XML-RPC

XML-RPC is a protocol that uses XML to describe method
calls and method results, and a collection of implementations
that allow software running on disparate operating systems,
running in different environments (different programming
languages) to make method calls to each other over the
internet.

RPC stands for Remote Procedure Call.

Other Solutions to this Problem
CORBA
 Common Object Request Broker Architecture

* Designed for interoperability between different languages
as well as different machines.

DCOM or COM
* Distributed Component Object Model

* Interoperability between different machines and languages
as long as they are Wintel.

RMI
* Remote Method Invocation (Java only).

* Interoperability for any machines that are running the Java
virtual machine.

These solutions are complex and opaque, relying on
particular platforms or programming languages, or dependent
on a complicated methodology for describing data types.

XML-RPC Copyright 2006 by Ken Slonneger

Properties of XML-RPC
* Designed to be as simple as possible, solving only part

of the problem, but solving the most important part.
Nonprogrammers can write XML-RPC calls.

* Encodes messages for calling methods and describing
the results of method calls with a standard vocabulary
using XML.

* Has a limited vocabulary of XML tags for describing the
types of parameters and the type of a return value from
a function.

 Uses HTTP as the transport over the internet.

e HTTP is normally used for person-to-person communication
between a browser and a server using HTML.

e XML-RPC uses HTTP for computer-to-computer
communication with no browser involved.

e Using HTTP allows XML-RPC communication to bypass
firewalls.

e Many implementations of XML-RPC servers and XML-RPC
clients are available currently.

 See www.xmirpc.com for more information.

2 Copyright 2006 by Ken Slonneger XML-RPC

XML-RPC Lifecyle

Client Side

1. Client builds an XML
element methodCall that
names the method to be
called and provides the
actual parameters for the
method.

2. Client sends a POST
request whose payload
(content) is the XML
element just built.

Server Side

3.Server receives the request
and uses the HTTP header
Content-Length to read the
payload XML element.

4.Server parses the XML
element, extracts the
method name, and retrieves
the actual parameters for
the method from the XML
element.

5.Server searches for the
desired method and, if
found, invokes it with the
given parameters.

6. If the method is called and
executes successfully, the
server packages its return
value in an XML element
methodResponse with a
params element and sends
it back to the client.

XML-RPC Copyright 2006 by Ken Slonneger

7.lf the method is not found
or cannot be executed for
some reason, the server
builds an XML element
methodResponse whose
value element contains a
fault element and sends it
back to the client.

8. Client receives the re-
sponse, parses the XML
element returned (a return
value or fault), and reports
the outcome to the client
user.

Data Types in XML-RPC

Integers (32-bit values)

Elements: int or i4
Examples: <int>3928</int>
<i4>-703</i4>

Floating-point Values
Element: double
Examples: <double>5.489</double>
<double>-877.23</double>

Boolean Values
Element: boolean
Examples: <boolean>0</boolean>
<boolean>1</boolean>

4 Copyright 2006 by Ken Slonneger XML-RPC

Strings (ascii characters)
Element: string
Examples: <string>This is a short string.</string>
<string>May need entity references.</string>

Date and Time
Element: dateTime.iso8601
Format: ccyymmddThh:mm:ss

Example: <dateTime.iso8601>
20061208T15:04:45
</dateTime.iso8601>

Binary Data
Element: base64

Example: <base64>
VGhpcyBpcyBhIHNob3J0IHNOcmluZy4K
</base64>

Arrays
Element: array

Example: <array>
<data>
<value>
<double>43.7</double>
</value>
<value>
<double>91.3</double>
</value>
<value>
<double>18.8</double>
</value>
<value>
<double>33.6</double>
</value>
</data>
</array>

XML-RPC Copyright 2006 by Ken Slonneger

Structures or Records
Element: struct

Format: An unordered list of member elements, each
of which contains a name element and a
value element.

Example: <struct>
<member>
<name>spotsi</name>
<value><int>b</int></value>
</member>
<member>
<name>spots2</name>
<value><int>9</int></value>
</member>
<member>
<name>faceUp</name>
<value><boolean>1</boolean></value>
</member>
</struct>

Correspondence with Types in Java

XML-RPC Type Java Type
int and i4 int
double double
boolean boolean
string String
dateTime.iso8601 ?
base64 byte [] or String
array array object

Struct Map object

6 Copyright 2006 by Ken Slonneger XML-RPC

Method Calls

A method call is defined by the methodCall element, which
contains two elements, methodName and params.

