CS:5810
Formal Methods in Software
Engineering

Dynamic Models in Alloy

Copyright 2001-15, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelll.

Produced by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of lowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holder.

Overview

e Basics of dynamic models
— Modeling a system’s states and state transitions

— Modeling operations causing transitions

* Simple example of operations

Static Models

* So far we've used Alloy to define the allowable
values of state components

— values of sets
— values of relations

* A model instance is a set of state component
values that

— Satisfies the constraints defined by multiplicities,
fact, “realism” conditions, ...

Static Models

Person = {Matt, Sue}
Man = {Matt}

woman = {Sue}

Person = {Matt, Sue}

Man = {Matt}
woman = {Sue}
Married = {}
spouse = {}
children = {}
siblings = {}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(mMatt,Sean), (Sue,Sean)}
siblings = {}

Dynamic Models

» Static models allow us to describe the legal
states of a dynamic system

* We also want to be able to describe the legal
transitions between states
E.g.

— To get married one must be alive and not currently
married

— One must be alive to be able to die
— A person becomes someone’s child after birth

Example

Family Model

abstract sig Person {
children: set Person,

siblings: set Person

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

¥

State Transitions

* Two people get married

— At time t, spouse ={}

— At time t/, spouse = {(Matt, Sue), (Sue,Matt)}

= We add the notion of time in the relation spouse

Person = {Matt,Sue}
{Matt}

woman = {Sue}
Married = {}

{3

children =

Mah =

spouse =
{}

3+ Timet

siblings =

Person = {Matt, Sue}
Man = {Matt}
woman = {Sue}

Married = {Matt, Sue}
spouse = {(Matt, Sue), (Sue, Matt)}
{}
{}

children =

siblings =

Time t’

/

Modeling State Transitions

* Alloy has no predefined notion of state
transition

* However, there are several ways to model
dynamic aspects of a system in Alloy

A general and relatively simple way is to:

1. introduce a Time signature expressing time

2. add a time component to each relation that
changes over time

Family Model Signatures

abstract sig Person {
children: set Person,
siblings: set Person set

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married one

¥

Family Model Signhatures with Time

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

¥

10

Transitions

* Two people get married

— Attime t, Married ={}
— At time t/, Married ={Matt, Sue}

— Actually, we can’t have a time-dependent signature such as
Married because signatures are not time dependent.

Person =

woman =
Married
spouse =
children

siblings

{Matt,Sue}
Man = {Matt}

{Sue}

= {}

{}
= {}
= {}

Time t

Person = {Matt, Sue}
Man = {Matt}
woman = {Sue}
| married = {Matt, Sue}
spouse = {(Matt, Sue), (Sue, Matt)}
children = {}
siblings = {} Time t’

11

Transitions

A personis born

— At time t, Person = {}
— At time t/, Person = {Sue}

— We cannot add the notion being born to the signature
Person because signatures are not time dependent

Person =
Man = {}
woman =

spouse =

children

siblings

{}

{}

{}
= {}
= {}

Time t

Person = {Sue}

Man = {}

woman = {Sue}

spouse = {}

children = {}

siblings = {3 [imet’

12

Sighatures are Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

sig Man, Woman extends Person {}

“sipg Married in Person {

spouse: Mar

-> Time

13

Sighatures are Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

¥

sig Man, Woman extends Person {}

14

Revising Constraints

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

¥

sig Man, Woman extends Person {}

fun parents[] : Person->Person {~children}

15

Revising Constraints

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time
parents: Person set -> Time

¥

sig Man, Woman extends Person {}

—fun—parents|] < Porson_sPorson {ochildrent
fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

16

Revising Constraints

-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

¥

-- Two persons are blood relatives iff
-- they have a common ancestor
pred BloodRelatives [p, g: Person, t: Time]

{
}

some p.*(parents.t) & g.*(parents.t)

17

Revising Static Constraints

all t: Time | no p: Person
p in p.”(parents.t)

all t: Time | all p: Person |
lone (p.parents.t & Man)
and
lone (p.parents.t & Woman)

18

Revising Static Constraints

-- A person p's siblings are those people, other
-- than p, with the same parents as p

all t: Time | all p: Person |
p.siblings.t =
{ gq: Person - p | some g.parents.t and
p.parents.t = g.parents.t }

-- Each married man (woman) has a wife (husband)
all t: Time | all p: Person |

let s = p.spouse.t |
(p in Man implies s in Woman) and

(p in Woman implies s in Man)

19

Revising Static Constraints

all t: Time | no p: Person |
some p.spouse.t and
p.spouse.t in p.siblings.t

all t: Time | no p: Person |
let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]

20

Revising Static Constraints

all t: Time | all p, g: Person |
(some (p.children.t & g.children.t) and

p !=q)
implies
not BloodRelatives[p, q, t]

all t: Time |
spouse.t = ~(spouse.t)

21

Exercises

Load family-6.als

Execute it

Analyze the model

Look at the generated instance
Does it look correct?

What, if anything, would you change about
it?

