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Introduction

Combinatorica is a Standard Mathematica Add−On written in 1989 by Steven Skiena. It 
has not been updated since. It has about 230 functions for doing computational discrete 
mathematics. 
Feedback from users, our own expectations of what Combinatorica should be able to 
do, various advances in graph theory and combinatorics, faster machines, and better 
versions of Mathematica are factors that have motivated this rewrite. About 80% of the 
functions have been rewritten and the package now contains about 350 functions. 
The new Combinatorica provides functions for enumerating, selecting, ranking, and 
unranking various combinatorial objects such as permutations, combinations, integer 
partitions, set partitions, Young tableaux, trees, and graphs. It also provides functions 
to generate various classes of graphs and provides functions for all the standard graph 
algorithms. The specific ways in which the new Combinatorica improves over the old 
version are as follows:

− Improved graph data structure, especially tuned for sparse graphs
− Functions provided for additional topics such as Set Partitions and Polya The-

ory
− Better graphics, with graph drawing significantly improved
− Many functions substantially speeded up
− Many old functions now have additonal functionality providing users greater 

flexibility,  ease of use, and more error checking
− New graph instances and graph classes
− Many miscellaneous new functions

Each of these items is examined below in some detail.



Old Combinatorica vs New Combinatorica

Better Graph Data Structure

A graph is now represented as a triple, the first element is an edge list, the second ele-
ment is the embedding of the vertices, and the third element is optional graphics infor-
mation. The main difference is that the adjacency matrix representation has been 
replaced by an edge list representation. The implications of this change are felt through-
out the package − in running time improvements, memory savings, increased functional-
ity, and better graph drawings. The package can now work with graphs that are about 
50 times larger than graphs that Old Combinatorica could deal with.

g � CompleteGraph 4

� Graph: � 6, 4, Undirected � �

g 1

1, 2 , 1, 3 , 1, 4 , 2, 3 , 2, 4 , 3, 4

g 2

0, 1. , � 1., 0 , 0, � 1. , 1., 0

g 0

Graph

g � SetGraphOptions g, VertexColor � � Red, EdgeColor � � Blue

� Graph: � 6, 4, Undirected � �
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ShowGraph g

� Graphics �

g � SetGraphOptions g,
1, 2 , VertexStyle � � Disc Large , VertexColor � � Green

� Graph: � 6, 4, Undirected � �
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ShowGraph g, PlotRange � Large 0.05

� Graphics �

Length g

4

g 1

1, 2 , 1, 3 , 1, 4 , 2, 3 , 2, 4 , 3, 4

g 2

0, 1. , VertexStyle � Disc Large , VertexColor � RGBColor 0., 1., 0. ,
� 1., 0 , VertexStyle � Disc Large , VertexColor � RGBColor 0., 1., 0. ,
0, � 1. , 1., 0
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g 3

VertexColor � RGBColor 1., 0., 0.

g 4

EdgeColor � RGBColor 0., 0., 1.

This data structure allows us to store graphics information that pertains to the entire 
graph or to individual elements such as edges and vertices.

For sparse graphs the savings in memory is dramatic. For dense graphs there is no signif-
icant difference in memory usage.

g � DiscreteMath‘OldCombinatorica‘GridGraph 20, 20 ;

ByteCount g

2593664

g � GridGraph 20, 20 ; ByteCount g

61224
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h � SetGraphOptions g, VertexColor � Red, EdgeColor � Blue ;
ShowGraph h, Background � Yellow

� Graphics �

ByteCount h

61432

g � DiscreteMath‘OldCombinatorica‘RandomGraph 100, .5 ; ByteCount g

168448

g � RandomGraph 100, .5 ; ByteCount g

219812
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Additional topics

A number of functions relating to Polya theory and set partitions have been added to 
the new Combinatorica. 

	 Polya Theory

Groups commonly used in Polya theory can now be generated.

? DihedralGroup

DihedralGroup n returns the dihedral group
on n symbols. Note that the order of this group is 2n.