The params element contains zero or more param elements
that specify the actual parameters to be passed to the method.

Example

Suppose we have a Java method
double compute(int num, String str, boolean bn)
that we want to call, say compute(96, "A Java string", false)

XML Equivalent

<?xml version="1.0"7?>
<methodCall>
<methodName>compute</methodName>
<params>
<param>
<value>
<int>96</int>
</value>
</param>
<param>
<value>
<string>A Java string</string>
</value>
</param>
<param>
<value>
<boolean>0</boolean>
</value>
</param>
</params>
</methodCall>

XML-RPC Copyright 2006 by Ken Slonneger

Method Responses

A method returns at most one value.

That value is defined as a single parameter inside a params
element inside a methodResponse element.

Example
Suppose the compute method returns the value 16.25.

XML Code

<?xml version="1.0"7?>
<methodResponse>
<params>
<param>
<value>
<double>16.25</double>
</value>
</param>
</params>
</methodResponse>

If the method cannot be executed for some reason, say it can
not be found, the methodResponse element will contain a fault
element with a value element that has a struct element to
describe the mistake.

XML Code

<?xml version="1.0"?>
<methodResponse>
<fault>
<value>
<struct>
<member>
<name>fault</name>
<value><int>99</int></value>
</member>

8 Copyright 2006 by Ken Slonneger XML-RPC

<member>
<name>faultString</name>
<value>
<string>No such method</string>
</value>
</member>
</struct>
<value>
</fault>
</methodResponse>

This response indicates that the method called can not be
found.

Other faults might describe computations that went awry for
some reason, resulting in an exception being thrown by the
method.

Another Example
Suppose the method called returns an array of int values.

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<value>
<array>
<data>
<value><int>0</int></value>
<value><int>1</int></value>
<value><int>8</int></value>
<value><int>27</int></value>
<value><int>64</int></value>
</data>
</array>
</value>
</param>
</params>
</methodResponse>
XML-RPC Copyright 2006 by Ken Slonneger

DTD for XML-RPC

10

<!/[ELEMENT methodCall (methodName, params)>

<l[ELEMENT methodName (#PCDATA)>

<!|[ELEMENT params (param™)>

<!I[ELEMENT param (value)>

<!|[ELEMENT value (i4 | int | string | double | boolean |
dateTime.iso8601 | base64 |
struct | array)>

<IELEMENT i4 #PCDATA)>

(
<IELEMENT int (
<!|[ELEMENT double (
<!/[ELEMENT boolean (
<!|ELEMENT string (
<|[ELEMENT dateTime.is0o8601 (
<|ELEMENT base64 (#PCDATA)>
<IELEMENT array (
<IELEMENT data (
<IELEMENT struct (
<|[ELEMENT member (
<!I[ELEMENT name (

(
(

<!|ELEMENT methodResponse
<|ELEMENT fault

Copyright 2006 by Ken Slonneger XML-RPC

XML Schema for XML-RPC

<?xml version="1.0"?>

<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="methodCall">
<xs:complexType>
<xs:all>

<xs:element name="methodName">
<xs:simpleType>
<xs:restriction base="AsciiString">
<xs:pattern value="([A-Za-z0-9]l/\.l:[_)+" />
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element name="params" minOccurs="0"
maxOccurs="1">

<xs:complexType>
<Xs:sequence>

<xs:element name="param" type="ParamType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:all>
</xs:complexType>
</xs:element>

XML-RPC Copyright 2006 by Ken Slonneger

<xs:element name="methodResponse">
<xs:complexType>
<xs:choice>

<xs:element name="params">
<xs:complexType>
<Xxs:sequence>
<xs:element name="param" type="ParamType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="fault">
<xs:complexType>
<xs:sequence>
<xs:element name="value">
<xs:complexType>
<Xxs:sequence>
<xs:element name="struct">
<xs:complexType>
<Xxs:sequence>
<xs:element name="member"
type="MemberType">
</xs:element>
<xs:element name="member"
type="MemberType">
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:.sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

Copyright 2006 by Ken Slonneger XML-RPC

</xs:element>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:complexType name="ParamType">
<Xs:sequence>
<xs:element name="value" type="ValueType"/>
</xs:sequence>
</xs:complexType>