Transitions

A person is born from
parents

— Add to alive relation

— Modify children/
parents relations

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}
siblings = {}

alive = {Matt, Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

alive = {Matt, Sue, Sean}

State Sequences

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}

children = {}
siblings = {}
alive = {Sue}

Man = {Matt, Sean}
woman = {Sue}

children = {}
siblings = {}
alive = {Sue, Mmatt}

Person = {Matt, Sue, Sean}

spouse = {(Matt,sSue), (Sue,Matt)}

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}
spouse = {}
children = {}
siblings = {}
alive = {}

Man = {Matt, Sean}
woman = {Sue}

children = {(Matt,Sean),
siblings = {}
alive = {Sue, Matt, Sean}

Person = {Matt, Sue, Sean}

spouse = {(Matt,Sue), (Sue,Matt)}

(Sue,Sean)}

Expressing Transitions in Alloy

A transition can be thought of as caused by the
application of an operator to the current state

An operator can be modeled as predicates between
two states:

1. the state right before the transition and
2. the state right after it

We define it as predicate with (at least) two formal
parameters: t, t’: Time

Constraints over time t (resp., £’) model the state
right before (resp., after) the transition

25

Expressing Transitions in Alloy

* Pre-condition constraints
— Describe the states to which the transition applies

e Post-condition constraints

— Describes the effects of the transition in generating
the next state

* Frame-condition constraints

— Describes what does not change between pre-state
and post-state of a transition

Distinguishing the pre-, post- and frame-conditions in
comments provides useful documentation

26

Example: Marriage

pred getMarried [m: Man, w: Woman, t,t':

m+w in alive.t

-- neither one is married

no (m+w).spouse.t

-- they are not be blood relatives
not BloodRelatives[m, w, t]

m.spouse.t’' = w

w.spouse.t' =m

Time] {

27

Frame Condition

How is each relation touched by marriage?
* 5relations:
— children, parents, siblings
— spouse
— alive
- parents and siblings relations are defined in terms
of the children relation

* Thus, the frame condition has only to consider
children, spouse and alive relations

28

Frame Condition Predicates

pred noChildrenChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.children.t' = p.children.t
}

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.spouse.t' = p.spouse.t
}

pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

¥

29

Example: Marriage

pred getMarried[m: Man, w: Woman, t,t': Time]

{

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

m.spouse.t’' = w

noChildrenChangeExcept[none, t, t’]
noSpouseChangeExcept[m+w, t, t’]
noAliveChange[t, t’]

30

Instance of Marriage

open ordering [Time] as T

pred marriageInstance {
some t: Time |
some m: Man | some w: Woman |
getMarried[m, w, t, T/next[t]]
}

run { marriagelnstance }

31

Example: Birth from Parents

pred isBornFromParents [p: Person, m,w: Person,

t,t': Time] {

m+w in alive.t
p !in alive.t

alive.t' = alive.t + p
m.children.t' = m.children.t + p
w.children.t' = w.children.t + p

noChildrenChangeExcept[m+w, t, t']
noSpouseChangeExcept[none, t, t']

32

Instance of Birth

pred birthInstance {
some t: Time |
some pl, p2, p3: Person |
isBornFromParents[pl, p2, p3, t, T/next[t]]

run { birthInstance }

33

Example: Death

pred dies [p: Person, t,t': Time] {

p in alive.t

no p.spouse.t'

alive.t' = alive.t - p
all s: p.spouse.t |
s.spouse.t' = s.spouse.t - p

noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[p + p.spouse.t, t, t']

Instance of Death

pred deathInstance {
some t: Time]|
some p: Person |
dies[p, t, T/next[t]]

¥

run { deathInstance }

35

Specifying Transition Systems

* A transition system can be defined as a set of
executions:

sequences of time steps generated by the operators

* In our example, for every execution:

— The first time step satisfies some initialization
condition

— Each pair of consecutive steps are related by
* a birth operation, or
e a death operation, or
* a marriage operation

Initial State Specification

1nit specifies constraints on the initial state

pred init [t: Time] {
no children.t
no spouse.t
#alive.t > 2
#Person > #alive.t

37

Transition Relation Specification

trans specifies that each transition is a consequence of the
application of one of the operators to some individuals

pred trans [t,t': Time] {

(some m: Man, w: Woman |
getMarried [m, w, t, t'])

or

(some p: Person, m: Man, w: Woman |
isBornFromParents [p, m, w, t, t'])

or

(some p :Person | dies [p, t, t'])

}

38

System Specification

System specifies that each execution of the system startin a
state satisfying the initial state condition and move from
one state to the next through one transition at a time, until
it reaches the final state

pred System {
init[T/first]
all t: Time - T/last | trans[t, T/next[t]]

}
run { System }

39

System Invariants

* Many of the facts that we stated in our static model
now become expected system invariants

 These are properties that
— should hold in initial states
— should be preserved by system transitions

* In Alloy we can check that a property is invariant (in
a given scope) by
— encoding it as a formula P and checking
— checking the assertion
System => all t: Time | P

40

Expected Invariants: Examples

assert al { System => all t: Time |

no p: Person | p in p.”~(parents.t)

}
check al for 8

assert a2 { System => all t: Time |
all p: Person |
lone (p.parents.t & Man) and
lone (p.parents.t & Woman)

}
check a2 for 8

41

Exercises

Load family-7.als

Execute it

Look at the generated instance

Does it look correct?

What if anything would you change about it?
Check each of the given assertions

Are they all valid?

If not, how would you change the model to fix
that?