DihedralGroup 4

1, 2, 3, 4 , 4, 1, 2, 3 , 3, 4, 1, 2 , 2, 3, 4, 1 ,
4, 3, 2, 1 , 3, 2, 1, 4 , 2, 1, 4, 3 , 1, 4, 3, 2

The cycle index of groups commonly used in Polya theory can now be computed.

? SymmetricGroupIndex

SymmetricGroupIndex n, x returns the cycle index of the symmetric group
on n symbols, expressed as a polynomial in x 1 , x 2 , ..., x n .

SymmetricGroupIndex 6, x

x 1 6

 
 
 
 
 
 
 
 
 
 
 
 
 
 

720

� 1
 
 
 
 
 
 

48

x 1 4 x 2 � 1
 
 
 
 
 
 

16

x 1 2 x 2 2 � x 2 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 

48

� 1
 
 
 
 
 
 

18

x 1 3 x 3 �
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18

� 1
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x 2 x 4 � 1
 
 
 


5
x 1 x 5 � x 6
 
 
 
 
 
 
 
 
 
 
 
 


6

? DihedralGroupIndex

DihedralGroupIndex n, x returns the cycle index of the dihedral group
on n symbols, expressed as a polynomial in x 1 , x 2 , ...,x n .
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DihedralGroupIndex 10, y

y 1 10
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� y 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


5

Non−isomorphic instances of various combinatorial objects can now be counted and enumerated. First we show examples 
involving graphs.

? GraphPolynomial

GraphPolynomial n, x returns a polynomial in x in which the
coefficient of x^m is the number of non � isomorphic graphs with
n vertices and m edges. GraphPolynomial n, x, Directed returns
a polynomial in x in which the coefficient of x^m is the number
of non � isomorphic directed graphs with n vertices and m edges

GraphPolynomial 6, x

1 � x � 2 x2 � 5 x3 � 9 x4 � 15 x5 � 21 x6 � 24 x7 �

24 x8 � 21 x9 � 15 x10 � 9 x11 � 5 x12 � 2 x13 � x14 � x15

? NumberOfGraphs

NumberOfGraphs n returns the number of non � isomorphic undirected
graphs with n vertices. NumberOfGraphs n, m returns the number
of non � isomorphic undirected graphs with n vertices and m edges.

Table NumberOfGraphs i , i, 1, 15 TableForm

1
2
4
11
34
156
1044
12346
274668
12005168
1018997864
165091172592
50502031367952
29054155657235488
31426485969804308768
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ShowGraphArray ListGraphs 6, 3 , Background � � LightBlue

� GraphicsArray �

Now we show examples involving "necklaces." In the first example below, we show all the distinct necklaces with 5 
beads, colored red and blue.

? ListNecklaces

ListNecklaces n, c, Cyclic returns all distinct necklaces
whose beads are colored by colors from c. Here c is a
list of n, not necessarily distinct colors and two colored
necklaces are considered equivalent if one can be obtained
by rotating the other. ListNecklaces n, c, Dihedral is
similar except that two necklaces are considered equivalent
if one can be obtained from the other by a rotation or a flip

ListNecklaces 5, r, r, b, b, y , Dihedral

r, r, b, b, y , b, b, r, y, r , b, r, b, r, y , b, r, r, b, y

ListNecklaces 5, r, r, b, b, y , Cyclic

r, r, b, b, y , b, b, r, r, y , b, b, r, y, r ,
b, r, b, r, y , b, r, b, y, r , b, r, r, b, y

? NumberOfNecklaces

NumberOfNecklaces n, nc, Cyclic returns the number of distinct ways in
which an n � bead necklace can be colored with nc colors assuming
that two colorings are equivalent if one can be obtained from the
other by a rotation. NumberOfNecklaces n, nc, Dihedral returns
the number of distinct ways in which an n � bead necklace can be
colored with nc colors assuming that two colorings are equivalent
if one can be obtained from the other by a rotation or a flip
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Table NumberOfNecklaces i, 2, Dihedral , i, 10, 20 TableForm

78
126
224
380
687
1224
2250
4112
7685
14310
27012

? NecklacePolynomial

NecklacePolynomial n, c, Cyclic returns a polynomial in the colors
in c whose coefficients represent number of ways of coloring
an n � bead necklace with colors chosen from c assuming that
two colorings are equivalent if one can be obtained from the
other by a rotation. NecklacePolynomial n, c, Dihedral is
different in that it considers two colorings equivalent if one
can be obtained from the other by a rotation or a flip or both.