<xs:.complexType name="ValueType">
<xs:choice>
<xs:element name="i4" type="xs:int"/>
<xs:element name="int type="xs:int"/>
<xs:element name="string" type="AsciiString"/>
<xs:element name="double" type="xs:decimal"/>
<xs:element name="Base64"
type="xs:base64Binary"/>
<xs:element name="boolean"
type="NumericBoolean"/>
<xs:element name="dateTime.iso8601"
type="xs:dateTime"/>
<xs:element name="array" type="ArrayType'"/>
<xs:element name="struct" type="StructType"/>
</xs:choice>
</xs:complexType>

<xs:complexType name="StructType">
<xs:sequence>

<xs:element name="member" type="MemberType"

maxQOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

XML-RPC Copyright 2006 by Ken Slonneger 13

<xs:complexType name="MemberType">
<Xxs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="value" type="ValueType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ArrayType">
<xs:sequence>
<xs:element name="data">
<xs:complexType>
<Xxs:sequence>

<xs:element name="value" type="ValueType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:simpleType name="AsciiString">
<xs:restriction base="xs:string">
<xs:pattern value="([-~]\nl\rI\t)*"/>
</xs:restriction> <!-- space to ~, ascii 127 -->
</xs:simpleType>

<xs:simpleType name="NumericBoolean">
<xs:restriction base="xs:boolean">
<xs:pattern value="0I1"/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

14 Copyright 2006 by Ken Slonneger XML-RPC

Using HTTP for XML-RPC

Both method calls and method responses are sent
using HTTP.

Both kinds of message require certain header values
to be included.

Method Call

POST /HTTP 1.1

Host: server host name

User-Agent: software making the request
Content-Type: text/xml

Content-Length: number of bytes in payload

payload

Method Response

HTTP 200 OK
Content-Type: text/xml
Content-Length: number of bytes in payload

payload

The method response sends the code 200 no matter what
happens with the method execution.

The HTTP response indicates success, but the content of
the message (the payload) can show method failure by a
fault element.

Note that XML-RPC has no standard or predefined error
codes for the fault element in a method response.

XML-RPC Copyright 2006 by Ken Slonneger 15

Implementing XML-RPC

Many implementations of XML-RPC have been developed, but
they are not always easy to install.

To illustrate the basic idea, we provide a relatively simple
implementation of an XML-RPC server and an XML-RPC
client written in Java.

This system has weak error handling capabilities, but works
fine when given correct XML messages.

Server Side

We begin on the server side where four classes provide the
functionality of an XML-RPC server.

The first class creates a ServerSocket and waits for clients
to connect to the server.

When a connection is made, the Socket object is passed
on to a thread that handles the communication between
the server and the client.

File: Server.java

import java.io.”;
import java.net.”;
public class Server

public static void main(String [] args) throws |IOException

{

ServerSocket serversocket = new ServerSocket(8000);

System.out.printin(
"HTTP Server running on port 8000.");

System.out.printin("Use control-c to stop server.");

16 Copyright 2006 by Ken Slonneger XML-RPC

while (true)

Socket sock = serversocket.accept();

String client = sock.getinetAddress().getHostName();
System.out.printin("Connected to client " + client);
new Handler(sock).start();

}
}
}

The Handler class does most of the work on the server side.

Parsing the headers in the HTTP request and retrieving the
payload is done by the Request class, which comes after the
Handler code.

The Handler class parses the XML payload from the request
to identify the method name and the actual parameters to the
method.

It then uses Java Reflection to find the method requested and
invoke it on the actual parameters.

The function call RpcMethods.class.getMethods() returns an
array of all public methods available to the RpcMethods class.

This array of Method objects is searched for the one we want.

The response to the client is built from the result produced by
the method call. In so doing, we use a number of methods for
converting Java values, simple and array, into the strings that
XML-RPC expects.

The various tasks performed by the server are labeled with
the steps for the XML-RPC lifecycle.

These utility methods are described with comments in the
Java code.

Sections of the main processing code, found in the run
method, are labeled to describe the stages of the XML-RPC
lifecycle that are being dealt with.

