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Overview	
  

	
  

•  Basics	
  of	
  dynamic	
  models	
  
– Modeling	
  a	
  system’s	
  states	
  and	
  state	
  transiDons	
  

– Modeling	
  operaDons	
  causing	
  transiDons	
  

•  Simple	
  example	
  of	
  operaDons	
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StaDc	
  Models	
  

•  So	
  far	
  we’ve	
  used	
  Alloy	
  to	
  define	
  the	
  allowable	
  
values	
  of	
  state	
  components	
  
– values	
  of	
  sets	
  
– values	
  of	
  relaDons	
  

•  A	
  model	
  instance	
  is	
  a	
  set	
  of	
  state	
  component	
  
values	
  that	
  
– SaDsfies	
  the	
  constraints	
  defined	
  by	
  mulDpliciDes,	
  
fact,	
  “realism”	
  condiDons,	
  …	
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StaDc	
  Models	
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Person = {Matt, Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {} 

spouse = {} 

children = {} 

siblings = {} 

Person = {Matt, Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {Matt, Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {} 

siblings = {} 

Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

Married = {Matt, Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {(Matt,Sean), (Sue,Sean)} 

siblings = {} 



Dynamic	
  Models	
  

•  StaDc	
  models	
  allow	
  us	
  to	
  describe	
  the	
  legal	
  
states	
  of	
  a	
  dynamic	
  system	
  

•  We	
  also	
  want	
  to	
  be	
  able	
  to	
  describe	
  the	
  legal	
  
transiDons	
  between	
  states	
  
E.g.	
  
–  To	
  get	
  married	
  one	
  must	
  be	
  alive	
  and	
  not	
  currently	
  
married	
  

–  One	
  must	
  be	
  alive	
  to	
  be	
  able	
  to	
  die	
  
–  A	
  person	
  becomes	
  someone’s	
  child	
  a;er	
  birth	
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Example	
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abstract	
  sig	
  Person	
  {	
  
	
  children:	
  set	
  Person,	
  
	
  siblings:	
  set	
  Person	
  

}	
  	
  
	
  
sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  
	
  
sig	
  Married	
  in	
  Person	
  {	
  

	
  spouse:	
  one	
  Married	
  	
  
}	
  
 

Family Model 



State	
  TransiDons	
  
•  Two	
  people	
  get	
  married	
  

–  At	
  Dme	
  t,	
  spouse	
  =	
  {}	
  
–  At	
  Dme	
  t’,	
  spouse	
  =	
  {(MaU,	
  Sue),	
  (Sue,MaU)}	
  

⇒ We	
  add	
  the	
  noDon	
  of	
  Dme	
  in	
  the	
  relaDon	
  spouse	
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Person = {Matt,Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {} 

spouse = {}  

children = {} 

siblings = {} 

Person = {Matt, Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {Matt, Sue} 

spouse = {(Matt, Sue), (Sue, Matt)} 

children = {} 

siblings = {} Time t Time t’ 



Modeling	
  State	
  TransiDons	
  

•  Alloy	
  has	
  no	
  predefined	
  noDon	
  of	
  state	
  
transiDon	
  

•  However,	
  there	
  are	
  several	
  ways	
  to	
  model	
  
dynamic	
  aspects	
  of	
  a	
  system	
  in	
  Alloy	
  

•  A	
  general	
  and	
  relaDvely	
  simple	
  way	
  is	
  to:	
  	
  
1.  introduce	
  a	
  Time	
  signature	
  expressing	
  Dme	
  
2.  add	
  a	
  Dme	
  component	
  to	
  each	
  relaDon	
  that	
  

changes	
  over	
  Dme	
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Family	
  Model	
  Signatures	
  

9 

	
  
	
  
abstract	
  sig	
  Person	
  {	
  

	
  children:	
  set	
  Person,	
  
	
  siblings:	
  set	
  Person	
  set	
  

}	
  	
  
sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  
	
  
sig	
  Married	
  in	
  Person	
  {	
  

	
  spouse:	
  one	
  Married	
  one	
  
}	
  
	
  



Family	
  Model	
  Signatures	
  with	
  Time	
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sig	
  Time	
  {}	
  