NecklacePolynomial 10, R, B, G , Cyclic

B10 � B9 G � 5 B8 G2 � 12 B7 G3 � 22 B6 G4 � 26 B5 G5 � 22 B4 G6 � 12 B3 G7 � 5 B2 G8 � B G9 �

G10 � B9 R � 9 B8 G R � 36 B7 G2 R � 84 B6 G3 R � 126 B5 G4 R � 126 B4 G5 R � 84 B3 G6 R �

36 B2 G7 R � 9 B G8 R � G9 R � 5 B8 R2 � 36 B7 G R2 � 128 B6 G2 R2 � 252 B5 G3 R2 �

318 B4 G4 R2 � 252 B3 G5 R2 � 128 B2 G6 R2 � 36 B G7 R2 � 5 G8 R2 � 12 B7 R3 � 84 B6 G R3 �

252 B5 G2 R3 � 420 B4 G3 R3 � 420 B3 G4 R3 � 252 B2 G5 R3 � 84 B G6 R3 � 12 G7 R3 �

22 B6 R4 � 126 B5 G R4 � 318 B4 G2 R4 � 420 B3 G3 R4 � 318 B2 G4 R4 � 126 B G5 R4 �

22 G6 R4 � 26 B5 R5 � 126 B4 G R5 � 252 B3 G2 R5 � 252 B2 G3 R5 � 126 B G4 R5 �

26 G5 R5 � 22 B4 R6 � 84 B3 G R6 � 128 B2 G2 R6 � 84 B G3 R6 � 22 G4 R6 � 12 B3 R7 �

36 B2 G R7 � 36 B G2 R7 � 12 G3 R7 � 5 B2 R8 � 9 B G R8 � 5 G2 R8 � B R9 � G R9 � R10

	 Set Partitions

? SetPartitions

SetPartitions set returns the list of set partitions of set.
SetPartitions n returns the list of set partitions of 1, 2,..., n .

10 newFeatures.nb



SetPartitions 4

1, 2, 3, 4 , 1 , 2, 3, 4 , 1, 2 , 3, 4 , 1, 3, 4 , 2 ,
1, 2, 3 , 4 , 1, 4 , 2, 3 , 1, 2, 4 , 3 , 1, 3 , 2, 4 ,
1 , 2 , 3, 4 , 1 , 2, 3 , 4 , 1 , 2, 4 , 3 , 1, 2 , 3 , 4 ,
1, 3 , 2 , 4 , 1, 4 , 2 , 3 , 1 , 2 , 3 , 4

? KSetPartitions

KSetPartitions set, k returns the list of set partitions
of set with k blocks. KSetPartitions n, k returns the
list of set of partitions of 1, 2, ..., n with k blocks.

KSetPartitions 5, 3

1 , 2 , 3, 4, 5 , 1 , 2, 3 , 4, 5 ,
1 , 2, 4, 5 , 3 , 1 , 2, 3, 4 , 5 ,
1 , 2, 5 , 3, 4 , 1 , 2, 3, 5 , 4 , 1 , 2, 4 , 3, 5 ,
1, 2 , 3 , 4, 5 , 1, 3 , 2 , 4, 5 , 1, 4, 5 , 2 , 3 ,
1, 2 , 3, 4 , 5 , 1, 3, 4 , 2 , 5 , 1, 5 , 2 , 3, 4 ,
1, 2 , 3, 5 , 4 , 1, 3, 5 , 2 , 4 , 1, 4 , 2 , 3, 5 ,
1, 2, 3 , 4 , 5 , 1, 4 , 2, 3 , 5 , 1, 5 , 2, 3 , 4 ,
1, 2, 4 , 3 , 5 , 1, 3 , 2, 4 , 5 , 1, 5 , 2, 4 , 3 ,
1, 2, 5 , 3 , 4 , 1, 3 , 2, 5 , 4 , 1, 4 , 2, 5 , 3

? RankSetPartition

RankSetPartition sp, s ranks sp in the list of all set partitions
of set s. RankSetPartition sp ranks sp in the list of all set
partitions of the set of elements that appear in any subset in sp.

