
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software
Development

!

Spring 2015

The Object Model	

by 	

Cesare Tinelli

• Built on the best ideas from previous
technologies	

• Influenced by major trends in software
engineering:	

1. increased focus on programming-in-
the-large	

2. evolution of high-level programming
languages

The Object Model
of Development

Object in Object-Oriented
Programming Languages

Entity that 	

• combines features of	

• procedures: performs computations	

• data: stores local state	

• is characterized by certain invariants

Essence of
OO Programming

• Programs are organized as cooperative
collections of objects	

• Each object is an instance of some class	

• Classes are related via an inheritance
relationship

OO Analysis

• Builds a model of the real-world using
an object-oriented view	

!

• Examines requirements in terms of
classes and objects found in the
problem domain

OO Design

• Leads to an object-oriented decomposition	

• Uses various notations (e.g., UML
diagrams) to express various views of the
system being designed:	

• logical (classes and objects) vs. physical
structure (modules and processes)	

• static vs. dynamic aspects

OO Software Development

• The products of OO Analysis serve as
starting points for OO Design	

!

• The products of OO Design serve as
blueprints for an OO implementation

The Object Model
of Development

Is built on the synergy among:

• abstraction	

• encapsulation	

• modularity	

• hierarchy	

• typing	

• concurrency	

• persistence	

Abstraction

• The process of identifying similarities
between objects, situations or processes
and ignoring their differences	

• A description, or specification, of
something that emphasizes some details
or properties while ignoring others	

• It focuses on the essential characteristics
of something relative to a viewer's
perspective

Abstraction

• Main trait: it can be understood and
analyzed independently on how it is
realized 	

• Quality: it is relative to its viewers/users
and their current needs

Establishing the right set of 	

abstractions for a problem domain is 	

the main challenge of design

Abstraction in OO Design

• We can characterize the behavior of an
object, the server, in terms of the services
it provides to other objects, the clients

Server

clientclient

client
client

client

client

Abstraction in OO Design

• An object's abstraction defines a
contract that 	

• other objects depend on and 	

• must be honored by the object 	

!

• The contract establishes all assumptions
a client may make about the behavior of
the server

Design by Contract

• Each service (operation) provided by an
object has a set of 	

• preconditions, to be satisfied by the
client when invoking the service	

• postconditions, guaranteed by the
server upon completion of the service	

• invariants, properties maintained
between operations

Abstraction Examples

• Temperature sensor	

• Point on a grid	

• Bank account

The Object Model
of Development

Is built on the synergy among:

✓abstraction	

• encapsulation	

• modularity	

• hierarchy	

• typing	

• concurrency	

• persistence	

Encapsulation

• The abstraction of an object should
precede any decisions about its
implementation	

• Implementation details should not be
accessible to clients	

• Encapsulation is the process of hiding
such details

Encapsulation
• Achieved in OO languages by hiding the

internals of an object (attributes and
method implementations)	

• It greatly facilitates changes that do not
impact the abstraction (i.e., the object's
contract)	

• Leads to a clear separation of concerns
(contract vs way to honor it)	

• Localizes design decisions likely to change

Encapsulation in OO Languages

• interface 	

captures outside view of the object
and its essential behavior	

• implementation 	

provides a representation of the
abstraction and the mechanisms to
achieve its behavior

Classes of objects described in two parts:

Encapsulation Examples

• Heater Controller	

• Point on plane	

• Queue

The Object Model
of Development

Is built on the synergy among:

✓abstraction	

✓encapsulation	

• modularity	

• hierarchy	

• typing	

• concurrency	

• persistence	

Modularity

• Modularization divides a software
systems into components, modules	

• Modules	

‣ may have connections to other modules 	

‣ but can be compiled separately	

‣ encapsulate sets of classes and objects	

‣ have an interface and an implementation

Crucial Point

• Classes and objects define a system's
logical structure	

• Modules define a system's physical
structure	

• The two structures are by and large
orthogonal

Module Decomposition
• Decomposing a system into module

presents challenging design decisions	

• There is a tension between the desire to
encapsulate abstractions vs need to
expose some of them to other modules	

