
Dynamic	
 Models	
 in	
 Alloy	

Copyright 2001-15, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Produced by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holder.

CS:5810	

Formal	
 Methods	
 in	
 So;ware	

Engineering	

Overview	

	

•  Basics	
 of	
 dynamic	
 models	

– Modeling	
 a	
 system’s	
 states	
 and	
 state	
 transiDons	

– Modeling	
 operaDons	
 causing	
 transiDons	

•  Simple	
 example	
 of	
 operaDons	

2

StaDc	
 Models	

•  So	
 far	
 we’ve	
 used	
 Alloy	
 to	
 define	
 the	
 allowable	

values	
 of	
 state	
 components	

– values	
 of	
 sets	

– values	
 of	
 relaDons	

•  A	
 model	
 instance	
 is	
 a	
 set	
 of	
 state	
 component	

values	
 that	

– SaDsfies	
 the	
 constraints	
 defined	
 by	
 mulDpliciDes,	

fact,	
 “realism”	
 condiDons,	
 …	

3

StaDc	
 Models	

4

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

Dynamic	
 Models	

•  StaDc	
 models	
 allow	
 us	
 to	
 describe	
 the	
 legal	

states	
 of	
 a	
 dynamic	
 system	

•  We	
 also	
 want	
 to	
 be	
 able	
 to	
 describe	
 the	
 legal	

transiDons	
 between	
 states	

E.g.	

–  To	
 get	
 married	
 one	
 must	
 be	
 alive	
 and	
 not	
 currently	

married	

–  One	
 must	
 be	
 alive	
 to	
 be	
 able	
 to	
 die	

–  A	
 person	
 becomes	
 someone’s	
 child	
 a;er	
 birth	

5

Example	

6

abstract	
 sig	
 Person	
 {	

	
 children:	
 set	
 Person,	

	
 siblings:	
 set	
 Person	

}	
 	

	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

	

sig	
 Married	
 in	
 Person	
 {	

	
 spouse:	
 one	
 Married	
 	

}	

Family Model

State	
 TransiDons	

•  Two	
 people	
 get	
 married	

–  At	
 Dme	
 t,	
 spouse	
 =	
 {}	

–  At	
 Dme	
 t’,	
 spouse	
 =	
 {(MaU,	
 Sue),	
 (Sue,MaU)}	

⇒ We	
 add	
 the	
 noDon	
 of	
 Dme	
 in	
 the	
 relaDon	
 spouse	

7

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {} Time t Time t’

Modeling	
 State	
 TransiDons	

•  Alloy	
 has	
 no	
 predefined	
 noDon	
 of	
 state	

transiDon	

•  However,	
 there	
 are	
 several	
 ways	
 to	
 model	

dynamic	
 aspects	
 of	
 a	
 system	
 in	
 Alloy	

•  A	
 general	
 and	
 relaDvely	
 simple	
 way	
 is	
 to:	
 	

1.  introduce	
 a	
 Time	
 signature	
 expressing	
 Dme	

2.  add	
 a	
 Dme	
 component	
 to	
 each	
 relaDon	
 that	

changes	
 over	
 Dme	

8

Family	
 Model	
 Signatures	

9

	

	

abstract	
 sig	
 Person	
 {	

	
 children:	
 set	
 Person,	

	
 siblings:	
 set	
 Person	
 set	

}	
 	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

	

sig	
 Married	
 in	
 Person	
 {	

	
 spouse:	
 one	
 Married	
 one	

}	

	

Family	
 Model	
 Signatures	
 with	
 Time	

10

sig	
 Time	
 {}	

	

abstract	
 sig	
 Person	
 {	

	
 children:	
 Person	
 set	
 -­‐>	
 Time,	

	
 siblings:	
 Person	
 set	
 -­‐>	
 Time	

}	
 	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

	

sig	
 Married	
 in	
 Person	
 {	

	
 spouse:	
 Married	
 one	
 -­‐>	
 Time	

}	

	

TransiDons	

•  Two	
 people	
 get	
 married	

–  At	
 Dme	
 t,	
 	
 Married	
 =	
 {}	

–  At	
 Dme	
 t’,	
 	
 Married	
 =	
 {MaU,	
 Sue}	

–  Actually,	
 we	
 can’t	
 have	
 a	
 Dme-­‐dependent	
 signature	
 such	
 as	

Married	
 because	
 signatures	
 are	
 not	
 Dme	
 dependent.	