	
  
abstract	
  sig	
  Person	
  {	
  

	
  children:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  siblings:	
  Person	
  set	
  -­‐>	
  Time	
  

}	
  	
  
sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  
	
  
sig	
  Married	
  in	
  Person	
  {	
  

	
  spouse:	
  Married	
  one	
  -­‐>	
  Time	
  
}	
  
	
  



TransiDons	
  
•  Two	
  people	
  get	
  married	
  

–  At	
  Dme	
  t,	
  	
  Married	
  =	
  {}	
  
–  At	
  Dme	
  t’,	
  	
  Married	
  =	
  {MaU,	
  Sue}	
  

–  Actually,	
  we	
  can’t	
  have	
  a	
  Dme-­‐dependent	
  signature	
  such	
  as	
  
Married	
  because	
  signatures	
  are	
  not	
  Dme	
  dependent.	
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Person = {Matt,Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {} 

spouse = {}  

children = {} 

siblings = {} 

Person = {Matt, Sue} 

Man = {Matt} 

Woman = {Sue} 

Married = {Matt, Sue} 

spouse = {(Matt, Sue), (Sue, Matt)} 

children = {} 

siblings = {} Time t Time t’ 



TransiDons	
  
•  A	
  person	
  is	
  born	
  
–  At	
  Dme	
  t,	
  Person	
  =	
  {}	
  
–  At	
  Dme	
  t’,	
  Person	
  =	
  {Sue}	
  

– We	
  cannot	
  add	
  the	
  noDon	
  being	
  born	
  to	
  the	
  signature	
  
Person	
  because	
  signatures	
  are	
  not	
  Dme	
  dependent	
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Person = {} 

Man = {} 

Woman = {} 

spouse = {}  

children = {} 

siblings = {} 

Person = {Sue} 

Man = {} 

Woman = {Sue} 

spouse = {} 

children = {} 

siblings = {} Time t Time t’ 



Signatures	
  are	
  StaDc	
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abstract	
  sig	
  Person	
  {	
  
	
  	
  children:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  siblings:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  spouse:	
  Person	
  lone	
  -­‐>	
  Time	
  
}	
  
sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  
	
  
sig	
  Married	
  in	
  Person	
  {	
  

	
  spouse:	
  Married	
  one	
  -­‐>	
  Time	
  
}	
  



Signatures	
  are	
  StaDc	
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abstract	
  sig	
  Person	
  {	
  
	
  	
  children:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  siblings:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  spouse:	
  Person	
  lone	
  -­‐>	
  Time	
  
	
  	
  alive:	
  set	
  Time	
  
}	
  
	
  
sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  
	
  



Revising	
  Constraints	
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abstract	
  sig	
  Person	
  {	
  
	
  	
  children:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  siblings:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  spouse:	
  Person	
  lone	
  -­‐>	
  Time,	
  
	
  	
  alive:	
  set	
  Time	
  
	
  
}	
  

sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  

fun	
  parents[]	
  :	
  Person-­‐>Person	
  {~children}	
  
	
  
	
  



Revising	
  Constraints	
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abstract	
  sig	
  Person	
  {	
  
	
  	
  children:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  siblings:	
  Person	
  set	
  -­‐>	
  Time,	
  
	
  	
  spouse:	
  Person	
  lone	
  -­‐>	
  Time,	
  
	
  	
  alive:	
  set	
  Time	
  
	
  	
  parents:	
  Person	
  set	
  -­‐>	
  Time	
  
}	
  

sig	
  Man,	
  Woman	
  extends	
  Person	
  {}	
  

fun	
  parents[]	
  :	
  Person-­‐>Person	
  {~children}	
  
fact	
  parentsDef	
  {	
  
	
  	
  all	
  t:	
  Time	
  |	
  parents.t	
  =	
  ~(children.t)	
  
}	
  



Revising	
  Constraints	
  
-­‐-­‐	
  Time-­‐dependent	
  parents	
  relation	
  

fact	
  parentsDef	
  {	
  
	
  	
  all	
  t:	
  Time	
  |	
  parents.t	
  =	
  ~(children.t)	
  
