
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software
Development

!

Spring 2015

Software Complexity	

by 	

Cesare Tinelli

• Software systems are complex
artifacts	

• Failure to master this complexity
results in projects that 	

• are late	

• go over budget	

• do not meet requirements

Complexity

http://www.webreference.com/programming/java/complexity/#

• The physical world is full of complex
systems (both natural and man-made)	

• Software’s complexity is however
fundamentally different:	

• Software is unbound by physical
constraints	

• Industrial(-strength) software exhibits a
rich set of behaviors

Complexity

• Process Control (oil, gas, water, ...)	

• Transportation (air traffic control, ...)	

• Health Care (patient monitoring, device
control, ...) 	

• Finance (automatic trading, bank security, ...) 	

• Defense (intelligence, weapons control, ...) 	

• Manufacturing (precision milling,
assembly, ...)	

• ...

Industrial Software

Why Software Is
Inherently Complex

1. Complexity of problem domain	

2. Difficulty of managing development
process	

3. Flexibility afforded by software	

4. Difficulty of characterizing discrete
system behavior

http://www.webreference.com/programming/java/complexity/2.html#

Complexity of
Problem Domain

• Many, often contradictory, requirements	

• functional (what must be done)	

• non-functional (usability, cost,
performance, consumption,...)	

• Communication gap between customers
and developers	

• Evolving requirements

Difficulty of Managing
Development Process

• Fundamental task of software
development: 	

engineering the illusion of simplicity	

 	

• However, ...

Difficulty of Managing
Development Process

• Modern systems are huge (106 LOC, 102

modules)	

• Development team is necessary	

• More developers =>	

• more complex communication 	

• more difficult coordination	

• harder to maintain design unity/integrity

Flexibility Afforded
by Software

• Software is the ultimate flexible product	

• It is technically possible for any developer
to create anything with it	

• This is both a blessing and a curse	

• Other industries have specialization, codes
and quality standards	

• Software development remains a mostly
artisanal labor-intensive business

Difficulty of Characterizing
Discrete Systems Behavior

• Physical (analog) systems exhibit
continuous behavior	

• Small external perturbations produce
small changes in behavior	

• Software (digital) systems exhibit
discrete behavior	

• Small changes in input can produce
large changes in output

Difficulty of Characterizing
Discrete Systems Behavior

• Discrete systems have a combinatorial
state explosion	

• Describing their behavior precisely and
formally is very challenging in general	

• Most software professionals are poorly
trained for that	

• Testing for flaws is intrinsically insufficient

Common Features of
Good Complex Systems

1. Nearly decomposable, hierarchic
structure	

2. Primitive components	

3. Separation of concerns	

4. Combination of common patterns	

5. Stable intermediate forms

• Many hierarchies can be found in a
complex system	

• Most important for us:	

• object structure ("part of" relation)	

• class structure ("is a" relation)	

• We refer to them together as the
system's architecture

Organized Complexity

Canonical Form of
a Complex System

• Classes capture
common features
of a set of objects	

• Each object is an
instance of a class 	

• Objects are
composed of and
interact with
other objects

Successful Complex
Software Systems

• Exhibit the 5 attributes characterizing
good complex systems 	

• Have well designed and built (i) class
and (ii) object structures	

(i) captures common features and
behavior within a system	

(ii) illustrates how different objects
collaborate with one another

The Software Development
Predicament

• The complexity of software systems is
ever increasing	

• The human ability to cope with
complexity is fundamentally limited	

• Time-honored technique to master
complexity: divide et impera	

• Decomposition and abstraction are key

Two Alternative
Decomposition Approaches

1. Algorithmic Decomposition 	

Each component denotes a major step
in the system's overall process	

2. Object-Oriented Decomposition	

Each component denotes a major
agent in the system's overall process	

Design of a program that updates 	

the content of a master file

Design of a program that updates 	

the content of a master file

Main Advantages of
OO Decomposition

It facilitates	

• reuse of components and mechanisms	

• system evolution over time	

• separation of concerns

The Role of Design in
Software Development	

Construct a system that [Mostow]:	

• Satisfies a given (perhaps informal) functional
specification	

• Conforms to limitations of the target medium	

• Meets implicit or explicit requirements on
performance and resource usage	

• Satisfies implicit or explicit design criteria on the
form of the artifact	

• Satisfies restrictions on the design process itself,
such as its length or cost, or the tools available	

The Importance of
Model Building in Design

• Widespread in all engineering disciplines	

• Appeals to the principles of abstraction,
decomposition, and hierarchy	

• Models 	

- can be evaluated and modified before
the actual system is built	

- allow us to focus on important aspects
by abstracting away irrelevant details

Basic Elements of Software	

 Design Methodologies

Notation The language for expressing
models	

Process The activities leading to the
orderly construction of a system's model	

Tools The artifacts that facilitate the
creation and validation of models	

Effective OO Design
and Development

Requires mastery of these underlying
principles:

• abstraction	

• encapsulation	

• modularity	

• hierarchy	

• typing	

• concurrency	

• persistence	

1. G. Booch et al. Object-Oriented Analysis
and Design with Applications, 3rd Edition.
Addison-Wesley, 2007.

References