11

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {} Time t Time t’

TransiDons	

•  A	
 person	
 is	
 born	

–  At	
 Dme	
 t,	
 Person	
 =	
 {}	

–  At	
 Dme	
 t’,	
 Person	
 =	
 {Sue}	

– We	
 cannot	
 add	
 the	
 noDon	
 being	
 born	
 to	
 the	
 signature	

Person	
 because	
 signatures	
 are	
 not	
 Dme	
 dependent	

12

Person = {}

Man = {}

Woman = {}

spouse = {}

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {} Time t Time t’

Signatures	
 are	
 StaDc	

13

abstract	
 sig	
 Person	
 {	

	
 	
 children:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 siblings:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 spouse:	
 Person	
 lone	
 -­‐>	
 Time	

}	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

	

sig	
 Married	
 in	
 Person	
 {	

	
 spouse:	
 Married	
 one	
 -­‐>	
 Time	

}	

Signatures	
 are	
 StaDc	

14

abstract	
 sig	
 Person	
 {	

	
 	
 children:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 siblings:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 spouse:	
 Person	
 lone	
 -­‐>	
 Time	

	
 	
 alive:	
 set	
 Time	

}	

	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

	

Revising	
 Constraints	

15

abstract	
 sig	
 Person	
 {	

	
 	
 children:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 siblings:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 spouse:	
 Person	
 lone	
 -­‐>	
 Time,	

	
 	
 alive:	
 set	
 Time	

	

}	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

fun	
 parents[]	
 :	
 Person-­‐>Person	
 {~children}	

	

	

Revising	
 Constraints	

16

abstract	
 sig	
 Person	
 {	

	
 	
 children:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 siblings:	
 Person	
 set	
 -­‐>	
 Time,	

	
 	
 spouse:	
 Person	
 lone	
 -­‐>	
 Time,	

	
 	
 alive:	
 set	
 Time	

	
 	
 parents:	
 Person	
 set	
 -­‐>	
 Time	

}	

sig	
 Man,	
 Woman	
 extends	
 Person	
 {}	

fun	
 parents[]	
 :	
 Person-­‐>Person	
 {~children}	

fact	
 parentsDef	
 {	

	
 	
 all	
 t:	
 Time	
 |	
 parents.t	
 =	
 ~(children.t)	

}	

Revising	
 Constraints	

-­‐-­‐	
 Time-­‐dependent	
 parents	
 relation	

fact	
 parentsDef	
 {	

	
 	
 all	
 t:	
 Time	
 |	
 parents.t	
 =	
 ~(children.t)	

}	

	

-­‐-­‐	
 Two	
 persons	
 are	
 blood	
 relatives	
 iff	
 	

-­‐-­‐	
 they	
 have	
 a	
 common	
 ancestor	

pred	
 BloodRelatives	
 [p,	
 q:	
 Person,	
 t:	
 Time]	

{	

	
 	
 some	
 p.*(parents.t)	
 &	
 q.*(parents.t)	

}	

	

	

17

Revising	
 Sta$c	
 Constraints	

-­‐-­‐	
 People	
 cannot	
 be	
 their	
 own	
 ancestors	

all	
 t:	
 Time	
 |	
 no	
 p:	
 Person	
 |	
 	

	
 	
 p	
 in	
 p.^(parents.t)	

	

-­‐-­‐	
 No	
 one	
 can	
 have	
 more	
 than	
 one	
 father	

-­‐-­‐	
 or	
 mother	

all	
 t:	
 Time	
 |	
 all	
 p:	
 Person	
 |	
 	

	
 	
 lone	
 (p.parents.t	
 &	
 Man)	
 	

	
 	
 and	
 	

	
 	
 lone	
 (p.parents.t	
 &	
 Woman)	
 	

	

...	