}	
  
	
  
-­‐-­‐	
  Two	
  persons	
  are	
  blood	
  relatives	
  iff	
  	
  
-­‐-­‐	
  they	
  have	
  a	
  common	
  ancestor	
  
pred	
  BloodRelatives	
  [p,	
  q:	
  Person,	
  t:	
  Time]	
  
{	
  
	
  	
  some	
  p.*(parents.t)	
  &	
  q.*(parents.t)	
  
}	
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Revising	
  Sta$c	
  Constraints	
  
-­‐-­‐	
  People	
  cannot	
  be	
  their	
  own	
  ancestors	
  

all	
  t:	
  Time	
  |	
  no	
  p:	
  Person	
  |	
  	
  
	
  	
  p	
  in	
  p.^(parents.t)	
  
	
  
-­‐-­‐	
  No	
  one	
  can	
  have	
  more	
  than	
  one	
  father	
  
-­‐-­‐	
  or	
  mother	
  

all	
  t:	
  Time	
  |	
  all	
  p:	
  Person	
  |	
  	
  
	
  	
  lone	
  (p.parents.t	
  &	
  Man)	
  	
  
	
  	
  and	
  	
  
	
  	
  lone	
  (p.parents.t	
  &	
  Woman)	
  	
  
	
  
...	
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Revising	
  Sta$c	
  Constraints	
  
-­‐-­‐	
  A	
  person	
  p's	
  siblings	
  are	
  those	
  people,	
  other	
  
-­‐-­‐	
  than	
  p,	
  with	
  the	
  same	
  parents	
  as	
  p	
  

all	
  t:	
  Time	
  |	
  all	
  p:	
  Person	
  |	
  	
  
	
  	
  p.siblings.t	
  =	
  	
  
	
  	
  {	
  q:	
  Person	
  -­‐	
  p	
  |	
  some	
  q.parents.t	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  p.parents.t	
  =	
  q.parents.t	
  }	
  
	
  
-­‐-­‐	
  Each	
  married	
  man	
  (woman)	
  has	
  a	
  wife	
  (husband)	
  	
  
all	
  t:	
  Time	
  |	
  all	
  p:	
  Person	
  |	
  	
  
	
  	
  let	
  s	
  =	
  p.spouse.t	
  |	
  
	
  	
  	
  (p	
  in	
  Man	
  implies	
  s	
  in	
  Woman)	
  and	
  
	
  	
  	
  (p	
  in	
  Woman	
  implies	
  s	
  in	
  Man)	
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Revising	
  Sta$c	
  Constraints	
  
-­‐-­‐	
  A	
  spouse	
  can't	
  be	
  a	
  sibling	
  

all	
  t:	
  Time	
  |	
  no	
  p:	
  Person	
  |	
  	
  
	
  	
  some	
  p.spouse.t	
  and	
  	
  
	
  	
  p.spouse.t	
  in	
  p.siblings.t	
  
	
  
	
  
-­‐-­‐	
  People	
  can't	
  be	
  married	
  to	
  a	
  blood	
  relative	
  

	
  	
  all	
  t:	
  Time	
  |	
  no	
  p:	
  Person	
  |	
  
	
  	
  	
  	
  let	
  s	
  =	
  p.spouse.t	
  |	
  
	
  	
  	
  	
  	
  	
  some	
  s	
  and	
  	
  
	
  	
  	
  	
  	
  	
  BloodRelatives[p,	
  s,	
  t]	
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Revising	
  Sta$c	
  Constraints	
  

-­‐-­‐	
  a	
  person	
  can't	
  have	
  children	
  with	
  	
  
-­‐-­‐	
  a	
  blood	
  relative	
  
all	
  t:	
  Time	
  |	
  all	
  p,	
  q:	
  Person	
  |	
  
	
  	
  (some	
  (p.children.t	
  &	
  q.children.t)	
  and	
  	
  
	
  	
  p	
  !=	
  q)	
  	
  
	
  	
  implies	
  	
  
	
  	
  not	
  BloodRelatives[p,	
  q,	
  t]	
  
	
  
-­‐-­‐	
  the	
  spouse	
  relation	
  is	
  symmetric	
  
all	
  t:	
  Time	
  |	
  
	
  	
  spouse.t	
  =	
  ~(spouse.t)	
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Exercises	
  

•  Load	
  family-­‐6.als	
  
•  Execute	
  it	
  
•  Analyze	
  the	
  model	
  

•  Look	
  at	
  the	
  generated	
  instance	
  
•  Does	
  it	
  look	
  correct?	
  
