
Dynamic	Models	in	Alloy

Copyright 2001-17, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Produced by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holder.

CS:5810
Formal	Methods	in	
Software	Engineering

Overview

• Basics	of	dynamic	models
–Modeling	a	system’s	states	and state	transitions
–Modeling	operations	causing	transitions

• Simple	example of	operations

2CS:5810 -- Formal Methods in Software Engineering Fall 2017

Static	Models

• So far	we’ve	used Alloy	to	define	the	allowable	
values	of	state	components
– values	of	sets
– values	of	relations

• A	model	instance	is	a	set	of	state	component	
values	that
– Satisfies	the	constraints	defined	by	multiplicities,	
fact,	“realism”	conditions,	…

3CS:5810 -- Formal Methods in Software Engineering Fall 2017

Static	Models

4

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

Dynamic	Models

• Static	models	allow	us	to	describe	the	legal	
states	of a	dynamic	system

• We	also	want	to	be	able	to	describe	the	legal	
transitions	between	states
E.g.
– To	get	married	one	must	be	alive	and	not	currently	
married

– One	must	be	alive	to	be	able	to	die
– A	person	becomes	someone’s	child	after	birth

5CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example

6

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

}

Family Model

CS:5810 -- Formal Methods in Software Engineering Fall 2017

State	Transitions
• Two	people	get	married

– At	time	t,	spouse =	{}
– At	time	t’,	spouse =	{(Matt,	Sue),	(Sue,Matt)}

⇒We	add	the	notion	of	time in	the	relation	spouse

7

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’

Modeling	State	Transitions

• Alloy	has	no	predefined	notion	of	state	
transition

• However,	there	are	several	ways	to	model	
dynamic	aspects of	a	system	in	Alloy

• A	general and	relatively	simple	way is	to:	
1. introduce a	Time signature expressing	time
2. add	a	time	component	to	each	relation	that	

changes	over	time

8CS:5810 -- Formal Methods in Software Engineering Fall 2017

Family	Model	Signatures

9

abstract sig Person {
children: set Person,
siblings: set Person set

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married one

}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Family	Model	Signatures	with	Time

10

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transitions
• Two	people	get	married

– At	time	t,		Married =	{}
– At	time	t’,	 Married =	{Matt,	Sue}

– Actually,	we	can’t	have	a	time-dependent	signature	such	as	
Married because	signatures	are	not	time	dependent

11

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’
CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transitions
• A	person	is	born
– At	time	t,	Person =	{}
– At	time	t’,	Person =	{Sue}

– We	cannot	add	the	notion being	born	to	the	signature	
Person	because	signatures	are	not	time	dependent

12

Person = {}

Man = {}

Woman = {}

spouse = {}

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}Time t Time t’

Signatures	are	Static

13

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

}
sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Signatures	are	Static

14

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

}

sig Man, Woman extends Person {}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Constraints

15

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Constraints

16

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

}
sig Man, Woman extends Person {}
fun parents[] : Person->Person {~children}
fact parentsDef {
all t: Time | parents.t = ~(children.t)

}
CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Constraints
-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives iff
-- they have a common ancestor
pred BloodRelatives [p, q: Person, t: Time]
{

some p.*(parents.t) & q.*(parents.t)
}

17CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Static Constraints
-- People cannot be their own ancestors
all t: Time | no p: Person |

p in p.^(parents.t)

-- No one can have more than one father
-- or mother
all t: Time | all p: Person |

lone (p.parents.t & Man)
and
lone (p.parents.t & Woman)

...

18CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Static Constraints
-- A person p's siblings are those people, other
-- than p, with the same parents as p
all t: Time | all p: Person |

p.siblings.t =
{ q: Person - p | some q.parents.t and

p.parents.t = q.parents.t }

-- Each married man (woman) has a wife (husband)
all t: Time | all p: Person |

let s = p.spouse.t |
(p in Man implies s in Woman) and
(p in Woman implies s in Man)

19CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Static Constraints
-- A spouse can't be a sibling
all t: Time | no p: Person |

some p.spouse.t and
p.spouse.t in p.siblings.t

-- People can't be married to a blood relative
all t: Time | no p: Person |

let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]

20CS:5810 -- Formal Methods in Software Engineering Fall 2017

Revising	Static Constraints
-- a person can't have children with
-- a blood relative
all t: Time | all p, q: Person |

(some (p.children.t & q.children.t) and
p != q)
implies
not BloodRelatives[p, q, t]

-- the spouse relation is symmetric
all t: Time |

spouse.t = ~(spouse.t)

21CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises

• Load	family-6.als
• Execute	it
• Analyze	the model
• Look	at	the	generated	instance
• Does	it	look	correct?
• What,	if	anything,	would	you	change	about	
it?

22CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transitions
A	person	is	born	from	
parents
– Add	to	alive relation

– Modify	
children/parents
relations

23

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Matt, Sue, Sean}
CS:5810 -- Formal Methods in Software Engineering Fall 2017

State	Sequences

24

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Sue, Matt}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Sue, Matt, Sean}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Expressing	Transitions	in	Alloy
• A	transition can	be	thought	of	as	caused	by	the	
application	of	an	operator to	the	current	state

• An	operator	can	be	modeled	as	a	predicate	over	two	
states:	
1. the	state	right	before	the	transition	and
2. the	state	right	after	it

• We	define	it	as	predicate	with	(at	least)	two	formal	
parameters:		t, t’: Time

• Constraints	over	time	t (resp.,	t’)	model	the	state	
right	before	(resp.,	after)	the	transition

25CS:5810 -- Formal Methods in Software Engineering Fall 2017

Expressing	Transitions	in	Alloy
• Pre-condition	constraints
– Describe	the	states	to	which	the	transition	applies

• Post-condition	constraints
– Describes	the	effects	of	the	transition	in	generating	
the	next	state

• Frame-condition	constraints
– Describes	what	does	not	change	between	pre-state	
and	post-state	of	a	transition

Distinguishing	the	pre-,	post- and	frame-conditions	in	
comments	provides	useful	documentation

26CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Marriage
pred getMarried [m: Man, w: Woman, t,t': Time] {
-- preconditions

-- m and w must be alive
m+w in alive.t
-- neither one is married
no (m+w).spouse.t
-- they are not be blood relatives
not BloodRelatives[m, w, t]

-- post-conditions
-- w is m’s wife
m.spouse.t' = w
-- m is w’s husband
w.spouse.t' = m

-- frame conditions
}

27

??

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Frame	Condition

How	is each relation	touched by	marriage?
• 5	relations	:	
– children, parents, siblings
– spouse
– alive

• parents and	siblings relations	are	defined in	terms
of	the	children relation

• Thus,	the	frame	condition	has	only to	consider
children,	spouse and	alive relations

28CS:5810 -- Formal Methods in Software Engineering Fall 2017

Frame	Condition	Predicates
pred noChildrenChangeExcept [ps: set Person

t,t': Time] {
all p: Person - ps |

p.children.t' = p.children.t
}

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {

all p: Person - ps |
p.spouse.t' = p.spouse.t

}

pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

}

29CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Marriage
pred getMarried[m: Man, w: Woman, t,t': Time]
{
-- preconditions

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

-- post-conditions
m.spouse.t' = w

-- frame conditions
noSpouseChangeExcept[m+w, t, t’]
noChildrenChangeExcept[none, t, t’]
noAliveChange[t, t’]

}
30CS:5810 -- Formal Methods in Software Engineering Fall 2017

Instance	of	Marriage
open ordering [Time] as T
…

pred marriageInstance {
some t: Time |
some m: Man | some w: Woman |

getMarried[m, w, t, T/next[t]]
}
run { marriageInstance }

31CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example: Birth from Parents
pred isBornFromParents [p: Person, m,w: Person,

t,t': Time] {
-- Pre-condition

m+w in alive.t
p !in alive.t

-- Post-condition and frame condition
alive.t' = alive.t + p
m.children.t' = m.children.t + p
w.children.t' = w.children.t + p