XML-RPC Copyright 2006 by Ken Slonneger 17

File: Handler.java

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NodelList;

import org.w3c.dom.Node;

import java.lang.reflect.”;

import java.io.”;

import java.net.”;

import java.util.”;

public class Handler extends Thread
private Socket sock;

Handler(Socket sk)
{ sock=sk; }

public void run()

{

/* 3. Read request (method call) from client */
try

BufferedInputStream bis =
new BufferedInputStream(

sock.getlnputStream());

byte [] buffer = new byte [2000];
int num = bis.read(buffer);

System.out.printin("Handler got " + num + " bytes.");

byte [] request = new byte [num];

System.arraycopy(buffer, 0, request, 0, num);

18 Copyright 2006 by Ken Slonneger

XML-RPC

Request req = new Request(request);
byte [] xmirpcRequest = req.getContent();

/* 4. Parse method call */

XML-RPC

byte [] response;
DocumentBuilderFactory factory =
DocumentBuilderFactory.newlnstance();

DocumentBuilder domParser =
factory.newDocumentBuilder();

Document dom = null;
try
{ dom = domParser.parse(new InutSource(
new StringReader(
new String(xmirpcRequest))));

}
catch (SAXException e)
{ response = e.getMessage().getBytes(); }

Element el =
(Element)dom.getElementsByTagName(
"methodName").item(0);
String methodName =
el.getFirstChild().getNodeValue();

NodeList parms =
dom.getElementsByTagName("param");
List<Object> pList = new ArrayList<Object>();

for (int k=0; k<parms.getLength(); k++)
{

Node parm = parms.item(k);

Node value = parm.getFirstChild();
Node type = value.getFirstChild();
Node actVal = type.getFirstChild();

Object ob =
mapArgToType(type.getNodeName(), actVal);

pList.add(ob);

Copyright 2006 by Ken Slonneger

19

/* 5. Search for method and call it */
Object [] args = new Object[pList.size()];
Class [] argTypes = new Class[pList.size()];
for (int k=0; k<pList.size(); k++)

args[k] = pList.get(k);
argTypes|k] = pList.get(k).getClass();

String methodResponse = "";
try

{ Method [] meths = RpcMethods.class.getMethods();
Method m = null;
intk=0;
boolean found = false;
while (k < meths.length && !found)

m = meths[k];
Class [] paramTypes = m.getParameterTypes();

if (m.getName().equals(methodName) &&
match(argTypes, paramTypes))

found = true;
K++;

}
if (found)

Object value = m.invoke(null, args);

/* 6. Build method response for a successful call */
StringBuffer returnValue = new StringBuffer();

if (value.getClass().isArray())
// Need to build array
Class cT =
value.getClass().getComponentType();

20 Copyright 2006 by Ken Slonneger XML-RPC

if (cT.isPrimitive())
value = wrap(value);
Object [] array = (Object [])value;
returnValue.append("<array><data>");
for (int k=0; k<array.length; k++)
returnValue.append("<value>" +
mapValueFromType(array[k])+"</value>");
returnValue.append("</data></array>");

}

else
returnValue.append(
mapValueFromType(value));

methodResponse =
"<?xml version=\"1.0\"?>" +
"<methodResponse><params><param>" +
"<value>" + returnValue + "</value>" +
"</param></params></methodResponse>";

else // not found

/* 7. Build method response for a failed call */

methodResponse =
"<?xml version=\"1.0\"?>" +
"<methodResponse><fault><value>" +
"<struct><member><name>fault</name>" +
"<value><int>88</int></value></member>" +
"<member><name>faultString</name>" +
"<value><string>No such method" +
"</string></value></member></struct>" +
"</value></fault></methodResponse>";

catch (Exception e)

methodResponse =
"<?xml version=\"1.0\"?>" +
"<methodResponse><fault><value>" +

XML-RPC Copyright 2006 by Ken Slonneger 21

"<struct><member><name>fault</name>" +
"<value><int>99<«/int></value></member>" +
"<member><name>faultString</name>" +
"<value><string> " + e.toString() +
"</string></value></member></struct>" +
"</value></fault></methodResponse>";

}

response = methodResponse.getBytes();

/* 6. and 7. Return response to client */

BufferedOutputStream client =

new BufferedOutputStream(

sock.getOutputStream());

String headers =

"HTTP 200 OK\r\n" +

"Content-Type: text/xml \r\n" +

"Content-Length: " + response.length +

\r\n\r\n";
client.write(headers.getBytes());
client.write(response); // write data of payload
client.close();

catch (Exception e)
{ System.out.printin(e); }

I* mapArgToType takes an XML-RPC type and a Node value
and returns that value as a Java object of the correct type. */

private Object mapArgToType(String type, Node value)
{

if (type.equals("i4") Il type.equals("int"))
return new Integer(value.getNodeValue());
else if (type.equals("boolean"))

return
new Boolean("1".equals(value.getNodeValue()));

22 Copyright 2006 by Ken Slonneger XML-RPC

else if (type.equals("double"))

return new Double(value.getNodeValue());
else if (type.equals("string"))

return new String(value.getNodeValue());
else if (type.equals("array"))

return mkArray(value);
else return null;

