
The University of Iowa
22C:22 (CS:2820) 

Object-Oriented Software 
Development

Fall 2013

Software Complexity
by 

Cesare Tinelli

Thursday, 24 October 13



• Software systems are complex 
artifacts

• Failure to master this complexity 
results in projects that 

• are late
• go over budget
• do not meet requirements

Complexity

Thursday, 24 October 13

http://www.webreference.com/programming/java/complexity/#
http://www.webreference.com/programming/java/complexity/#


• The physical world is full of complex 
systems (both natural and man-made)

• Software’s complexity is however 
fundamentally different:

• Software is unbound by physical 
constraints

• Industrial(-strength) software exhibits a 
rich set of behaviors

Complexity
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• Process Control (oil, gas, water, ...)

• Transportation (air traffic control, ...)

• Health Care (patient monitoring, device 
control, ...) 

• Finance (automatic trading, bank security, ...) 

• Defense (intelligence, weapons control, ...) 

• Manufacturing (precision milling, 
assembly, ...)

• ...

Industrial Software
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Why Software Is 
Inherently Complex

1. Complexity of problem domain

2. Difficulty of managing development 
process

3. Flexibility afforded by software

4. Difficulty of characterizing discrete 
system behavior
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Complexity of 
Problem Domain

• Many, often contradictory, requirements

• functional (what must be done)

• non-functional (usability, cost, 
performance, consumption,...)

• Communication gap between customers 
and developers

• Evolving requirements 
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Difficulty of Managing 
Development Process

• Fundamental task of software 
development: 

engineer the illusion of simplicity

 

• However, ...
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Difficulty of Managing 
Development Process

• Modern systems are huge (106 LOC, 102 

modules)

• Development team is necessary

• More developers  =>

• more complex communication 

• more difficult coordination

• harder to maintain design unity/integrity
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Flexibility Afforded 
by Software

• Software is the ultimate flexible product

• It is technically possible for any developer 
to create anything with it

• This is both a blessing and a curse

• Other industries have specialization, codes 
and quality standards

• Software development remains a mostly 
artisanal labor-intensive business
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Difficulty of Characterizing 
Discrete Systems Behavior

• Physical (analog) systems exhibit 
continuous behavior

• Small external perturbations produce 
small changes in behavior

• Software (digital) systems exhibit 
discrete behavior

• Small changes in input can produce 
large changes in output
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Difficulty of Characterizing 
Discrete Systems Behavior

• Discrete systems have a combinatorial 
state explosion

• Describing their behavior precisely and 
formally is very challenging in general

• Most software professionals are poorly 
trained for that

• Testing for flaws is intrinsically insufficient
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Common Features of 
Good Complex Systems

1. Nearly decomposable, hierarchic 
structure

2. Primitive components

3. Separation of concerns

4. Combination of common patterns

5. Stable intermediate forms
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• Many hierarchies can be found in a 
complex system

• Most important for us:

• object structure ("part of" relation)

• class structure ("is a" relation)

• We refer to them together as the 
system's architecture

Organized Complexity
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Canonical Form of 
a Complex System

• Classes capture 
common features 
of a set of objects

• Each object is an 
instance of a class 

• Objects are 
composed of and 
interact with 
other objects
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Successful Complex 
Software Systems

• Exhibit the 5 attributes characterizing 
good complex systems 

• Have well designed and built (i) class 
and (ii) object structures

(i) captures common features and 
behavior within a system

(ii) illustrates how different objects 
collaborate with one another
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The Software Development 
Predicament

• The complexity of software systems is 
ever increasing

• The human ability to cope with 
complexity is fundamentally limited

• Time-honored technique to master 
complexity: divide et impera

• Decomposition and abstraction are key
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Two Alternative 
Decomposition Approaches

1. Algorithmic Decomposition 

Each component denotes a major step 
in the system's overall process

2. Object-Oriented Decomposition

Each component denotes a major 
agent in the system's overall process
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Design of a program that updates 
the content of a master file
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Design of a program that updates 
the content of a master file
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Main Advantages of 
OO Decomposition

It facilitates

• reuse of components and mechanisms

• system evolution over time

• separation of concerns
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The Role of Design in 
Software Development

Construct a system that [Mostow]:

• Satisfies a given (perhaps informal) functional 
specification

• Conforms to limitations of the target medium

• Meets implicit or explicit requirements on 
performance and resource usage

• Satisfies implicit or explicit design criteria on the 
form of the artifact

• Satisfies restrictions on the design process itself, 
such as its length or cost, or the tools available
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The Importance of 
Model Building in Design

• Widespread in all engineering disciplines

• Appeals to the principles of abstraction, 
decomposition, and hierarchy

• Models 

• can be evaluated and modified before the 
actual system is built

• allow us to focus on important aspects by 
abstracting away irrelevant details
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Basic Elements of Software
 Design Methodologies

Notation  The language for expressing 
models

Process  The activities leading to the 
orderly construction of a system's model

Tools  The artifacts that facilitate the 
creation and validation of models
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Effective OO Design 
and Development

Requires mastery of these underlying 
principles:

• abstraction

• encapsulation

• modularity

• hierarchy

• typing

• concurrency

• persistence
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