
CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language1

Part 2

Adrien Champion Cesare Tinelli

1Copyright 20015-17, Adrien Champion and Cesare Tinelli, the University of Iowa. These notes are
copyrighted materials and may not be used in other course settings outside of the University of Iowa in their
current form or modified form without the express written permission of one of the copyright holders. During this
course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial
firm without the express written permission of one of the copyright holder.

1 / 1

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock

0

in0
-

-

-

-

-

-

out0

1

in1
-

-

-

-

-

-

out1

2

in2
-

-

-

-

-

-

out2

2 / 1

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock
0

in0

-

-

-

-

-

-

out0

1

in1

-

-

-

-

-

-

out1

2

in2

-

-

-

-

-

-

out2

2 / 1

Lustre: a synchronous dataflow language

Design of reactive systems:

run in an infinite loop, and

produce an output every n milliseconds

CPU

clock
0

in0
-

-

-

-

-

-

out0

1

in1
-

-

-

-

-

-

out1

2

in2
-

-

-

-

-

-

out2

2 / 1

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set , Reset , Init : bool) returns (
State : bool);

such that:

pressing Set turns the switch on;

pressing Reset turns the switch off;

the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch(Set , Reset , Init : bool)
returns (X : bool);
let

X = if Set then true
else if Reset then false
else (Init -> pre X);

tel

3 / 1

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set , Reset , Init : bool) returns (
State : bool);

such that:

pressing Set turns the switch on;

pressing Reset turns the switch off;

the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

node Switch(Set , Reset , Init : bool)
returns (X : bool);
let

X = if Set then true
else if Reset then false
else (Init -> pre X);

tel

3 / 1

Exercises

Model a switch with two buttons, Set and Reset.

node Switch(Set , Reset , Init : bool) returns (
State : bool);

such that:

pressing Set turns the switch on;

pressing Reset turns the switch off;

the initial position of the switch is determined by a third signal Init
if Set and Reset are initially both unpressed.

Equivalently:

node Switch(Set , Reset , Init : bool)
returns (X : bool);
let

X = Set or (not Reset and (Init -> pre X)) ;
tel

4 / 1

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

5 / 1

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

5 / 1

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

5 / 1

Exercises

Counter with reset:

node ??? (r,b: bool) returns (out: int);
let

out = if r then 0
else if b then (0 -> pre out) + 1
else (0 -> pre out);

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

5 / 1

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;

out = if r then 0
else if b then pre_out + 1
else pre_out;

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

pre_out−1

= nil

pre_out0

= 0

pre_out1

= 1

pre_out2

= 2

6 / 1

Exercises

Counter with reset:

node cnt (r,b: bool) returns (out: int);
var pre_out: int;
let pre_out = 0 -> pre out;

out = if r then 0
else if b then pre_out + 1
else pre_out;

tel

out at 0

r0

0

b0

1

1

out at 1

r1

0

b1

1

2

out at 2

r2

1

b2

1

0

pre_out−1

= nil

pre_out0

= 0

pre_out1

= 1

pre_out2

= 2

6 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0,

1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1,

2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2,

3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2, 3,

0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2, 3, 0,

1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

Once defined, a node can be used as a basic operator

What does A look like?

X = true -> (pre A = 3)
A = cnt(X, true);

A = 0, 1, 2, 3, 0, 1 , 2, 3, 0, 1 . . .

7 / 1

Modularity

A node can have several outputs:

node MinMax(X : real) returns (Min , Max : real);
let

Min = X -> if (X < pre Min) then X else pre Min ;
Max = X -> if (X > pre Max) then X else pre Max ;

tel

node minMaxAverage (X: real) returns (Y: real) ;
var Min , Max: real ;
let

Min , Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;

tel

8 / 1

Complete example: specification

Stopwatch:

one integer output: time “to display”;

three input buttons:
on_off starts and stops the stopwatch,
reset resets the stopwatch if not running,
freeze freezes the displayed time if running, cancelled if stopped

9 / 1

Complete example: available nodes

-- Bistable switch
node switch (on, off: bool) returns (state: bool);
let

state =
if (false -> pre state) then not off else on;

tel

-- Counts steps if inc is true , can be reset
node counter (reset ,inc: bool) returns (out: int);
let

out = if reset then 0
else if inc then (0 -> pre_out) + 1
else (0 -> pre_out);

tel

-- Detects raising edges of a signal
node edge (in: bool) returns (out: bool);
let

out = false -> in and (not pre in);
tel

10 / 1

Complete example: solution(s)

Unsatisfactory solution not using edge:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen: bool;

let

running = switch(on_off , on_off);
frozen = switch(

freeze and running , freeze or on_off
);
actual_time = counter(reset and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel

11 / 1

Complete example: solution(s)

Satisfactory solution:
node stopwatch (on_off , reset , freeze: bool)
returns (time: int);
var actual_time: int;

running , frozen ,
on_off_pressed , r_pressed , f_pressed: bool;

let
on_off_pressed = edge(on_off);
r_pressed = edge(reset);
f_pressed = edge(freeze);
running = switch(on_off_pressed , on_off_pressed);
frozen = switch(

f_pressed and running , f_pressed or on_off_pressed
);
actual_time = counter(r_pressed and not running , running);
time = if frozen then (0 -> pre time) else actual_time;

tel

12 / 1

Credits

Part of these notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

13 / 1