}

I* mkArray takes the Node value and builds a Java array of
primitive components or strings from the data in the Node
value. */

private Object mkArray(Node value)
{

NodelList values = value.getChildNodes();

String compType =
values.item(0).getFirstChild().getNodeName();

if (compType.equals("int"))

int [] ia = new int [values.getLength()];
for (int k=0; k<values.getLength(); k++)

String ival =
values.item(k).getFirstChild().getNodeValue();
ia[k] = Integer.parselnt(ival);
return ia;
else if (compType.equals("double"))

double [] da = new double [values.getLength()];
for (int k=0; k<values.getLength(); k++)

String dval = values.item(k).getFirstChild().
getFirstChild().getNodeValue();

da[k] = Double.parseDouble(dval);

XML-RPC Copyright 2006 by Ken Slonneger

23

return da;
else if (compType.equals("boolean"))

boolean [] ba = new boolean [values.getLength()];
for (int k=0; k<values.getLength(); k++)

String bval = values.item(k).getFirstChild().
getFirstChild().getNodeValue();

balk] = bval.equals("1");
return ba;
else if (compType.equals("string"))

String [] sa = new String [values.getLength()];
for (int k=0; k<values.getLength(); k++)
salk] = values.item(k).getFirstChild().
getFirstChild().getNodeValue();
return sa;

return null;
} /l end of run method

I* mapValueFromType takes a Java object and creates a
corresponding XML-RPC element for its value. */

private String mapValueFromType(Object value)

Class type = value.getClass();
if (type.equals(Integer.class))
return "<int>" + value + "</int>";
else if (type.equals(Boolean.class))
return "<boolean>" +
(value.equals(new Boolean(true)):"1":"0") +
"</boolean>";
else if (type.equals(String.class))
return "<string>" + value + "</string>";
else if (type.equals(Double.class))

24 Copyright 2006 by Ken Slonneger XML-RPC

return "<double>" + value + "</double>";
else return "";

}

I* wrap takes a Java array of primitive values and returns a
corresponding Java array of wrapper values. */

private Object wrap(Object value)

Class cT = value.getClass().getComponentType();
if (cT.equals(int.class))

int [] ia = (int [])value;
Integer [] iA = new Integer [ia.length];
for (int k=0; k<ia.length; k++)
IA[K] = new Integer(ia[k]);
return iA;

}

else if (cT.equals(double.class))

double [] da = (double [])value;
Double [] dA = new Double [da.length];
for (int k=0; k<da.length; k++)

dA[k] = new Double(dalk]);

return dA;
}

else if (cT.equals(boolean.class))

boolean [] ba = (boolean [])value;
Boolean [] bA = new Boolean [ba.length];
for (int k=0; k<ba.length; k++)

bA[K] = new Boolean(balk]);

return bA;

return value;

XML-RPC Copyright 2006 by Ken Slonneger 25

/* match takes Class arrays representing the types of the
actual parameters and the formal parameters and sees
if they are the same. */

private boolean match(Class [] at, Class [] pt)

if (at.length != pt.length)
return false;
for (int k=0; k<at.length; k++)
if (lat[k].equals(adjust(pt[K])))
return false;
return true;

}

/* adjust converts a primitive type into its corresponding
object (wrapper) type. This method is used by match. */

private Class adjust(Class paramType)

{

Class ¢ = paramType;

if (c.equals(int.class))
return Integer.class;

else if (c.equals(double.class))
return Double.class;

else if (c.equals(boolean.class))
return Boolean.class;

else
return c;

The Request class processes a request, placing the header
information into a Map object by tokenizing the header
information, and extracts the payload in the request.

It is used to process both the method call request and the
method response request.

26 Copyright 2006 by Ken Slonneger XML-RPC

File: Request.java

import java.util.”;
import java.io.”;

public class Request

{

private Map<String,String> headers =
new HashMap<String,String>();
private byte [] content = null;

private String requestURI = "";

Request(byte [] rawData)
{ parseHeaders(rawData); }

private void parseHeaders(byte [] rawData)

{

/* 3. and 8. Read request (method call and method response) */

int eoh = findEOH(rawData); // Find end of Headers
String heads = new String(rawData, 0, eoh);

StringTokenizer st = new StringTokenizer(heads, "\r'\n");
String firstLine = st.nextToken();
while (st.hasMoreTokens()) // Process the headers