RankSetPartition 1, 2 , 3, 5 , 4

29

? UnrankSetPartition

UnrankSetPartition r, set finds a set partition of set with rank r.
UnrankSetPartition r, n finds a set partition of n with rank r.

UnrankSetPartition %, 5

UnrankSetPartition Null, 5
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? RandomSetPartition

RandomSetPartition set returns a random
set partition of set. RandomSetPartition n returns
a random set partition of the first n natural numbers.

RandomSetPartition 10

1, 6, 7 , 2, 8 , 3, 4, 10 , 5 , 9

? RandomKSetPartition

RandomKSetPartition set, k returns a random set partition of set
with k blocks. RandomKSetPartition n, k returns a random
set partition of the first n natural numbers into k blocks.

RandomKSetPartition 10, 4

1, 5, 9 , 2, 3, 10 , 4, 7 , 6, 8

? BellB

BellB n returns the nth Bell number

BellB 300

9593717160839270277309012597458244643669761253486524090465101452308505449075
555794967097991422094447813361703461703527483923452910600107094241977883524
995379142569403109148264479493951899618130991494946924012311626466835414469
805276900066733612175617987670409976416771272643311143045873205315011607801
824625827865824638944982653160924318204003182910489402082081128038463173280
160012490117659706850104203035907510272952948673660873405566364117100380099
645

The following graph g shows 2−block set partitions of {1, 2, 3, 4, 5}  connected by edges whenever a set partition can be 
obtained from another by deleting an element from a block and inserting it elsewhere. In the graph below that we show a 
Hamiltonian cycle in g indicating a "gray code" ordering of the 2−block set partitions.
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l52 � Map StringJoin Map ToString, # 1 &, sp52 � KSetPartitions 5, 2 ;
ShowGraph g � SetVertexLabels MakeGraph sp52, MemberQ 1, 4 ,

Sum Abs Position #1, i 1, 1 � Position #2, i 1, 1 , i, 5 &,
Type � � Undirected , l52 , PlotRange � Large 0.2

1

12

1345123
145

1245

13

1234

15

125
134 1235

14

124

135

� Graphics �
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ShowGraph Highlight g, Partition HamiltonianCycle g , 2, 1 , Red ,
PlotRange � Large 0.1

1

12

1345123

145

1245

13

1234

15

125

134 1235

14

124

135

� Graphics �

The graph above has not 1, but more than 6000 Hamiltonian cycles!

Length HamiltonianCycle g, All

6528

Our implementation of the Stirling number of the second kind is not recursive. It uses an identity that expresses these 
Stirling numbers as the signed sum of binomial numbers. This makes our implementation faster than the Mathematica 
implementation.

StirlingSecond 100, 50

4309832370093663404215143015472586959435202896143406139124417411312803190588
53783145598261659992013900
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Table Timing StirlingS2 100 i, 50 i ;
Timing StirlingSecond 100 i, 50 i ; , i, 2, 7

4., 1 , 3., 1 , 2.5, 1 , 2.66667, 1 , 3.11111, 1 , 2.85714, 1

Better Graphics

Old Combinatorica cannot display the colored graph. On the other hard, consider what-
New Combinatorica can do.

c � VertexColoring g � Wheel 20

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 4, 3

ShowGraph Highlight g, Table Flatten Position c, i , i, Max c

� Graphics �

Here are some pictures we can easily create in the New Combinatorica.
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g � GraphProduct GridGraph 2, 2 , Cycle 5 ;
ShowGraph g, VertexColor � � LightBlue,
EdgeColor � � Yellow, Background � � Black

� Graphics �
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g � GridGraph 3, 3 ;
ShowGraph g, VertexStyle � � Disc Large , VertexNumber � � Center,
VertexNumberColor � � Yellow, Background � � Yellow

1 2 3

4 5 6

7 8 9

� Graphics �

g � InduceSubgraph GridGraph 10, 10 , RandomSubset Range 100 ;
m � BipartiteMatching g

