the stopwatch,
reset resets the stopwatch if not running,
freeze freezes the displayed time if running, cancelled if stopped
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Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let

state =
if (false -> pre state) then not off else on;

tel

-- Counts steps if inc is true , can be reset
node counter (reset ,inc: bool) returns (out: int);
let

out = if reset then 0
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);

tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let

out = false -> in and (not pre in);
tel
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Complete example: solution(s)

Unsatisfactory solution not using edge:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen: bool;

let

running = switch(on_off , on_off);
frozen = switch(

freeze and running , freeze or on_off
);
actual_time = counter(reset and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel
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Complete example: solution(s)

Satisfactory solution:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen ,
on_off_pressed , r_pressed , f_pressed: bool;

let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed , on_off_pressed);
frozen = switch(

f_pressed and running , f_pressed or on_off_pressed
);
actual_time = counter(r_pressed and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel
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Credits

Part of these notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS
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