18

Revising	
 Sta$c	
 Constraints	

-­‐-­‐	
 A	
 person	
 p's	
 siblings	
 are	
 those	
 people,	
 other	

-­‐-­‐	
 than	
 p,	
 with	
 the	
 same	
 parents	
 as	
 p	

all	
 t:	
 Time	
 |	
 all	
 p:	
 Person	
 |	
 	

	
 	
 p.siblings.t	
 =	
 	

	
 	
 {	
 q:	
 Person	
 -­‐	
 p	
 |	
 some	
 q.parents.t	
 and	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p.parents.t	
 =	
 q.parents.t	
 }	

	

-­‐-­‐	
 Each	
 married	
 man	
 (woman)	
 has	
 a	
 wife	
 (husband)	
 	

all	
 t:	
 Time	
 |	
 all	
 p:	
 Person	
 |	
 	

	
 	
 let	
 s	
 =	
 p.spouse.t	
 |	

	
 	
 	
 (p	
 in	
 Man	
 implies	
 s	
 in	
 Woman)	
 and	

	
 	
 	
 (p	
 in	
 Woman	
 implies	
 s	
 in	
 Man)	

19

Revising	
 Sta$c	
 Constraints	

-­‐-­‐	
 A	
 spouse	
 can't	
 be	
 a	
 sibling	

all	
 t:	
 Time	
 |	
 no	
 p:	
 Person	
 |	
 	

	
 	
 some	
 p.spouse.t	
 and	
 	

	
 	
 p.spouse.t	
 in	
 p.siblings.t	

	

	

-­‐-­‐	
 People	
 can't	
 be	
 married	
 to	
 a	
 blood	
 relative	

	
 	
 all	
 t:	
 Time	
 |	
 no	
 p:	
 Person	
 |	

	
 	
 	
 	
 let	
 s	
 =	
 p.spouse.t	
 |	

	
 	
 	
 	
 	
 	
 some	
 s	
 and	
 	

	
 	
 	
 	
 	
 	
 BloodRelatives[p,	
 s,	
 t]	

20

Revising	
 Sta$c	
 Constraints	

-­‐-­‐	
 a	
 person	
 can't	
 have	
 children	
 with	
 	

-­‐-­‐	
 a	
 blood	
 relative	

all	
 t:	
 Time	
 |	
 all	
 p,	
 q:	
 Person	
 |	

	
 	
 (some	
 (p.children.t	
 &	
 q.children.t)	
 and	
 	

	
 	
 p	
 !=	
 q)	
 	

	
 	
 implies	
 	

	
 	
 not	
 BloodRelatives[p,	
 q,	
 t]	

	

-­‐-­‐	
 the	
 spouse	
 relation	
 is	
 symmetric	

all	
 t:	
 Time	
 |	

	
 	
 spouse.t	
 =	
 ~(spouse.t)	
 	
 	

	

21

Exercises	

•  Load	
 family-­‐6.als	

•  Execute	
 it	

•  Analyze	
 the	
 model	

•  Look	
 at	
 the	
 generated	
 instance	

•  Does	
 it	
 look	
 correct?	

•  What,	
 if	
 anything,	
 would	
 you	
 change	
 about	

it?	

22

TransiDons	

A	
 person	
 is	
 born	
 from	

parents	

–  Add	
 to	
 alive	
 relaDon	

– Modify	
 children/
parents	
 relaDons	

23

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Matt, Sue, Sean}

State	
 Sequences	

24

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

alive = {Sue, Matt}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Sue, Matt, Sean}

Expressing	
 TransiDons	
 in	
 Alloy	

•  A	
 transiDon	
 can	
 be	
 thought	
 of	
 as	
 caused	
 by	
 the	

applicaDon	
 of	
 an	
 operator	
 to	
 the	
 current	
 state	

•  An	
 operator	
 can	
 be	
 modeled	
 as	
 predicates	
 between	

two	
 states:	
 	

1.  the	
 state	
 right	
 before	
 the	
 transiDon	
 and	

2.  the	
 state	
 right	
 a;er	
 it	

•  We	
 define	
 it	
 as	
 predicate	
 with	
 (at	
 least)	
 two	
 formal	

parameters:	
 	