1, 2 , 3, 6 , 5, 9 , 7, 13 , 11, 12 , 14, 19 , 15, 21 ,
16, 17 , 18, 25 , 20, 28 , 22, 23 , 24, 32 , 26, 27 ,
29, 30 , 31, 35 , 33, 40 , 36, 37 , 38, 39 , 41, 42 ,
44, 49 , 45, 52 , 46, 47 , 48, 55 , 50, 51 , 53, 54 , 58, 59
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ShowGraph Highlight g, m , Red , Background � � LightBlue

� Graphics �
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ShowGraph g � Hypercube 5 , VertexColor � � Red

� Graphics �
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ShowGraph g, VertexColor � � Red, PlotRange � � Zoom 1, 2, 3, 4

� Graphics �
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ShowGraphArray
Partition l � Union Map CirculantGraph 9, # &, Subsets 8 , 4, 4

� GraphicsArray �
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g � Star 7 ; ShowGraph g, VertexNumber � On

12

3

4 5

67

� Graphics �
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ShowGraph AddEdges g, 1, 7 , 1, 1 , 6, 7 , 7, 6

� Graphics �

Improvement in Run Times

Many functions in the Old Combinatorica are quite slow. This is for a variety of rea-
sons. Some of the reasons cannot be remedied. For example, the overhead of using 
Mathematica or the inherent intractability of certain problems. However, using better 
algorithms, better data structures, better programming practices, and new Mathematica 
features we have speeded up most functions, some by several orders of magnitude.

The speedup you see in the following examples is because the adjacency matrix repre-
sentation for graphs has been replaced by an edge list representation. This is ideal for 
the sparse graphs being generated below.

Timing DiscreteMath‘OldCombinatorica‘Path 300 ; , Timing Path 300 ;

466.35 Second, Null , 0. Second, Null
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Timing DiscreteMath‘OldCombinatorica‘RandomTree 200 ; ,
Timing RandomTree 200 ;

1.01 Second, Null , 0.23 Second, Null

Timing DiscreteMath‘OldCombinatorica‘GridGraph 30, 30 ; ,
Timing GridGraph 30, 30 ;

0.72 Second, Null , 0.12 Second, Null

Various utility functions that convert between different representations of graphs have 
also been speeded up and this has led to speedup of almost all the graph algorithms in 
the package.

Observe the remarkable speedup in the function ToAdjacencyLists, shown below. ToAd-
jacencyLists is used in most graph algorithms. Below we attempt to show the differ-
ence in the running times of MinimumSpanningTree in Old Combinatorica and New 
Combinatorica. The attempt is unsuccessful because MinimumSpanningTree in Old 
Combinatorica takes more time than we could spend waiting! Some of this difference 
in running time is due to the difference in the running times of ToAdjacencyLists.

g � DiscreteMath‘OldCombinatorica‘GridGraph 30, 30 ;
Timing DiscreteMath‘OldCombinatorica‘ToAdjacencyLists g ;

6.23 Second, Null

g � GridGraph 30, 30 ; Timing ToAdjacencyLists g ;

0.1 Second, Null

g � SetEdgeWeights GridGraph 30, 30 ; Timing MinimumSpanningTree g ;

1.05 Second, Null

g � DiscreteMath‘OldCombinatorica‘GridGraph 20, 20 ;
Timing DiscreteMath‘OldCombinatorica‘MinimumSpanningTree g ;

$Aborted

We can now compute with fairly large size sparse graphs. Here we construct a random 
subgraph with about 5000 vertices and edges of a graph with about 10,000 vertices and 
40,000 edges. The subgraph has 668 connected components and it took about 6 seconds 
to compute these.
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We can now compute with fairly large size sparse graphs. Here we construct a random 
subgraph with about 5000 vertices and edges of a graph with about 10,000 vertices and 
40,000 edges. The subgraph has 668 connected components and it took about 6 seconds 
to compute these.

g � GridGraph 100, 100 ; h � InduceSubgraph g, RandomSubset Range 10000 ;

V h , M h

4987, 4979

ShowGraph h, VertexStyle � � Disc 0

� Graphics �

Timing c � ConnectedComponents h ;