{

String requestLine = st.nextToken();
int separator = requestLine.indexOf(": ");
String header = requestLine.substring(0, separator);
String value = requestLine.substring(separator+1);
\ headers.put(header.trim(), value.trim());
int length = Integer.parselnt(getHeader("Content-Length"));
content = new byte [length];

XML-RPC Copyright 2006 by Ken Slonneger 27

System.arraycopy(rawData, eoh+4, content, 0, length);

System.out.printin(new String(rawData)); // display payload
}

public String getHeader(String name)
{ return headers.get(name); }

public byte [] getContent()
{ return content; }

public int findEOH(byte [] headers)

String heads = new String(headers);
return heads.indexOf("\r\n\r\n");

}
}

The RpcMethods class contains the methods that can be
called remotely.

Each method is a public class method.

The methods are designed to illustrate each type of
parameter that the system allows: int, double, boolean, String,
Integer, Double, Boolean, and one-dimensional arrays of
these types.

File: RpcMethods.java
import java.util.”;

import java.lang.reflect.”;
import java.math.Biginteger;

28 Copyright 2006 by Ken Slonneger XML-RPC

public class RpcMethods
{

public static String reverse(String s)

StringBuffer sb = new StringBuffer(s);
return sb.reverse().toString();

}

public static String concat(String [] sa)

StringBuffer sb = new StringBuffer();

for (int k=0; k<sa.length; k++)
sb.append(salk]);

return sb.toString();

}

public static int add(int num1, int num2)

{

return num1 + numz2;

}

public static String [] listMethods()
{

Class ¢ = RpcOMethods.class;

Method [] methods = c.getMethods();
List<String> meths = new ArrayList<String>();
for (int k=0; k<methods.length; k++)

Method m = methodsl[k];
int mods = m.getModifiers();

if (Modifier.isStatic(mods))
meths.add(m.getName());

}
return (String [])meths.toArray(new String [0]);

XML-RPC Copyright 2006 by Ken Slonneger

30

public static Double sum(Double [] da)

double sm = 0.0;
for (int k=0; k<da.length; k++)
sm = sm + da[k];
return sm; /I note autoboxing

}

public static boolean and(boolean [] ba)

boolean result = true;

for (int k=0; k<ba.length; k++)
result = result && balk];

return result;

}

public static Double product(Double x, Double y)
{

return x*y; /I note autoboxing

}

public static Integer [] mkArray(int size)

Integer [] ia = new Integer [size];
for (int k=0; k<ia.length; k++)

ia[k] = new Integer(k*k*k);
return ia;

}

public static double [] mkArray()

double [] da = new double [5];
for (int k=1; k<=da.length; k++)

dalk-1] = k*k*k*k/100.0;
return da;

}

Copyright 2006 by Ken Slonneger

XML-RPC

public static String [] fibo(int m, int n, int num)

{
String [] fibs = new String [num];

BigInteger low = Biginteger.ONE;
BigInteger high = Biginteger.ONE;
low = Biglnteger.valueOf(m);

high = Biglnteger.valueOf(n);

for (int k=1; k<=num; k++)

{
fibs[k-1] = low.toString();
Biginteger temp = high;
high = high.add(low);
low = temp;
return fibs;
}
}
Client Side

The client side has a class Test that creates an RpcClient
object that will connect with the RPC server and then calls
each of the remote methods using an instance method
execute for the RpcClient object.

Parameters are collected in a List object and are passed to
the method execute with the name of the method to be called.

The value returned by the execute method is displayed by the
Test class.

Note the use of generic containers in this code.

XML-RPC Copyright 2006 by Ken Slonneger 31

File: Test.java

import java.util.*;

public class Test

32

public static void main(String [] args) throws Exception

{

RpcClient rpcClient =
new RpcClient("r-Inx233.cs.uiowa.edu", 8000);

System.out.println("---===========m=mmmmmmm oo ");
List<Object> parms = new ArrayList<Object>();
parms.add("XML-RPC Hello");

Object result = rpcClient.execute("reverse", parms);
System.out.printin("\nResult: " + result);

System.out.println("---=-========m=mmmmmmmm oo ");
parms = new ArrayList<Object>();

List<String> sa = new ArrayList<String>();
sa.add("abc"); sa.add("DEFG"); sa.add("highlmnop");
parms.add(sa);

result = rpcClient.execute("concat", parms);
System.out.printin("\nResult: " + result);