•  What,	
  if	
  anything,	
  would	
  you	
  change	
  about	
  
it?	
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TransiDons	
  

A	
  person	
  is	
  born	
  from	
  
parents	
  

–  Add	
  to	
  alive	
  relaDon	
  

– Modify	
  children/
parents	
  relaDons	
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Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {} 

siblings = {} 

alive = {Matt, Sue} 

Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {(Matt,Sean), (Sue,Sean)} 

siblings = {} 

alive = {Matt, Sue, Sean} 



State	
  Sequences	
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Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {} 

children = {} 

siblings = {} 

alive = {} 

Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {} 

children = {} 

siblings = {} 

alive = {Sue} 

Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {} 

siblings = {} 

alive = {Sue, Matt} 

Person = {Matt, Sue, Sean} 

Man = {Matt, Sean} 

Woman = {Sue} 

spouse = {(Matt,Sue), (Sue,Matt)} 

children = {(Matt,Sean), (Sue,Sean)} 

siblings = {} 

alive = {Sue, Matt, Sean} 



Expressing	
  TransiDons	
  in	
  Alloy	
  
•  A	
  transiDon	
  can	
  be	
  thought	
  of	
  as	
  caused	
  by	
  the	
  
applicaDon	
  of	
  an	
  operator	
  to	
  the	
  current	
  state	
  

•  An	
  operator	
  can	
  be	
  modeled	
  as	
  predicates	
  between	
  
two	
  states:	
  	
  
1.  the	
  state	
  right	
  before	
  the	
  transiDon	
  and	
  
2.  the	
  state	
  right	
  a;er	
  it	
  

•  We	
  define	
  it	
  as	
  predicate	
  with	
  (at	
  least)	
  two	
  formal	
  
parameters:	
  	
  t,	
  t’:	
  Time	
  

•  Constraints	
  over	
  Dme	
  t	
  (resp.,	
  t’)	
  model	
  the	
  state	
  
right	
  before	
  (resp.,	
  a;er)	
  the	
  transiDon	
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Expressing	
  TransiDons	
  in	
  Alloy	
  

•  Pre-­‐condiDon	
  constraints	
  
– Describe	
  the	
  states	
  to	
  which	
  the	
  transiDon	
  applies	
  

•  Post-­‐condiDon	
  constraints	
  
– Describes	
  the	
  effects	
  of	
  the	
  transiDon	
  in	
  generaDng	
  
the	
  next	
  state	
  

•  Frame-­‐condiDon	
  constraints	
  
– Describes	
  what	
  does	
  not	
  change	
  between	
  pre-­‐state	
  
and	
  post-­‐state	
  of	
  a	
  transiDon	
  

	
  Dis$nguishing	
  the	
  pre-­‐,	
  post-­‐	
  and	
  frame-­‐condi$ons	
  in	
  
comments	
  provides	
  useful	
  documenta$on	
  

26 



Example:	
  Marriage	
  
pred	
  getMarried	
  [m:	
  Man,	
  w:	
  Woman,	
  t,t':	
  Time]	
  {	
  
-­‐-­‐	
  preconditions	
  
	
  	
  	
  -­‐-­‐	
  m	
  and	
  w	
  must	
  be	
  alive	
  
	
  	
  m+w	
  in	
  alive.t	
  
	
  	
  -­‐-­‐	
  neither	
  one	
  is	
  married	
  
	
  	
  no	
  (m+w).spouse.t	
  
	
  	
  -­‐-­‐	
  they	
  are	
  not	
  be	
  blood	
  relatives	
  
	
  	
  not	
  BloodRelatives[m,	
  w,	
  t]	
  

-­‐-­‐	
  post-­‐conditions	
  
	
  	
  -­‐-­‐	
  w	
  is	
  m’s	
  wife	
  
	
  	
  m.spouse.t'	
  =	
  w	
  
	
  	
  -­‐-­‐	
  m	
  is	
  w’s	
  husband	
  
	
  	
  w.spouse.t'	
  =	
  m	
  

-­‐-­‐	
  frame	
  conditions	
  	
  
}	
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Frame	
  CondiDon	
  

How	
  is	
  each	
  relaDon	
  touched	
  by	
  marriage?	
  