2.41 Second, Null
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Length c

672

Some speedup is achieved by an improvement in implementation − more careful atten-
tion is paid to ensuring that the actual running time of the implementation is the same 
as what is promised by theory. The examples below show speedups achieved in func-
tions such as LineGraph and VertexColoring.

g � DiscreteMath‘OldCombinatorica‘RandomGraph 100, .3 ;
Timing DiscreteMath‘OldCombinatorica‘LineGraph g ;

10.73 Second, Null

g � RandomGraph 100, .3 ; Timing LineGraph g ;

0.99 Second, Null

g � DiscreteMath‘OldCombinatorica‘Wheel 200 ;
Timing DiscreteMath‘OldCombinatorica‘VertexColoring g ;

3.4 Second, Null

g � Wheel 200 ; Timing VertexColoring g ;

0.09 Second, Null

Speedup in some cases was achieved by compiling carefully selected functions. In the 
example below, LexicographicPermutations is reimplemented as an iterative (rather 
than as a recursive function) and then compiled.

Timing DiscreteMath‘OldCombinatorica‘LexicographicPermutations Range 8 ;

4.21 Second, Null
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Timing LexicographicPermutations 8 ;

0.36 Second, Null

In some implementations, we took advantage of the new packed array implementation 
of lists. Here is a comparison between our new implementation of ToCycles and the old 
implementation of ToCycles from the Permutations package.

p � DiscreteMath‘Permutations‘RandomPermutation 1000 ;
Timing DiscreteMath‘Permutations‘ToCycles p ;

5.36 Second, Null

p � RandomPermutation 1000 ; Timing ToCycles p ;

0.07 Second, Null

In fact, ToCyles is so fast that the function SignaturePermutation that computes the sign of a permutation is significantly 
faster than the corresponding Mathematica function Signature.

p � RandomPermutation 5000 ;
Timing Signature p ; , Timing SignaturePermutation p ;

4.02 Second, Null , 0.25 Second, Null

Better Functionality

A variety of old functions are now easier to use. A variety of new user friendly func-
tions have been added, Options have been used to make several of the functions more 
user friendly and flexible. For example, AddEdges allows many variations of edge 
specifications.

? AddEdges

AddEdges g, edgeList gives graph g with the new edges in
edgeList added. edgeList can have the form a, b if we want
to add a single edge a, b or the form a, b , c, d , ... ,
if we want to add edges a, b , c, d , ... or the form

a, b , x , c, d , y , ... where x and y are graphics
information associated with a, b and c, d respectively.
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g � Wheel 10 ; ShowGraph g, VertexNumber � On

1

2

3

4

5

6

7

8

910

� Graphics �
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ShowGraph g � AddEdges g, 2, 10 , EdgeColor � Red, EdgeStyle � Fat ,
VertexNumber � On

1

2

3

4

5

6

7

8

910

� Graphics �
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ShowGraph g � AddEdges g, 3, 1 , VertexNumber � On

1

2

3

4

5

6

7

8

910

� Graphics �

Here is another example, in which we show how the function BreadthFirstTraversal has 
become much more flexible. First compare the usage messages for the new BreadthFirst-
Traversal and the old BreadthFirstTraversal. Some additional tags allow the user to get 
different kinds of information from BreadthFirstTraversal.

? BreadthFirstTraversal

BreadthFirstTraversal g,v performs a breadth � first traversal
of graph g starting from vertex v, and gives the breadth �
first numbers of the vertices. BreadthFirstTraversal g,v,
Edge returns the edges of the graph that are traversed by
breadth � first traversal. BreadthFirstTraversal g,v,Tree
returns the breadth � first search tree. BreadthFirstTraversal
g,v,Level returns the level number of the vertices.