System.out.printIn("---------=-==-mm-mmmm e ");
parms = new ArrayList<Object>();
parms.add(new Integer(368));

parms.add(new Integer(927));

result = rpcClient.execute("add", parms);
System.out.printin("\nResult: " + result);

System.out.printin("----------=========e oo K
parms = new ArrayList<Object>();

List methods =
(List)rpcClient.execute("listMethods", parms);

System.out.printin("\nResult: ");
for (lterator it = methods.iterator(); it.hasNext();)
System.out.printin(it.next());

Copyright 2006 by Ken Slonneger XML-RPC

XML-RPC

System.out.println("---=-===========mmmmmmm oo ");
parms = new ArrayList<Object>();

parms.add(new Double(3.68));

parms.add(new Double(9.27));

result = rpcClient.execute("product", parms);
System.out.printin("\nResult: " + result);

System.out.printin("--------==-==-=msemsm e ");
parms = new ArrayList<Object>();

List<Boolean> ba = new ArrayList<Boolean>();
ba.add(new Boolean(true));

ba.add(new Boolean(false));

ba.add(new Boolean(true));

parms.add(ba);

result = rpcClient.execute("and", parms);
System.out.printin("Result: " + result);

System.out.println("---=-=-=-=====m=mmmm oo ");
parms = new ArrayList<Object>();

Object obj = rpcClient.execute("unknown", parms);
System.out.printin("\nResult: " + obj);

System.out.println("---=-============mmmmmmm oo ");

parms = new ArrayList<Object>();

nums = (List)rpcClient.execute("mkArray", parms);

System.out.printin("\nResult: ");

for (lterator it = nums.iterator(); it.hasNext();)
System.out.printin(it.next());

System.out.printin("--------==-==-=msmmsm e ");

parms = new ArrayList<Object>();

parms.add(new Integer(12));

nums = (List)rpcClient.execute("mkArray", parms);

System.out.printin("\nResult: ");

for (lterator it = nums.iterator(); it.hasNext();)
System.out.printin(it.next());

Copyright 2006 by Ken Slonneger

33

System.out.printin("------------=-==== - o s ");
parms = new ArrayList<Object>();

List<Double> da = new ArrayList<Double>();
da.add(new Double(43.7)); da.add(new Double(91.3));
da.add(new Double(18.8)); da.add(new Double(33.6));
da.add(new Double(83.5)); da.add(new Double(76.1));
parms.add(da);

result = rpcClient.execute("sum", parms);
System.out.printin("Result: " + result);

System.out.printin("------------=-==== - o s ");

parms = new ArrayList<Object>();

parms.add(new Integer(3));

parms.add(new Integer(5));

parms.add(new Integer(22));

nums = (List)rpcClient.execute("fibo", parms);

System.out.printin("\nResult: ");

for (lterator it = nums.iterator(); it.hasNext();)
System.out.printin(it.next());

System.out.println("---=-=-==-=====mmmmmmm oo ");

}
}

The RpcClient class builds the XML payload for the method
call and sends it to the server.

When the response returns, it parses the XML to extract the
value produced by the method or the nature of the fault if the
method failed for some reason.

The various tasks performed by the server are labeled with
the steps from the XML-RPC lifecycle.

34 Copyright 2006 by Ken Slonneger XML-RPC

File: RpcClient.java

import org.xml.sax.”;
import javax.xml.parsers.”;
import org.w3c.dom.”;
import java.net.”;

import java.util.”;

import java.io.”;

public class RpcClient

{

private String server ="";
private int srvPort;

public RpcClient(String host, int port)
{

server = host;
srvPort = port;

}

public Object execute(String method, List parms)
throws Exception

Socket sock = new Socket(server, srvPort);

DataOutputStream out =
new DataOutputStream(sock.getOutputStream());

/* 1. Construct XML for method call */

String methodCall =
"<?xml version=\"1.0\"?>" +
"<methodCall><methodName>" +
method + "</methodName>" +
"<params>" + buildParams("param”, parms) +
"</params></methodCall>";

XML-RPC Copyright 2006 by Ken Slonneger

35

/* 2. Send HTTP request for method call */

String request =
"POST /HTTP 1.1\A\n" +
"Host: " + server + ":" + srvPort + "\r\n" +
"User-Agent: RPCClient\r\n" +
"Content-Type: text/xmN\r\n" +
"Content-Length: " + methodCall.length() +
\\n\r\n";

String bothParts = request + methodCall;
out.write(bothParts.getBytes());

