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• Built on the best ideas from previous 
technologies	


• Influenced by major trends in software 
engineering:	


1. increased focus on programming-in-
the-large	


2. evolution of high-level programming 
languages

The Object Model 
of Development



Object in Object-Oriented 
Programming Languages

Entity that 	


• combines features of	


• procedures:  performs computations	


• data:            stores local state	


• is characterized by certain invariants



Essence of  
OO Programming

• Programs are organized as cooperative 
collections of objects	


• Each object is an instance of some class	


• Classes are related via an inheritance 
relationship



OO Analysis

• Builds a model of the real-world using 
an object-oriented view	


!

• Examines requirements in terms of 
classes and objects found in the 
problem domain



OO Design

• Leads to an object-oriented decomposition	


• Uses various notations (e.g., UML 
diagrams) to express various views of the 
system being designed:	


• logical (classes and objects) vs. physical 
structure (modules and processes)	


• static vs. dynamic aspects 



OO Software Development

• The products of OO Analysis serve as  
starting points for OO Design	


!

• The products of OO Design serve as 
blueprints for an OO implementation



The Object Model 
of Development

Is built on the synergy among:

• abstraction	


• encapsulation	


• modularity	


• hierarchy	


• typing	


• concurrency	


• persistence	




Abstraction

• The process of identifying similarities 
between objects, situations or processes 
and ignoring their differences	


• A description, or specification, of 
something that emphasizes some details 
or properties while ignoring others	


• It focuses on the essential characteristics 
of something relative to a viewer's 
perspective



Abstraction

• Main trait: it can be understood and 
analyzed independently on how it is 
realized 	


• Quality: it is relative to its viewers/users 
and their current needs 

Establishing the right set of 	

abstractions for a problem domain is 	


the main challenge of design 



Abstraction in OO Design

• We can characterize the behavior of an 
object, the server, in terms of the services 
it provides to other objects, the clients

Server
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client
client

client

client



Abstraction in OO Design

• An object's abstraction defines a 
contract that 	


• other objects depend on and 	


• must be honored by the object 	

!

• The contract establishes all assumptions 
a client may make about the behavior of 
the server



Design by Contract

• Each service (operation) provided by an 
object has a set of 	


• preconditions, to be satisfied by the 
client when invoking the service	


• postconditions, guaranteed by the 
server upon completion of the service	


• invariants, properties maintained 
between operations



Abstraction Examples

• Temperature sensor	


• Point on a grid	


• Bank account



The Object Model 
of Development

Is built on the synergy among:

✓abstraction	


• encapsulation	


• modularity	


• hierarchy	


• typing	


• concurrency	


• persistence	




Encapsulation

• The abstraction of an object should 
precede any decisions about its 
implementation	


• Implementation details should not be 
accessible to clients	


• Encapsulation is the process of hiding 
such details



Encapsulation
• Achieved in OO languages by hiding the 

internals of an object (attributes and 
method implementations)	


• It greatly facilitates changes that do not 
impact the abstraction (i.e., the object's 
contract)	


• Leads to a clear separation of concerns 
(contract vs way to honor it)	


• Localizes design decisions likely to change



Encapsulation in OO Languages

• interface 	

captures outside view of the object 
and its essential behavior	


• implementation 	

provides a representation of the 
abstraction and the mechanisms to 
achieve its behavior

Classes of objects described in two parts:



Encapsulation Examples

• Heater Controller	


• Point on plane	


• Queue



The Object Model 
of Development

Is built on the synergy among:

✓abstraction	


✓encapsulation	


• modularity	


• hierarchy	


• typing	


• concurrency	


• persistence	




Modularity

• Modularization divides a software 
systems into components, modules	


• Modules	


‣ may have connections to other modules 	


‣ but can be compiled separately	


‣ encapsulate sets of classes and objects	


‣ have an interface and an implementation



Crucial Point

• Classes and objects define a system's 
logical structure	


• Modules define a system's physical 
structure	


• The two structures are by and large 
orthogonal



Module Decomposition
• Decomposing a system into module 

presents challenging design decisions	


• There is a tension between the desire to 
encapsulate abstractions vs need to 
expose some of them to other modules	