? DiscreteMath‘OldCombinatorica‘BreadthFirstTraversal

BreadthFirstTraversal g,v performs a breadth � first
traversal of graph g starting from vertex v, and gives a
list of vertices in the order in which they were encountered.

g � GridGraph 5, 5 ;
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BreadthFirstTraversal g, 1

1, 2, 4, 7, 11, 3, 5, 8, 12, 16, 6, 9,
13, 17, 20, 10, 14, 18, 21, 23, 15, 19, 22, 24, 25

e � BreadthFirstTraversal g, 1, Edge

1, 2 , 2, 3 , 3, 4 , 4, 5 , 1, 6 , 2, 7 , 3, 8 , 4, 9 , 5, 10 ,
6, 11 , 7, 12 , 8, 13 , 9, 14 , 10, 15 , 11, 16 , 12, 17 , 13, 18 ,
14, 19 , 15, 20 , 16, 21 , 17, 22 , 18, 23 , 19, 24 , 20, 25

ShowGraph Highlight g, e , HotPink

� Graphics �

ShowGraphArray g, BreadthFirstTraversal g, 1, Tree
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� GraphicsArray �

BreadthFirstTraversal g, 1, Level

0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8

Various functions such as Eccentricity, Diameter, TwoColoring, BipartiteQ, and others 
now  simply call BreadthFirstTraversal with an appropriate argument.

Functions that generate graphs often come with options that allow the user to choose 
between directed or undirected graphs. Here is an example.

? CompleteGraph

CompleteGraph n creates a complete graph on n vertices.An option Type
that takes on the values Directed or Undirected is allowed.
The default setting for this option is Type � � Undirected.
CompleteGraph a,b,c,... creates a complete k � partite graph of the
prescribed shape. The use of CompleteGraph to create a complete
k � partite graph is obsolete, use CompleteKPartiteGraph instead.
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ShowGraph CompleteGraph 5, Type � Directed

� Graphics �

SetOptions CompleteGraph, Type � Directed

Type � Directed
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ShowGraph CompleteGraph 5

� Graphics �

Functions that translate between different graph representations now have options that 
allow the user to pay attention to multiple edges and self−loops. In the following exam-
ple,  the function ToAdjacencyLists, in its default version, makes sure that self−loops 
and multiple edges show up in the adjacency lists. Using the option Type−>Simple, we 
can force ToAdjacencyLists to ignore the self−loops and multiple edges.

g � AddEdges Star 5 , 1, 5 , 2, 2

� Graph: � 6, 5, Undirected � �
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ShowGraph g

� Graphics �

ToAdjacencyLists g

5, 5 , 2, 5 , 5 , 5 , 1, 1, 2, 3, 4

ToAdjacencyLists g, Type � Simple

5 , 5 , 5 , 5 , 1, 2, 3, 4

New Graph Instances and Classes

? GridGraph

GridGraph n, m constructs an n � m grid graph, the product of paths on
n and m vertices. GridGraph p, q, r constructs a p � q � r grid
graph, the product of GridGraph p, q and a path of length r.
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ShowGraph GridGraph 3, 4, 5

� Graphics �

? ShuffleExchangeGraph

ShuffleExchangeGraph n returns the n � dimensional shuffle � exchange graph
whose vertices are length n binary strings with an edge from w
to w’ if i w’ differs from w in its last bit or ii w’ is
obtained from w by a cyclic shift left or a cyclic shift right.
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ShowGraph ShuffleExchangeGraph 3

� Graphics �

? ButterflyGraph

ButterflyGraph n returns the n � dimensional Butterfly Graph, a directed
graph whose vertices are pairs w, i , where w is a binary string
of length n and i is an integer in the range 0 through n and whose
edges go from vertex w, i to w’, i � 1 , if w’ is identical to
w in all bits with the possible exception of the i � 1 th bit.
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ShowGraph ButterflyGraph 3

� Graphics �

? InversionPoset

InversionPoset n returns the Hasse diagram of the
partially ordered set on size � n permutations in which p �

q if q can be obtained from p by an adjacent transposition
that places the larger element before the smaller.
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ShowGraph InversionPoset 4

� Graphics �

? BooleanAlgebra

BooleanAlgebra n gives the Hasse
diagram for the boolean algebra on n elements.
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ShowGraph BooleanAlgebra 4

� Graphics �

? CageGraph

CageGraph k, r gives the smallest k � regular graph
of girth r for certain small values of k and r. CageGraph
r gives CageGraph 3, r . For k 
 3, r can be 3, 4, 5,
6, 7, 8, or 10. For k 
 4 or 5, r can be 3, 4, 5, or 6.
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ShowGraphArray
Table CageGraph r , r, 3, 5 , Table CageGraph r , r, 6, 8

� GraphicsArray �

Miscellaneous New Functions

Here we show a new function SetEdgeWeights that provides a flexible way of assign-
ing  weights to edges in a graph.

