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Overview

• Basics	of	dynamic	models
–Modeling	a	system’s	states	and state	transitions
–Modeling	operations	causing	transitions

• Simple	example of	operations
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Static	Models

• So far	we’ve	used Alloy	to	define	the	allowable	
values	of	state	components
– values	of	sets
– values	of	relations

• A	model	instance	is	a	set	of	state	component	
values	that
– Satisfies	the	constraints	defined	by	multiplicities,	
fact,	“realism”	conditions,	…
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Static	Models
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Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}



Dynamic	Models

• Static	models	allow	us	to	describe	the	legal	
states	of a	dynamic	system

• We	also	want	to	be	able	to	describe	the	legal	
transitions	between	states
E.g.
– To	get	married	one	must	be	alive	and	not	currently	
married

– One	must	be	alive	to	be	able	to	die
– A	person	becomes	someone’s	child	after	birth
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Example
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abstract sig Person {
children: set Person,
siblings: set Person

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married 

}

Family Model
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State	Transitions
• Two	people	get	married

– At	time	t,	spouse =	{}
– At	time	t’,	spouse =	{(Matt,	Sue),	(Sue,Matt)}

⇒We	add	the	notion	of	time in	the	relation	spouse
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Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {} 

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’



Modeling	State	Transitions

• Alloy	has	no	predefined	notion	of	state	
transition

• However,	there	are	several	ways	to	model	
dynamic	aspects of	a	system	in	Alloy

• A	general and	relatively	simple	way is	to:	
1. introduce a	Time signature expressing	time
2. add	a	time	component	to	each	relation	that	

changes	over	time
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Family	Model	Signatures
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abstract sig Person {
children: set Person,
siblings: set Person set

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married one

}
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Family	Model	Signatures	with	Time
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sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

} 

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}
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Transitions
• Two	people	get	married

– At	time	t,		Married =	{}
– At	time	t’,	 Married =	{Matt,	Sue}

– Actually,	we	can’t	have	a	time-dependent	signature	such	as	
Married because	signatures	are	not	time	dependent
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Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {} 

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’
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Transitions
• A	person	is	born
– At	time	t,	Person =	{}
– At	time	t’,	Person =	{Sue}

– We	cannot	add	the	notion being	born	to	the	signature	
Person	because	signatures	are	not	time	dependent
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Person = {}

Man = {}

Woman = {}

spouse = {} 

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}Time t Time t’



Signatures	are	Static
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abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

}
sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}
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Signatures	are	Static
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abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, Woman extends Person {}
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Revising	Constraints
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abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
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Revising	Constraints
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abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
fact parentsDef {
all t: Time | parents.t = ~(children.t)

}
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Revising	Constraints
-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives iff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]
{

some p.*(parents.t) & q.*(parents.t)
}
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Revising	Static Constraints
-- People cannot be their own ancestors
all t: Time | no p: Person |

p in p.^(parents.t)

-- No one can have more than one father
-- or mother
all t: Time | all p: Person | 

lone (p.parents.t & Man) 
and 
lone (p.parents.t & Woman) 

...
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Revising	Static Constraints
-- A person p's siblings are those people, other
-- than p, with the same parents as p
all t: Time | all p: Person | 

p.siblings.t = 
{ q: Person - p | some q.parents.t and

p.parents.t = q.parents.t }

-- Each married man (woman) has a wife (husband) 
all t: Time | all p: Person | 

let s = p.spouse.t |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)
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Revising	Static Constraints
-- A spouse can't be a sibling
all t: Time | no p: Person | 

some p.spouse.t and
p.spouse.t in p.siblings.t

-- People can't be married to a blood relative
all t: Time | no p: Person |

let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]
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Revising	Static Constraints
-- a person can't have children with
-- a blood relative
all t: Time | all p, q: Person |

(some (p.children.t & q.children.t) and 
p != q) 
implies 
not BloodRelatives[p, q, t]

-- the spouse relation is symmetric
all t: Time |

spouse.t = ~(spouse.t)  
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Exercises

• Load	family-6.als
• Execute	it
• Analyze	the model
• Look	at	the	generated	instance
• Does	it	look	correct?
• What,	if	anything,	would	you	change	about	
it?
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Transitions
A	person	is	born	from	
parents
– Add	to	alive relation

– Modify	
children/parents
relations
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Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Matt, Sue, Sean}
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State	Sequences
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Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Sue, Matt}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Sue, Matt, Sean}
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Expressing	Transitions	in	Alloy
• A	transition can	be	thought	of	as	caused	by	the	
application	of	an	operator to	the	current	state

• An	operator	can	be	modeled	as	a	predicate	over	two	
states:	
1. the	state	right	before	the	transition	and
2. the	state	right	after	it

• We	define	it	as	predicate	with	(at	least)	two	formal	
parameters:		t, t’: Time

• Constraints	over	time	t (resp.,	t’)	model	the	state	
right	before	(resp.,	after)	the	transition
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Expressing	Transitions	in	Alloy
• Pre-condition	constraints
– Describe	the	states	to	which	the	transition	applies

• Post-condition	constraints
– Describes	the	effects	of	the	transition	in	generating	
the	next	state

• Frame-condition	constraints
– Describes	what	does	not	change	between	pre-state	
and	post-state	of	a	transition