•  5	
  relaDons	
  :	
  	
  
–  children,	
  parents,	
  siblings	
  
–  spouse	
  
–  alive	
  

•  parents	
  and	
  siblings	
  relaDons	
  are	
  defined	
  in	
  terms	
  
of	
  the	
  children	
  relaDon	
  

•  Thus,	
  the	
  frame	
  condiDon	
  has	
  only	
  to	
  consider	
  
children,	
  spouse	
  and	
  alive	
  relaDons	
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Frame	
  CondiDon	
  Predicates	
  
pred	
  noChildrenChangeExcept	
  [ps:	
  set	
  Person	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  t,t':	
  Time]	
  {	
  
	
  	
  all	
  p:	
  Person	
  -­‐	
  ps	
  |	
  	
  
	
  	
  	
  	
  p.children.t'	
  =	
  p.children.t	
  
}	
  
	
  
pred	
  noSpouseChangeExcept	
  [ps:	
  set	
  Person	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  t,t':	
  Time]	
  {	
  
	
  	
  all	
  p:	
  Person	
  -­‐	
  ps	
  |	
  
	
  	
  	
  	
  p.spouse.t'	
  =	
  p.spouse.t	
  
}	
  
	
  
pred	
  noAliveChange	
  [t,t':	
  Time]	
  {	
  
	
  	
  alive.t’	
  =	
  alive.t	
  
}	
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Example:	
  Marriage	
  

pred	
  getMarried[m:	
  Man,	
  w:	
  Woman,	
  t,t':	
  Time]	
  
{	
  
-­‐-­‐	
  preconditions	
  
	
  	
  m+w	
  in	
  alive.t	
  
	
  	
  no	
  (m+w).spouse.t	
  
	
  	
  not	
  BloodRelatives[m,	
  w,	
  t]	
  

-­‐-­‐	
  post-­‐conditions	
  
	
  	
  m.spouse.t'	
  =	
  w	
  

-­‐-­‐	
  frame	
  conditions	
  
	
  	
  	
  noChildrenChangeExcept[none,	
  t,	
  t’]	
  
	
  	
  noSpouseChangeExcept[m+w,	
  t,	
  t’]	
  
	
  	
  noAliveChange[t,	
  t’]	
  

}	
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Instance	
  of	
  Marriage	
  

open	
  ordering	
  [Time]	
  as	
  T	
  
…	
  
	
  
pred	
  marriageInstance	
  {	
  
	
  some	
  t:	
  Time	
  |	
  	
  

	
  	
  some	
  m:	
  Man	
  |	
  some	
  w:	
  Woman	
  |	
  	
  
	
  	
  	
  	
  	
  getMarried[m,	
  w,	
  t,	
  T/next[t]	
  ]	
  

}	
  
run	
  {	
  marriageInstance	
  }	
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Example:	
  Birth	
  from	
  Parents	
  
pred	
  isBornFromParents	
  [p:	
  Person,	
  m,w:	
  Person,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  t,t':	
  Time]	
  {	
  
	
  -­‐-­‐	
  Pre-­‐condition	
  

	
  	
  	
  	
  	
  m+w	
  in	
  alive.t	
  
	
  	
  	
  	
  	
  p	
  !in	
  alive.t	
  
	
  
	
  -­‐-­‐	
  Post-­‐condition	
  and	
  frame	
  condition	
  

	
  	
  	
  	
  	
  alive.t'	
  =	
  alive.t	
  +	
  p	
  
	
  	