? SetEdgeWeights

SetEdgeWeights g assigns random real weights in the range 0, 1
to edges in g. SetWeights accepts options WeightingFunction
and WeightRange. WeightingFunction can take values Random,
RandomInteger, Euclidean, LNorm n for non � negative n, or any
pure function that takes as input two points. WeightRange can
be an integer range or a real range. The default value for
WeightingFunction is Random and the default value for WeightRange
is 0, 1 . SetEdgeWeights g, e assigns edge weights to the
edges in the edge list e. The options WeightingFunction and
WeightRange apply. SetEdgeWeights g, w assigns the weights in the
weight list w to the edges of g. SetEdgeWeights g, e, w assigns
the weights in the weight list w to the edges in edge list e.

g � SetEdgeWeights Wheel 10 , WeightingFunction � RandomInteger,
WeightRange � 3, 5 ; GetEdgeWeights g

4, 5, 3, 4, 3, 4, 5, 3, 5, 4, 3, 5, 3, 5, 3, 4, 5, 5
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Options SetEdgeWeights

WeightingFunction � Random, WeightRange � 0, 1

? SetOptions

SetOptions s, name1 � � value1, name2 � � value2, ... sets the specified
default options for a symbol s. SetOptions stream, ...
or SetOptions "name", ... sets options associated with
a particular stream. SetOptions object, ... sets options
associated with an external object such as a NotebookObject.

SetOptions SetEdgeWeights,
WeightingFunction � RandomInteger, WeightRange � 0, 1

WeightingFunction � RandomInteger, WeightRange � 0, 1

g � SetEdgeWeights Wheel 10 ; GetEdgeWeights g

0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1

Here is another example of a useful new function. Shortest paths can now be computed 
even in the presence of negative edge weights.

? BellmanFord

BellmanFord g, v gives the shortest path spanning tree and associated
distances from vertex v of graph g. The shortest path spanning tree is
given by a list in which element i is the predecessor of vertex i in
the shortest path spanning tree. BellmanFord works correctly even when
the edge weights are negative, provided there are no negative cycles.

g � AddEdges Cycle 10, Type � Directed , 4, 1 , 6, 1 , 9, 3

� Graph: � 13, 10, Directed � �
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ShowGraph g, VertexNumber � On

1

23

4

5

6

7 8

9

10

� Graphics �

g � SetEdgeWeights g,
WeightingFunction � RandomInteger, WeightRange � � 4, 5

� Graph: � 13, 10, Directed � �

Edges g, EdgeWeight

1, 2 , 3 , 2, 3 , 1 , 3, 4 , � 1 , 4, 5 , 3 ,
5, 6 , � 4 , 6, 7 , 4 , 7, 8 , 5 , 8, 9 , 4 , 9, 10 , 1 ,
10, 1 , � 2 , 4, 1 , � 4 , 6, 1 , 4 , 9, 3 , � 2

BellmanFord g, 1

4, 1, 2, 3, 4, 5, 6, 7, 8, 9 , � 5., � 1., 0., � 1., 2., � 2., 2., 7., 11., 12.
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Dijkstra g, 1

4, 1, 2, 3, 4, 5, 6, 7, 8, 9 , � 1, 3, 4, 3, 6, 2, 6, 11, 15, 16

Another example of a useful new function is TreeIsomorphismQ. 

? TreeIsomorphismQ

TreeIsomorphismQ t1, t2 returns True if
the trees t1 and t2 are isomorphic; False otherwise.

g � RandomTree 40 ; h � PermuteSubgraph g, RandomPermutation 40

� Graph: � 39, 40, Undirected � �

TreeIsomorphismQ g, h

True

IsomorphicQ g, h

True

Timing TreeIsomorphismQ g, h ; , Timing IsomorphicQ g, h ;

0.1 Second, Null , 1.68 Second, Null
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