Distinguishing	the	pre-,	post- and	frame-conditions	in	
comments	provides	useful	documentation
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Example:	Marriage
pred getMarried [m: Man, w: Woman, t,t': Time] {
-- preconditions

-- m and w must be alive
m+w in alive.t
-- neither one is married
no (m+w).spouse.t
-- they are not be blood relatives
not BloodRelatives[m, w, t]

-- post-conditions
-- w is m’s wife
m.spouse.t' = w
-- m is w’s husband
w.spouse.t' = m

-- frame conditions 
}
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??
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Frame	Condition

How	is each relation	touched by	marriage?
• 5	relations	:	
– children, parents, siblings
– spouse
– alive

• parents and	siblings relations	are	defined in	terms
of	the	children relation

• Thus,	the	frame	condition	has	only to	consider
children,	spouse and	alive relations
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Frame	Condition	Predicates
pred noChildrenChangeExcept [ps: set Person

t,t': Time] {
all p: Person - ps | 

p.children.t' = p.children.t
}

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {

all p: Person - ps |
p.spouse.t' = p.spouse.t

}

pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

}
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Example:	Marriage
pred getMarried[m: Man, w: Woman, t,t': Time]
{
-- preconditions

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

-- post-conditions
m.spouse.t' = w

-- frame conditions
noSpouseChangeExcept[m+w, t, t’]
noChildrenChangeExcept[none, t, t’]
noAliveChange[t, t’]

}
30CS:5810 -- Formal Methods in Software Engineering   Fall 2017



Instance	of	Marriage
open ordering [Time] as T
…

pred marriageInstance {
some t: Time |
some m: Man | some w: Woman | 

getMarried[m, w, t, T/next[t] ]
}
run { marriageInstance }
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Example: Birth from Parents
pred isBornFromParents [p: Person, m,w: Person,

t,t': Time] {
-- Pre-condition

m+w in alive.t
p !in alive.t

-- Post-condition and frame condition
alive.t' = alive.t + p
m.children.t' = m.children.t + p
w.children.t' = w.children.t + p

-- Frame condition
noChildrenChangeExcept[m+w, t, t']
noSpouseChangeExcept[none, t, t']

}
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Instance	of Birth

pred birthInstance {
some t: Time | 
some p1, p2, p3: Person | 
isBornFromParents[p1, p2, p3, t, T/next[t]]

}

run { birthInstance }
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Example: Death
pred dies [p: Person, t,t': Time] {

-- Pre-condition
p in alive.t

-- Post-condition
no p.spouse.t'

-- Post-condition and frame condition
alive.t' = alive.t - p
all s: p.spouse.t | 
s.spouse.t' = s.spouse.t - p

-- Frame condition
noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[p + p.spouse.t, t, t']

}
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Instance	of Death

pred deathInstance {
some t: Time| 
some p: Person | 
dies[p, t, T/next[t]]

}

run { deathInstance }
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Specifying	Transition	Systems
• A	transition	system	can be defined as	a	set	of	
executions:	
sequences of	time	steps generated by	the	operators

• In	our example,	for	every execution:
– The	first	time	step satisfies some initialization
condition

– Each pair	of consecutive steps	are	related by
• a	birth operation,	or
• a	death operation,	or
• a marriage operation

36CS:5810 -- Formal Methods in Software Engineering   Fall 2017



Initial	State	Specification
init specifies constraints on	the	initial	state

pred init [t: Time] {
no children.t
no spouse.t
#alive.t > 2
#Person > #alive.t

}
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Transition	Relation	Specification
trans specifies that each transition	is a	consequence of	the	

application	of	one	of	the	operators to	some individuals

pred trans [t,t': Time]  {
(some m: Man, w: Woman | 

getMarried [m, w, t, t'])
or 
(some p: Person, m: Man, w: Woman | 

isBornFromParents [p, m, w, t, t'])
or 
(some p :Person | dies [p, t, t'])

}
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System	Specification

System specifies that each execution of	the	system	starts in	
a	state	satisfying the	initial	state	condition	and	moves	from
one	state	to	the	next through the	application	of	one	
operator at	a	time,	until it reaches the	final	state

pred System {
init[T/first]
all t: Time - T/last | trans[t, T/next[t]]

}
run { System }
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System	Invariants
• Many	of	the	facts	that	we	stated	in	our	static	model	
now	become	expected	system	invariants

• These	are	properties	that
– should	hold	in	initial	states
– should	be	preserved	by	system transitions

• In	Alloy	we	can	check	that	a	property	is	invariant	(in	
a	given	scope)	by	
– encoding	it	as	a	formula	P and	checking
– checking	the	assertion				

System => all t: Time | P
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Expected	Invariants:	Examples
-- People cannot be their own ancestors
assert a1 { System => all t: Time | 

no p: Person | p in p.^(parents.t)
}
check a1 for 8

-- No one can have more than one father or mother
assert a2 { System => all t: Time | 

all p: Person | 
lone (p.parents.t & Man) and 
lone (p.parents.t & Woman) 

}
check a2 for 8 
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Exercises
• Load	family-7.als
• Execute	it
• Look	at	the	generated	instance
• Does	it	look	correct?
• What	if	anything	would	you	change	about	it?
• Check	each	of	the	given	assertions
• Are	they	all	valid?	
• If	not,	how	would	you	change	the	model	to	fix	
that?
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