 t,	
 t’:	
 Time	

•  Constraints	
 over	
 Dme	
 t	
 (resp.,	
 t’)	
 model	
 the	
 state	

right	
 before	
 (resp.,	
 a;er)	
 the	
 transiDon	

25

Expressing	
 TransiDons	
 in	
 Alloy	

•  Pre-­‐condiDon	
 constraints	

– Describe	
 the	
 states	
 to	
 which	
 the	
 transiDon	
 applies	

•  Post-­‐condiDon	
 constraints	

– Describes	
 the	
 effects	
 of	
 the	
 transiDon	
 in	
 generaDng	

the	
 next	
 state	

•  Frame-­‐condiDon	
 constraints	

– Describes	
 what	
 does	
 not	
 change	
 between	
 pre-­‐state	

and	
 post-­‐state	
 of	
 a	
 transiDon	

	
 Dis$nguishing	
 the	
 pre-­‐,	
 post-­‐	
 and	
 frame-­‐condi$ons	
 in	

comments	
 provides	
 useful	
 documenta$on	

26

Example:	
 Marriage	

pred	
 getMarried	
 [m:	
 Man,	
 w:	
 Woman,	
 t,t':	
 Time]	
 {	

-­‐-­‐	
 preconditions	

	
 	
 	
 -­‐-­‐	
 m	
 and	
 w	
 must	
 be	
 alive	

	
 	
 m+w	
 in	
 alive.t	

	
 	
 -­‐-­‐	
 neither	
 one	
 is	
 married	

	
 	
 no	
 (m+w).spouse.t	

	
 	
 -­‐-­‐	
 they	
 are	
 not	
 be	
 blood	
 relatives	

	
 	
 not	
 BloodRelatives[m,	
 w,	
 t]	

-­‐-­‐	
 post-­‐conditions	

	
 	
 -­‐-­‐	
 w	
 is	
 m’s	
 wife	

	
 	
 m.spouse.t'	
 =	
 w	

	
 	
 -­‐-­‐	
 m	
 is	
 w’s	
 husband	

	
 	
 w.spouse.t'	
 =	
 m	

-­‐-­‐	
 frame	
 conditions	
 	

}	

27

??

Frame	
 CondiDon	

How	
 is	
 each	
 relaDon	
 touched	
 by	
 marriage?	

•  5	
 relaDons	
 :	
 	

–  children,	
 parents,	
 siblings	

–  spouse	

–  alive	

•  parents	
 and	
 siblings	
 relaDons	
 are	
 defined	
 in	
 terms	

of	
 the	
 children	
 relaDon	

•  Thus,	
 the	
 frame	
 condiDon	
 has	
 only	
 to	
 consider	

children,	
 spouse	
 and	
 alive	
 relaDons	

28

Frame	
 CondiDon	
 Predicates	

pred	
 noChildrenChangeExcept	
 [ps:	
 set	
 Person	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 t,t':	
 Time]	
 {	

	
 	
 all	
 p:	
 Person	
 -­‐	
 ps	
 |	
 	

	
 	
 	
 	
 p.children.t'	
 =	
 p.children.t	

}	

	

pred	
 noSpouseChangeExcept	
 [ps:	
 set	
 Person	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 t,t':	
 Time]	
 {	

	
 	
 all	
 p:	
 Person	
 -­‐	
 ps	
 |	

	
 	
 	
 	
 p.spouse.t'	
 =	
 p.spouse.t	

}	

	

pred	
 noAliveChange	
 [t,t':	
 Time]	
 {	

	
 	
 alive.t’	
 =	
 alive.t	

}	

29

Example:	
 Marriage	

pred	
 getMarried[m:	
 Man,	
 w:	
 Woman,	
 t,t':	
 Time]	

{	

-­‐-­‐	
 preconditions	

	
 	
 m+w	
 in	
 alive.t	

	
 	
 no	
 (m+w).spouse.t	

	
 	
 not	
 BloodRelatives[m,	
 w,	
 t]	

-­‐-­‐	
 post-­‐conditions	

	
 	
 m.spouse.t'	
 =	
 w	

-­‐-­‐	
 frame	
 conditions	

	
 	
 	
 noChildrenChangeExcept[none,	
 t,	
 t’]	

	
 	
 noSpouseChangeExcept[m+w,	
 t,	
 t’]	

	
 	
 noAliveChange[t,	
 t’]	

}	

30

Instance	
 of	
 Marriage	

open	
 ordering	
 [Time]	
 as	
 T	

…	

	

pred	
 marriageInstance	
 {	

	
 some	
 t:	
 Time	
 |	
 	

	
 	
 some	
 m:	
 Man	
 |	
 some	
 w:	
 Woman	
 |	
 	

	
 	