  	
  	
  	
  m.children.t'	
  =	
  m.children.t	
  +	
  p	
  
	
  	
  	
  	
  	
  w.children.t'	
  =	
  w.children.t	
  +	
  p	
  
	
  
	
  -­‐-­‐	
  Frame	
  condition	
  

	
  	
  	
  	
  	
  noChildrenChangeExcept[m+w,	
  t,	
  t']	
  
	
  	
  	
  	
  	
  noSpouseChangeExcept[none,	
  t,	
  t']	
  
}	
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Instance	
  of	
  Birth	
  

	
  
pred	
  birthInstance	
  {	
  
	
  some	
  t:	
  Time	
  |	
  	
  
	
  some	
  p1,	
  p2,	
  p3:	
  Person	
  |	
  	
  

	
  	
  	
  	
  isBornFromParents[p1,	
  p2,	
  p3,	
  t,	
  T/next[t]]	
  
}	
  
	
  
run	
  {	
  birthInstance	
  }	
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Example:	
  Death	
  

pred	
  dies	
  [p:	
  Person,	
  t,t':	
  Time]	
  {	
  
	
  -­‐-­‐	
  Pre-­‐condition	
  

	
  	
  	
  	
  	
  p	
  in	
  alive.t	
  
	
  
	
  -­‐-­‐	
  Post-­‐condition	
  

	
  	
  	
  	
  	
  no	
  p.spouse.t'	
  
	
  	
  	
  	
  	
  	
  
	
  	
  -­‐-­‐	
  Post-­‐condition	
  and	
  frame	
  condition	
  
	
  	
  	
  	
  	
  alive.t'	
  =	
  alive.t	
  -­‐	
  p	
  
	
  	
  	
  	
  	
  all	
  s:	
  p.spouse.t	
  |	
  	
  
	
  	
  	
  	
  	
  	
  	
  s.spouse.t'	
  =	
  s.spouse.t	
  -­‐	
  p	
  
	
  
	
  -­‐-­‐	
  Frame	
  condition	
  

	
  	
  	
  	
  	
  noChildrenChangeExcept[none,	
  t,	
  t']	
  
	
  	
  	
  	
  	
  noSpouseChangeExcept[p	
  +	
  p.spouse.t,	
  t,	
  t']	
  
	
  
}	
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Instance	
  of	
  Death	
  

	
  
pred	
  deathInstance	
  {	
  
	
  some	
  t:	
  Time|	
  	
  
	
  some	
  p:	
  Person	
  |	
  	
  

	
  	
  	
  	
  dies[p,	
  t,	
  T/next[t]]	
  
}	
  
	
  
run	
  {	
  deathInstance	
  }	
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Specifying	
  TransiDon	
  Systems	
  
•  A	
  transiDon	
  system	
  can	
  be	
  defined	
  as	
  a	
  set	
  of	
  
execuDons:	
  	
  
	
  sequences	
  of	
  Dme	
  steps	
  generated	
  by	
  the	
  operators	
  

•  In	
  our	
  example,	
  for	
  every	
  execuDon:	
  
– The	
  first	
  Dme	
  step	
  saDsfies	
  some	
  iniDalizaDon	
  
condiDon	
  

– Each	
  pair	
  of	
  consecuDve	
  steps	
  are	
  related	
  by	
  	
  
•  a	
  birth	
  operaDon,	
  or	
  
•  a	
  death	
  operaDon,	
  or	
  
•  a	
  marriage	
  operaDon	
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IniDal	
  State	
  SpecificaDon	
  

init	
  specifies	
  constraints	
  on	
  the	
  iniDal	
  state	
  
	
  
pred	
  init	
  [t:	
  Time]	
  {	
  
	
  no	
  children.t	
  
	
  no	
  spouse.t	
  
	
  #alive.t	
  >	
  2	
  

	
  	
  #Person	
  >	
  #alive.t	
  
}	
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TransiDon	
  RelaDon	
  SpecificaDon	
  
trans	
  specifies	
  that	
  each	
  transiDon	
  is	
  a	
  consequence	
  of	
  the	
  

applicaDon	
  of	
  one	
  of	
  the	
  operators	
  to	
  some	
  individuals	
  
	
  
pred	
  trans	
  [t,t':	
  Time]	
  	
