The University of lowa

CS:2820 (22C:22)

Object-Oriented Software
Development

Spring 2015

Classes and Objects

by
Cesare Tinelli



Objects

An object is an entity that has
® |dentity
® State

® Behavior



Object Identity

Essential feature that makes an object
distinct from another

Note:

® two distinct objects may as well be
identical in all other aspects

® two objects are distinct iff they have
different identities



Object State

A set of attributes (properties) together
with their values

® Attributes (aka fields in OO languages) are
usually static

® Attribute values are usually dynamic

® An object’s state can be seen as a mapping from
attributes to their values

® An object’'s behavior depends on its state

® The internal representation of the state is
usually hidden



Object Behavior

How an object acts on other objects, reacts
to other objects, and changes its state

® behavior is defined by a set of operations,
or messages, the objects responds to

® an operation is a service provided by the
object, possibly using services from other
objects



Common Operations

Modifier

p changes the object’s state

Selector

p accesses the state without changing it

Iterator

p accesses parts of the object in some
well defined order



Common Operations

Constructor

p creates an object and initializes its
state

Destructor

p destroys the object and releases its
resources to the system



Objects vs Classes

® Attributes and behavior are defined
collectively in a class, for all objects that
are instances of that class

® An object’s attributes and behavior are
then obtained from the class(es) it
Instantiates

® Only identity and attribute values are
specific to each object



Classes as Contracts

® We can characterize the behavior of an
object, the server, in terms of the services
it provides to other objects, the clients

® An object's class defines a contract
® that other objects depend on and
® that must be honored by the object

® This contract establishes all assumptions
a client may make about the behavior of
the server



Contracts and Inheritance

® Subclassing implies contract inheritance

® |f Bis a subclass of A, its own contract
should be a refinement of “A's contract:

p each instance of B should provide at least the

services provided by instances of A , and may
provide more

p a client of A should be able to work with
instances of B as if they were direct instances
of A (no surprises!)



Recall: Design by Contract

Each service provided by an object, the
server, has a set of

® preconditions, to be satisfied by the
client when invoking the service

® postconditions, guaranteed by the
server upon completion of the service

® invariants, properties maintained
between operations by the server



Inheriting Contracts

When a subclass modifies a service m
inherited from a superclass A4, it

® may relax but not strengthen m1's
preconditions

p i.e.,, may require less from the client, but not
more

® may strengthen but not relax n1's
postconditions

p i.e,, may offer more to the client, not less

® it must ensure that m preserve A's
Invariants



Liskov's Substitution Principle

Informal version:

If a program P uses
® objects of class A and

® Bis asubclass of A

replacing instances of A in P by instances
of B should not alter the expected

behavior of P



Liskov's Substitution Principle

More formal version
(behavioral subtyping):

For all types 7 and subtypes S of 7,

every property of interest satisfied by
objects of type 7 should be satisfied by

objects of type § as well



Objects as Machines

® Objects can be also understood as
ittle machines

® Jechnically, they are transition systems:

® They have an initial state and

® they move from one state to another in
response to external messages or
internal events



Objects as Machines

® Objects can be active or passive

® An active object runs independently

® it can change its state autonomously from
other objects

® it is sometimes called an actor

® A passive object changes its state only
when acted upon by another object



The Role of Classes/Objects
in Analysis and Design

Primary tasks in analysis and early design

|. ldentify relevant classes in the problem
domain

2. Figure out how instances of those
classes can cooperate to achieve the
desired functionality

This is an incremental, iterative process