 	
 	
 	
 getMarried[m,	
 w,	
 t,	
 T/next[t]	
]	

}	

run	
 {	
 marriageInstance	
 }	

31

Example:	
 Birth	
 from	
 Parents	

pred	
 isBornFromParents	
 [p:	
 Person,	
 m,w:	
 Person,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 t,t':	
 Time]	
 {	

	
 -­‐-­‐	
 Pre-­‐condition	

	
 	
 	
 	
 	
 m+w	
 in	
 alive.t	

	
 	
 	
 	
 	
 p	
 !in	
 alive.t	

	

	
 -­‐-­‐	
 Post-­‐condition	
 and	
 frame	
 condition	

	
 	
 	
 	
 	
 alive.t'	
 =	
 alive.t	
 +	
 p	

	
 	
 	
 	
 	
 m.children.t'	
 =	
 m.children.t	
 +	
 p	

	
 	
 	
 	
 	
 w.children.t'	
 =	
 w.children.t	
 +	
 p	

	

	
 -­‐-­‐	
 Frame	
 condition	

	
 	
 	
 	
 	
 noChildrenChangeExcept[m+w,	
 t,	
 t']	

	
 	
 	
 	
 	
 noSpouseChangeExcept[none,	
 t,	
 t']	

}	

32

Instance	
 of	
 Birth	

	

pred	
 birthInstance	
 {	

	
 some	
 t:	
 Time	
 |	
 	

	
 some	
 p1,	
 p2,	
 p3:	
 Person	
 |	
 	

	
 	
 	
 	
 isBornFromParents[p1,	
 p2,	
 p3,	
 t,	
 T/next[t]]	

}	

	

run	
 {	
 birthInstance	
 }	

	

33

Example:	
 Death	

pred	
 dies	
 [p:	
 Person,	
 t,t':	
 Time]	
 {	

	
 -­‐-­‐	
 Pre-­‐condition	

	
 	
 	
 	
 	
 p	
 in	
 alive.t	

	

	
 -­‐-­‐	
 Post-­‐condition	

	
 	
 	
 	
 	
 no	
 p.spouse.t'	

	
 	
 	
 	
 	
 	

	
 	
 -­‐-­‐	
 Post-­‐condition	
 and	
 frame	
 condition	

	
 	
 	
 	
 	
 alive.t'	
 =	
 alive.t	
 -­‐	
 p	

	
 	
 	
 	
 	
 all	
 s:	
 p.spouse.t	
 |	
 	

	
 	
 	
 	
 	
 	
 	
 s.spouse.t'	
 =	
 s.spouse.t	
 -­‐	
 p	

	

	
 -­‐-­‐	
 Frame	
 condition	

	
 	
 	
 	
 	
 noChildrenChangeExcept[none,	
 t,	
 t']	

	
 	
 	
 	
 	
 noSpouseChangeExcept[p	
 +	
 p.spouse.t,	
 t,	
 t']	

	

}	

34

Instance	
 of	
 Death	

	

pred	
 deathInstance	
 {	

	
 some	
 t:	
 Time|	
 	

	
 some	
 p:	
 Person	
 |	
 	

	
 	
 	
 	
 dies[p,	
 t,	
 T/next[t]]	

}	

	

run	
 {	
 deathInstance	
 }	

	

35

Specifying	
 TransiDon	
 Systems	

•  A	
 transiDon	
 system	
 can	
 be	
 defined	
 as	
 a	
 set	
 of	

execuDons:	
 	

	
 sequences	
 of	
 Dme	
 steps	
 generated	
 by	
 the	
 operators	

•  In	
 our	
 example,	
 for	
 every	
 execuDon:	

– The	
 first	
 Dme	
 step	
 saDsfies	
 some	
 iniDalizaDon	

condiDon	

– Each	
 pair	
 of	
 consecuDve	
 steps	
 are	
 related	
 by	
 	

•  a	
 birth	
 operaDon,	
 or	

•  a	
 death	
 operaDon,	
 or	

•  a	
 marriage	
 operaDon	

36

IniDal	
 State	
 SpecificaDon	

init	
 specifies	
 constraints	
 on	
 the	
 iniDal	
 state	

	

pred	
 init	
 [t:	
 Time]	
 {	

	
 no	
 children.t	

	
 no	
 spouse.t	

	
 #alive.t	
 >	
 2	

	
 	