  {	
  
	
  	
  (some	
  m:	
  Man,	
  w:	
  Woman	
  |	
  	
  
	
  	
  	
  	
  getMarried	
  [m,	
  w,	
  t,	
  t'])	
  
	
  	
  or	
  	
  
	
  	
  (some	
  p:	
  Person,	
  m:	
  Man,	
  w:	
  Woman	
  |	
  	
  
	
  	
  	
  	
  isBornFromParents	
  [p,	
  m,	
  w,	
  t,	
  t'])	
  
	
  	
  or	
  	
  
	
  	
  (some	
  p	
  :Person	
  |	
  dies	
  [p,	
  t,	
  t'])	
  
}	
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System	
  SpecificaDon	
  

System	
  specifies	
  that	
  each	
  execuDon	
  of	
  the	
  system	
  start	
  in	
  a	
  
state	
  saDsfying	
  the	
  iniDal	
  state	
  condiDon	
  and	
  move	
  from	
  
one	
  state	
  to	
  the	
  next	
  through	
  one	
  transiDon	
  at	
  a	
  Dme,	
  unDl	
  
it	
  reaches	
  the	
  final	
  state	
  

	
  

pred	
  System	
  {	
  

	
  	
  init[T/first]	
  

	
  	
  all	
  t:	
  Time	
  -­‐	
  T/last	
  |	
  trans[t,	
  T/next[t]]	
  

}	
  

run	
  {	
  System	
  }	
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System	
  Invariants	
  

•  Many	
  of	
  the	
  facts	
  that	
  we	
  stated	
  in	
  our	
  staDc	
  model	
  
now	
  become	
  expected	
  system	
  invariants	
  

•  These	
  are	
  properDes	
  that	
  
–  should	
  hold	
  in	
  iniDal	
  states	
  
–  should	
  be	
  preserved	
  by	
  system	
  transiDons	
  

•  In	
  Alloy	
  we	
  can	
  check	
  that	
  a	
  property	
  is	
  invariant	
  (in	
  
a	
  given	
  scope)	
  by	
  	
  
–  encoding	
  it	
  as	
  a	
  formula	
  P	
  and	
  checking	
  
–  checking	
  the	
  asserDon	
  	
  	
  	
  	
  

System	
  =>	
  all	
  t:	
  Time	
  |	
  P	
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Expected	
  Invariants:	
  Examples	
  
-­‐-­‐	
  People	
  cannot	
  be	
  their	
  own	
  ancestors	
  

assert	
  a1	
  {	
  System	
  =>	
  all	
  t:	
  Time	
  |	
  	
  

	
  	
  no	
  p:	
  Person	
  |	
  p	
  in	
  p.^(parents.t)	
  

}	
  
check	
  a1	
  for	
  8	
  
	
  
-­‐-­‐	
  No	
  one	
  can	
  have	
  more	
  than	
  one	
  father	
  or	
  mother	
  
assert	
  a2	
  {	
  System	
  =>	
  all	
  t:	
  Time	
  |	
  	
  
	
  	
  all	
  p:	
  Person	
  |	
  	
  
	
  	
  	
  	
  lone	
  (p.parents.t	
  &	
  Man)	
  and	
  	
  
	
  	
  	
  	
  lone	
  (p.parents.t	
  &	
  Woman)	
  	
  
}	
  
check	
  a2	
  for	
  8	
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Exercises	
  

•  Load	
  family-­‐7.als	
  
•  Execute	
  it	
  
•  Look	
  at	
  the	
  generated	
  instance	
  
•  Does	
  it	
  look	
  correct?	
  
•  What	
  if	
  anything	
  would	
  you	
  change	
  about	
  it?	
  

•  Check	
  each	
  of	
  the	
  given	
  asserDons	
  
•  Are	
  they	
  all	
  valid?	
  	
  
•  If	
  not,	
  how	
  would	
  you	
  change	
  the	
  model	
  to	
  fix	
  
that?	
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