The University of lowa

22C:22 (CS:2820)

Object-Oriented Software
Development

Fall 2013
Software Complexity

by
Cesare Tinelli

Complexity

® Software systems are complex
artifacts

® Failure to master this complexity
results in projects that

® are late
® go over budget
® do not meet requirements

Thursday, 24 October 13

http://www.webreference.com/programming/java/complexity/#
http://www.webreference.com/programming/java/complexity/#

Complexity

® The physical world is full of complex
systems (both natural and man-made)

® Software’s complexity is however
fundamentally different:

® Software is unbound by physical
constraints

® |ndustrial(-strength) software exhibits a
rich set of behaviors

Industrial Software

® Process Control (oil, gas, water, ...)
® Transportation (air traffic control, ...)

® Health Care (patient monitoring, device
control, ...)

® Finance (automatic trading, bank security, ...)
® Defense (intelligence, weapons control, ...)

® Manufacturing (precision milling,
assembly, ...)

Thursday, 24 October 13

Why Software Is
Inherently Complex

|. Complexity of problem domain

2. Difficulty of managing development
process

3. Flexibility afforded by software

4. Difficulty of characterizing discrete
system behavior

http://www.webreference.com/programming/java/complexity/2.html#
http://www.webreference.com/programming/java/complexity/2.html#

Complexity of
Problem Domain

® Many, often contradictory, requirements

® functional (what must be done)

® non-functional (usability, cost,
performance, consumption,...)

® Communication gap between customers
and developers

® Evolving requirements

Thursday, 24 October 13

Difficulty of Managing
Development Process

® Fundamental task of software
development:

engineer the illusion of simplicity

® However, ...

Difficulty of Managing
Development Process

® Modern systems are huge (106 LOC, 102
modules)

® Development team is necessary

® More developers =>

® more complex communication
® more difficult coordination
® harder to maintain design unity/integrity

Flexibility Afforded
by Software

Software is the ultimate flexible product

It is technically possible for any developer
to create anything with it

This is both a blessing and a curse

Other industries have specialization, codes
and quality standards

Software development remains a mostly
artisanal labor-intensive business

Difficulty of Characterizing
Discrete Systems Behavior

® Physical (analog) systems exhibit
continuous behavior

® Small external perturbations produce
small changes in behavior

® Software (digital) systems exhibit
discrete behavior

® Small changes in input can produce
large changes in output

Difficulty of Characterizing
Discrete Systems Behavior

® Discrete systems have a combinatorial
state explosion

® Describing their behavior precisely and
formally is very challenging in general

® Most software professionals are poorly
trained for that

® Testing for flaws is intrinsically insufficient

Common Features of
Good Complex Systems

|. Nearly decomposable, hierarchic
structure

2. Primitive components
3. Separation of concerns
4. Combination of common patterns

5. Stable intermediate forms

Organized Complexity

® Many hierarchies can be found in a
complex system

® Most important for us:
® object structure ("part of" relation)

® class structure ('is a" relation)

® We refer to them together as the
system's architecture

Thursday, 24 October 13

Canonical Form of
a Complex System

Classes capture
common features
of a set of objects

Each object is an
instance of a class

Objects are
composed of and
interact with
other objects

) QBO Canonical Form

Thursday, 24 October 13

Successful Complex
Software Systems

® Exhibit the 5 attributes characterizing
good complex systems

® Have well designed and built (i) class
and (ii) object structures

(i) captures common features and
behavior within a system

(ii) illustrates how different objects
collaborate with one another

The Software Development
Predicament

® The complexity of software systems is
ever increasing

® The human ability to cope with
complexity is fundamentally limited

® Time-honored technique to master
complexity: divide et impera

® Decomposition and abstraction are key

Two Alternative
Decomposition Approaches

|. Algorithmic Decomposition

Each component denotes a major step
in the system's overall process

2. Object-Oriented Decomposition

Each component denotes a major
agent in the system's overall process

Upadate

‘=
| ! } } :)
Get master Get formated Maxh Updase Put unmatchaed Put new
ares updae master master area
Get OK Expand Getvald | | Reformat Put formaned Format
master cars master output
Get old master Valdate Ean G et sequenced Acd Put new
record chaecksum chadksum master record
Getupdae Seq
carg chedk

Figure 1-3 Algorithmic Decomposition

Design of a program that updates
the content of a master file

Thursday, 24 October 13

Undate

~— Get Fornased Updae File of
+ MastorFile | ——— | Updates
0
.o
Get Put Create Md'ch | G Redomna
|
_ |
o o
\ v
S~
gmstcr | s Vaid Add \.\. Update to
ecord ~-~,_.- Card
~ Checksum

Figure 1-4 Object-Oriented Decomposition

Design of a program that updates
the content of a master file

Thursday, 24 October 13

Main Advantages of
OO Decomposition

It facilitates
® reuse of components and mechanisms
® system evolution over time

® separation of concerns

The Role of Design in
Software Development

Construct a system that [Mostow]:

® Satisfies a given (perhaps informal) functional
specification

® Conforms to limitations of the target medium

® Meets implicit or explicit requirements on
performance and resource usage

® Satisfies implicit or explicit design criteria on the
form of the artifact

® Satisfies restrictions on the design process itself,
such as its length or cost, or the tools available

Thursday, 24 October 13

The Importance of
Model Building in Design

® \Widespread in all engineering disciplines

® Appeals to the principles of abstraction,
decomposition, and hierarchy

® Models

® can be evaluated and modified before the
actual system is built

® allow us to focus on important aspects by
abstracting away irrelevant details

Basic Elements of Software
Design Methodologies

Notation The language for expressing
models

Process The activities leading to the
orderly construction of a system's model

Tools The artifacts that facilitate the
creation and validation of models

Effective OO Design
and Development

Requires mastery of these underlying
principles:

® abstraction ® typing
® encapsulation ® concurrency
® modularity ® persistence

® hierarchy

References

|. G.Booch et al. Object-Oriented Analysis
and Design with Applications, 3rd Edition.

Addison-Wesley, 2007.