 #Person	
 >	
 #alive.t	

}	

37

TransiDon	
 RelaDon	
 SpecificaDon	

trans	
 specifies	
 that	
 each	
 transiDon	
 is	
 a	
 consequence	
 of	
 the	

applicaDon	
 of	
 one	
 of	
 the	
 operators	
 to	
 some	
 individuals	

	

pred	
 trans	
 [t,t':	
 Time]	
 	
 {	

	
 	
 (some	
 m:	
 Man,	
 w:	
 Woman	
 |	
 	

	
 	
 	
 	
 getMarried	
 [m,	
 w,	
 t,	
 t'])	

	
 	
 or	
 	

	
 	
 (some	
 p:	
 Person,	
 m:	
 Man,	
 w:	
 Woman	
 |	
 	

	
 	
 	
 	
 isBornFromParents	
 [p,	
 m,	
 w,	
 t,	
 t'])	

	
 	
 or	
 	

	
 	
 (some	
 p	
 :Person	
 |	
 dies	
 [p,	
 t,	
 t'])	

}	

38

System	
 SpecificaDon	

System	
 specifies	
 that	
 each	
 execuDon	
 of	
 the	
 system	
 start	
 in	
 a	

state	
 saDsfying	
 the	
 iniDal	
 state	
 condiDon	
 and	
 move	
 from	

one	
 state	
 to	
 the	
 next	
 through	
 one	
 transiDon	
 at	
 a	
 Dme,	
 unDl	

it	
 reaches	
 the	
 final	
 state	

	

pred	
 System	
 {	

	
 	
 init[T/first]	

	
 	
 all	
 t:	
 Time	
 -­‐	
 T/last	
 |	
 trans[t,	
 T/next[t]]	

}	

run	
 {	
 System	
 }	

39

System	
 Invariants	

•  Many	
 of	
 the	
 facts	
 that	
 we	
 stated	
 in	
 our	
 staDc	
 model	

now	
 become	
 expected	
 system	
 invariants	

•  These	
 are	
 properDes	
 that	

–  should	
 hold	
 in	
 iniDal	
 states	

–  should	
 be	
 preserved	
 by	
 system	
 transiDons	

•  In	
 Alloy	
 we	
 can	
 check	
 that	
 a	
 property	
 is	
 invariant	
 (in	

a	
 given	
 scope)	
 by	
 	

–  encoding	
 it	
 as	
 a	
 formula	
 P	
 and	
 checking	

–  checking	
 the	
 asserDon	
 	
 	
 	
 	

System	
 =>	
 all	
 t:	
 Time	
 |	
 P	

40

Expected	
 Invariants:	
 Examples	

-­‐-­‐	
 People	
 cannot	
 be	
 their	
 own	
 ancestors	

assert	
 a1	
 {	
 System	
 =>	
 all	
 t:	
 Time	
 |	
 	

	
 	
 no	
 p:	
 Person	
 |	
 p	
 in	
 p.^(parents.t)	

}	

check	
 a1	
 for	
 8	

	

-­‐-­‐	
 No	
 one	
 can	
 have	
 more	
 than	
 one	
 father	
 or	
 mother	

assert	
 a2	
 {	
 System	
 =>	
 all	
 t:	
 Time	
 |	
 	

	
 	
 all	
 p:	
 Person	
 |	
 	

	
 	
 	
 	
 lone	
 (p.parents.t	
 &	
 Man)	
 and	
 	

	
 	
 	
 	
 lone	
 (p.parents.t	
 &	
 Woman)	
 	

}	

check	
 a2	
 for	
 8	
 	

41

Exercises	

•  Load	
 family-­‐7.als	

•  Execute	
 it	

•  Look	
 at	
 the	
 generated	
 instance	

•  Does	
 it	
 look	
 correct?	

•  What	
 if	
 anything	
 would	
 you	
 change	
 about	
 it?	

•  Check	
 each	
 of	
 the	
 given	
 asserDons	

•  Are	
 they	
 all	
 valid?	
 	

•  If	
 not,	
 how	
 would	
 you	
 change	
 the	
 model	
 to	
 fix	

that?	

42