• General approach: 	

‣ group together logically related classes and
objects and 	

‣ expose only those that are strictly
necessary to other modules

Modularity

• Desiderata of module decomposition: 	

‣ Modules 	

‣ designed and implemented independently	

‣ simple enough to be fully understandable	

‣ Ability to change a module's
implementation without 	

‣ knowing that of other modules 	

‣ affecting their behavior	

‣ Reuse

The Object Model
of Development

Is built on the synergy among:

✓abstraction	

✓encapsulation	

✓modularity	

• hierarchy	

• typing	

• concurrency	

• persistence	

Hierarchy

• A (partial) ordering of abstractions	

• Most important hierarchies	

‣ "is a" relation (class structure)	

‣ "part of" relation (object structure)

Class Structure

• The "is a" relation we consider is one
that relates classes	

• Examples	

A dog is a mammal	

A dog is a pet	

Fido is a dog (Fido is not a class)

Class Structure
When a B is an A we also say that 	

• B is a subclass of A:	

‣ every instance of B is an instance of A	

• B extends (or specializes) A:	

‣ B has all features and behaviors of A,
and possibly more	

• B inherits from A:	

‣ B inherits A's features and behaviors

Class Structure
When a B is an A we also say,
symmetrically, that 	

• A is a superclass of B:	

‣ every instance of B is an instance of A	

• A is extended by (or generalizes) B:	

‣ B has all features and behaviors of A,
and possibly more

Inheritance Hierarchies

• Single inheritance:	

‣ each class extends (inherits from) at

most one class	

‣ the hierarchy is a tree, or a forest	

• Multiple inheritance:	

‣ each class extends one or more classes	

‣ the hierarchy is graph

Inheritance

A

B

FED

C

Q

R

VUT

SP

Single inheritance Multiple inheritance

is a

The Object Model
of Development

Is built on the synergy among:

✓abstraction	

✓encapsulation	

✓modularity	

✓hierarchy	

• typing	

• concurrency	

• persistence	

Typing in
Programming Languages

• A type is a collection of values with same
structural or behavioral properties	

‣ Ex: integer, string, integer list, integer
array, integer and string pair, ...	

• The type system of a language	

• imposes a division of values into types 	

• defines typing restrictions for each
operation (allowed input types, resulting
output type)

Types in
Programming Languages

• A language is typed if it enforces a type
system	

• It is untyped otherwise, that is, if it allows
operations to be applicable to any values	

• Note:	

• Most highly-level languages are typed to
some degree (strongly/weakly typed) 	

• All assembly languages are untyped

Types in OO
Programming Languages

• Every class defines a type, consisting of
all objects that are instances of that
class	

• However, not all types are classes. E.g.:	

‣ Java's basic types (int, bool, ...)	

‣ Java's interfaces	

‣ Traits in Scala

Static vs Dynamic Typing

• Statically typed languages enforce
typing restrictions at compile time:	

‣ the type of each expression denoting a
value is determined and checked before
running the program	

• Dynamically typed languages enforce
typing restrictions at run time:	

‣ types are determined and checked as
expressions are evaluated

Static vs Dynamic Typing

• In statically typed languages types are
associated to expressions in the
source code	

‣ C++, Java, Scala, ML, Haskell,...	

• In dynamically typed languages types
are associated to values in memory	

‣ Python, Ruby, Perl, Javascript, ...

Enhanced Type Systems

• Overloading: same name for different
operations	

‣ E.g.: + for integer addition, string

concatenation, list append in Scala	

• Subtypes: types extending others	

‣ E.g.: subclassing in OO languages	

• Subtype polymorphism: same name
for inherited operations	

‣ E.g.: inherited methods in OO languages

Enhanced Type Systems

• Parametric types: structured types
with components of arbitrary type	

‣ E.g.: List[X], Array[X], List[(X,Y)] for any
types X,	 Y in Scala	

• Parametric polymorphism: generic
operations for parametric types	

‣ E.g.: reverse:	 (l:List[X])	 List[X],
head:(l:List[X])	 X in Scala