-- Frame condition
noChildrenChangeExcept[m+w, t, t']
noSpouseChangeExcept[none, t, t']

}

32CS:5810 -- Formal Methods in Software Engineering Fall 2017

Instance	of Birth

pred birthInstance {
some t: Time |
some p1, p2, p3: Person |
isBornFromParents[p1, p2, p3, t, T/next[t]]

}

run { birthInstance }

33CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example: Death
pred dies [p: Person, t,t': Time] {

-- Pre-condition
p in alive.t

-- Post-condition
no p.spouse.t'

-- Post-condition and frame condition
alive.t' = alive.t - p
all s: p.spouse.t |
s.spouse.t' = s.spouse.t - p

-- Frame condition
noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[p + p.spouse.t, t, t']

}
34CS:5810 -- Formal Methods in Software Engineering Fall 2017

Instance	of Death

pred deathInstance {
some t: Time|
some p: Person |
dies[p, t, T/next[t]]

}

run { deathInstance }

35CS:5810 -- Formal Methods in Software Engineering Fall 2017

Specifying	Transition	Systems
• A	transition	system	can be defined as	a	set	of	
executions:	
sequences of	time	steps generated by	the	operators

• In	our example,	for	every execution:
– The	first	time	step satisfies some initialization
condition

– Each pair	of consecutive steps	are	related by
• a	birth operation,	or
• a	death operation,	or
• a marriage operation

36CS:5810 -- Formal Methods in Software Engineering Fall 2017

Initial	State	Specification
init specifies constraints on	the	initial	state

pred init [t: Time] {
no children.t
no spouse.t
#alive.t > 2
#Person > #alive.t

}

37CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transition	Relation	Specification
trans specifies that each transition	is a	consequence of	the	

application	of	one	of	the	operators to	some individuals

pred trans [t,t': Time] {
(some m: Man, w: Woman |

getMarried [m, w, t, t'])
or
(some p: Person, m: Man, w: Woman |

isBornFromParents [p, m, w, t, t'])
or
(some p :Person | dies [p, t, t'])

}
38CS:5810 -- Formal Methods in Software Engineering Fall 2017

System	Specification

System specifies that each execution of	the	system	starts in	
a	state	satisfying the	initial	state	condition	and	moves	from
one	state	to	the	next through the	application	of	one	
operator at	a	time,	until it reaches the	final	state

pred System {
init[T/first]
all t: Time - T/last | trans[t, T/next[t]]

}
run { System }

39CS:5810 -- Formal Methods in Software Engineering Fall 2017

System	Invariants
• Many	of	the	facts	that	we	stated	in	our	static	model	
now	become	expected	system	invariants

• These	are	properties	that
– should	hold	in	initial	states
– should	be	preserved	by	system transitions

• In	Alloy	we	can	check	that	a	property	is	invariant	(in	
a	given	scope)	by	
– encoding	it	as	a	formula	P and	checking
– checking	the	assertion				

System => all t: Time | P
40CS:5810 -- Formal Methods in Software Engineering Fall 2017

Expected	Invariants:	Examples
-- People cannot be their own ancestors
assert a1 { System => all t: Time |

no p: Person | p in p.^(parents.t)
}
check a1 for 8

-- No one can have more than one father or mother
assert a2 { System => all t: Time |

all p: Person |
lone (p.parents.t & Man) and
lone (p.parents.t & Woman)

}
check a2 for 8

41CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Load	family-7.als
• Execute	it
• Look	at	the	generated	instance
• Does	it	look	correct?
• What	if	anything	would	you	change	about	it?
• Check	each	of	the	given	assertions
• Are	they	all	valid?	
• If	not,	how	would	you	change	the	model	to	fix	
that?

42CS:5810 -- Formal Methods in Software Engineering Fall 2017