/* 8. Read response from method call */

36

BufferedReader reader = new BufferedReader(
new InputStreamReader(sock.getlnputStream()));

ByteArrayOutputStream reqBA =
new ByteArrayOutputStream();

int ch = reader.read();
while (ch > -1)

reqBA.write(ch);
ch = reader.read();

reader.close(); out.close(); sock.close();
Request req = new Request(reqBA.toByteArray());

int length = Integer.parselnt(
reqg.getHeader("Content-Length"));

byte [] response = new byte [length];

int eoh = req.findEOH(reqBA.toByteArray());

System.arraycopy(reqBA.toByteArray(), eoh+4,
response, 0, length);

Copyright 2006 by Ken Slonneger XML-RPC

/* 8. Parse response from method call */

}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newlnstance();

DocumentBuilder domParser =
factory.newDocumentBuilder();

Document dom = null;
try

dom = domParser.parse(new InputSource(
new StringReader(new String(response))));

catch (Exception e)
{ System.out.printin(e); }

NodelList pList = dom.getElementsByTagName("fault");
if (pList.getLength() > 0)

Text text =
(Text)pList.item(0).getFirstChild().
getFirstChild().getLastChild().getLastChild().
getFirstChild().getFirstChild();
String errorMessage = text.getData();
return errorMessage;

}

pList = dom.getElementsByTagName("param");
Object actualValue = "";

Node parm = pList.item(0);

Node value = parm.getFirstChild();

Node type = value.getFirstChild();

if (type.getNodeName().equals("array"))

actualValue = buildList((Element)type);
else

actualValue = type.getFirstChild().getNodeValue();
return actualValue;

XML-RPC Copyright 2006 by Ken Slonneger

37

/* buildList extracts the values from the array and returns
them as a list object. */

private List buildList(Element element)

List<Object> returnValues = new ArrayList<Object>();

Nodelist values =
element.getElementsByTagName("value");

for (int k=0; k<values.getLength(); k++)
{

Node value = values.item(k);
Node type = value.getFirstChild();

String actualValue =
type.getFirstChild().getNodeValue();

String actualType = type.getNodeName();

returnValues.add(mapArgToObject(actualType,
actualValue));
}

return returnValues:;

}

/* buildParams builds an XML element representing an array
of values to be sent as a parameter to the method. */

private String buildParams(String tag, List parms)

String Start — Illl, end — Illl;
if (tag.equals("))
{

start = "<" + tag + ">";
end ="</" + tag + ">";

StringBuffer returnedParms = new StringBuffer();

lterator type = parms.iterator();
while (type.hasNext())

Object aType = type.next();

38 Copyright 2006 by Ken Slonneger XML-RPC

}

if (aType instanceof Integer)

returnedParms.append(start + "<value><int>");
returnedParms.append(((Integer)aType).toString());
returnedParms.append("</int></value>" + end);

else if (aType instanceof Boolean)

returnedParms.append(start + "<value><boolean>");
boolean bval = ((Boolean)aType).booleanValue();

returnedParms.append(bval?"1":"0");
returnedParms.append("</boolean></value>" + end);

else if (aType instanceof String)

returnedParms.append(start + "<value><string>");
returnedParms.append(new String((String)aType));
returnedParms.append("</string></value>" + end);

else if (aType instanceof Double)

returnedParms.append(start + "<value><double>");
returnedParms.append(((Double)aType).toString());
returnedParms.append("</double></value>" + end);

else if (aType instanceof List)

List subList = (List)aType;
returnedParms.append(start +
"<value><array><data>");

returnedParms.append(buildParams("", subList));

returnedParms.append('</data></array></value>"
+ end);
}

return returnedParms.toString();

}

XML-RPC

Copyright 2006 by Ken Slonneger

I* mapArgToObject takes an XML-RPC type and a value as
a string and returns that value as a Java object of the
correct type. */

private Object mapArgToObject(String type, String value)
{

if (type.equals("i4") 1l type.equals("int"))
return new Integer(value);
else if (type.equals("string"))
return new String(value);
else if (type.equals("double"))
return new Double(value);
else if (type.equals("boolean"))
return new Boolean("1".equals(value));
else
return null;

Limitations of XML-RPC

* Limited choice of data types.

* No provision for passing objects.

 Little or no security since firewalls are bypassed.

* No type checking of array values; mixed type not forbidden.
* No check that a struct has no duplicate names.

e Strings allow only ascii.

* No representation of NaN for double.

40 Copyright 2006 by Ken Slonneger XML-RPC