• General approach: 	


‣ group together logically related classes and 
objects and 	


‣ expose only those that are strictly 
necessary to other modules



Modularity

• Desiderata of module decomposition: 	


‣ Modules 	


‣ designed and implemented independently	


‣ simple enough to be fully understandable	


‣ Ability to change a module's 
implementation without 	


‣ knowing that of other modules 	


‣ affecting their behavior	


‣ Reuse



The Object Model 
of Development

Is built on the synergy among:

✓abstraction	


✓encapsulation	


✓modularity	


• hierarchy	


• typing	


• concurrency	


• persistence	




Hierarchy

• A (partial) ordering of abstractions	


• Most important hierarchies	


‣ "is a" relation (class structure)	


‣ "part of" relation (object structure)



Class Structure

• The "is a" relation we consider is one 
that relates classes	


• Examples	


A dog is a mammal	


A dog is a pet	


Fido is a dog          (Fido is not a class)



Class Structure
When a B is an A we also say that 	


• B is a subclass of A:	


‣ every instance of B is an instance of A	


• B extends (or specializes) A:	


‣ B has all features and behaviors of A, 
and possibly more	


• B inherits from A:	


‣ B inherits A's features and behaviors



Class Structure
When a B is an A we also say, 
symmetrically, that 	


• A is a superclass of B:	


‣ every instance of B is an instance of A	


• A is extended by (or generalizes) B:	


‣ B has all features and behaviors of A, 
and possibly more



Inheritance Hierarchies

• Single inheritance:	

‣ each class extends (inherits from) at 

most one class	


‣ the hierarchy is a tree, or a forest	


• Multiple inheritance:	

‣ each class extends one or more classes	


‣ the hierarchy is graph



Inheritance
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Single inheritance Multiple inheritance

is a



The Object Model 
of Development

Is built on the synergy among:

✓abstraction	


✓encapsulation	


✓modularity	


✓hierarchy	


• typing	


• concurrency	


• persistence	




Typing in  
Programming Languages

• A type is a collection of values with same 
structural or behavioral properties	


‣ Ex:  integer,  string,  integer list,  integer 
array,  integer and string pair,  ...	


• The type system of a language	


• imposes a division of values into types 	


• defines typing restrictions for each 
operation (allowed input types, resulting 
output type)



Types in  
Programming Languages

• A language is typed if it enforces a type 
system	


• It is untyped otherwise, that is, if it allows 
operations to be applicable to any values	


• Note:	


• Most highly-level languages are typed to 
some degree (strongly/weakly typed) 	


• All assembly languages are untyped



Types in OO  
Programming Languages

• Every class defines a type, consisting of 
all objects that are instances of that 
class	


• However, not all types are classes. E.g.:	


‣ Java's basic types (int, bool, ...)	


‣ Java's interfaces	


‣ Traits in Scala



Static vs Dynamic Typing

• Statically typed languages enforce 
typing restrictions at compile time:	


‣ the type of each expression denoting a 
value is determined and checked before 
running the program	


• Dynamically typed languages enforce 
typing restrictions at run time:	


‣ types are determined and checked as 
expressions are evaluated



Static vs Dynamic Typing

• In statically typed languages types are 
associated to expressions in the 
source code	


‣ C++, Java, Scala, ML, Haskell,...	


• In dynamically typed languages types 
are associated to values in memory	


‣ Python, Ruby, Perl, Javascript, ...



Enhanced Type Systems

• Overloading: same name for different 
operations	

‣ E.g.:  + for integer addition, string 

concatenation, list append in Scala	


• Subtypes: types extending others	

‣ E.g.:  subclassing in OO languages	


• Subtype polymorphism: same name 
for inherited operations	

‣ E.g.:  inherited methods in OO languages 



Enhanced Type Systems

• Parametric types: structured types 
with components of arbitrary type	


‣ E.g.:  List[X],  Array[X],  List[(X,Y)] for any 
types X,	  Y in Scala	


• Parametric polymorphism: generic 
operations for parametric types	


‣ E.g.:  reverse:	  (l:List[X])	  List[X],           
head:(l:List[X])	  X    in Scala


