
Relax NG Copyright 2006 by Ken Slonneger 1

Relax NG
Relax New Generation
Relax NG was developed by merging two previous schema
languages:

Relax Regular Language for XML (Murata Makoto)
TREX Tree Regular Expressions for XML (James Clark)

Three Kinds of Schema Languages
1. Constraints are expressed as rules, such as "the element

named phone must have an attribute named areaCode and
this attribute's content must follow this specific rule ...". This
technique is used by Schematron.

2. Constraints are expressed by a description of each element
and attribute, such as "we need an element named phone,
and it has an attribute named areaCode, which looks like ...".
This technique is used by DTDs and XML Schemas.

3. Constraints are expressed as patterns that define the
permissible elements, attributes, and text nodes using
regular expressions. This technique is used by Relax NG.

Key Features of Relax NG
• Simple like DTDs but expressive like XML Schemas.
• Allows two syntaxes: XML syntax and Compact syntax.
• Uses XML Schema data types.
• Permits user-defined data types.
• Supports namespaces.
• Allows modular definitions.
• Treats elements and attributes in a similar manner.
• Has a pattern-based grammar.

2 Copyright 2006 by Ken Slonneger Relax NG

Basic Components of Compact Relax NG
An element pattern

element eleName { pattern }
An attribute pattern

attribute attName { pattern }
A text pattern

text
A sequence of patterns

pat1, pat2, pat3, pat4

A choice of patterns
pat1 | pat2 | pat3 | pat4

Cardinality of patterns
pat1?, pat2*, pat3+

Grouping
(pat1 | pat2), pat3

In these examples, Relax NG keywords are shown in italics.

Example: Translate phoneA.dtd into Relax NG
File: phoneA.dtd

<!ELEMENT phoneNumbers (title, entries)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT entries (entry*)>
<!ELEMENT entry (name, phone, city?)>
<!ELEMENT name (first, middle?, last)>
<!ATTLIST name gender (female | male) #IMPLIED>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT city (#PCDATA)>

Relax NG Copyright 2006 by Ken Slonneger 3

File: phoneA.rnc

element phoneNumbers
{

element title { text },
element entries
{

element entry
{

element name
{

attribute gender { text }?,
element first { text },
element middle { text }?,
element last { text }

},
element phone { text },
element city { text }?

}*
}

}

Validation
The xmllint utility will validate an XML document against a Relax
NG schema, but it expects the definition to use the XML
syntax for Relax NG.
Another utility program, developed by James Clark and called
Trang, will translate compact Relax NG syntax into the
corresponding XML syntax.
This program is provided in a Java archive file called trang.jar.

Usage
% java -jar trang.jar phoneA.rnc phoneA.rng

4 Copyright 2006 by Ken Slonneger Relax NG

File: phoneA.rng

<?xml version="1.0" encoding="UTF-8"?>
<element name="phoneNumbers"
 xmlns="http://relaxng.org/ns/structure/1.0">
 <element name="title">
 <text/>
 </element>
 <element name="entries">
 <zeroOrMore>
 <element name="entry">
 <element name="name">
 <optional>
 <attribute name="gender"/>
 </optional>
 <element name="first">
 <text/>
 </element>
 <optional>
 <element name="middle">
 <text/>
 </element>
 </optional>
 <element name="last">
 <text/>
 </element>
 </element>
 <element name="phone">
 <text/>
 </element>
 <optional>
 <element name="city">
 <text/>
 </element>
 </optional>
 </element>
 </zeroOrMore>
 </element>
</element>

Relax NG Copyright 2006 by Ken Slonneger 5

Validation with xmllint

% xmllint --noout --relaxng phoneA.rng phoneA.xml
phoneA.xml validates

Alternative Validation
James Clark has also provided a utility program, called Jing,
that validates XML documents using Relax NG while accepting
the compact syntax as well as the XML syntax.

Usage
% java -jar jing.jar -c phoneA.rnc phoneA.xml
%

% java -jar jing.jar phoneA.rng phoneA.xml
%

No output indicates that the XML document is valid with
respect to the Relax NG schema.

Now alter phoneA.xml to create a document phoneB.xml.
• Interchange a first and last element.
• Duplicate a phone element.

% java -jar jing.jar -c phoneA.rnc phoneB.xml
/mnt/nfs/fileserv/fs3/slonnegr/xnotes/Relax/phoneB.xml:9:18:
 error: required elements missing
/mnt/nfs/fileserv/fs3/slonnegr/xnotes/Relax/phoneB.xml:10:19:
 error: element "first" not allowed in this context
/mnt/nfs/fileserv/fs3/slonnegr/xnotes/Relax/phoneB.xml:21:16:
 error: element "phone" not allowed in this context

6 Copyright 2006 by Ken Slonneger Relax NG

Notes
• Relax NG provides no way to specify a particular schema

in an XML document like DTD and XML Schemas do.
Any validator needs to know both the XML document and
the Relax NG file to carry out the validation.

• No precedence is defined between sequencing and
choice. Parentheses must be used to avoid ambiguity.

Example: Using Element Combinations
Remember the DTD elems.dtd:

<!ELEMENT root (one+, (two | three)+,
 four*, (five*, six)+, (one | two)?)>
<!ELEMENT one (EMPTY)>
<!ELEMENT two (EMPTY)>
<!ELEMENT three (EMPTY)>
<!ELEMENT four (EMPTY)>
<!ELEMENT five (EMPTY)>
<!ELEMENT six (EMPTY)>

In Relax NG we specify an empty element using the keyword
empty.

element tag { empty }
If the element has an attribute, the empty keyword may
omitted.

element image { attribute source { text } }
The empty pattern is required only when an element has no
content and no attributes.

The compact Relax NG schema on the next page mimics the
DTD shown above.

Relax NG Copyright 2006 by Ken Slonneger 7

File: elems.rnc

element root
{

element one { empty }+,
(element two { empty } | element three { empty })+,
element four { empty }*,
(element five { empty }*, element six { empty })+,
(element one { empty } | element two { empty })?

}

% java -jar jing.jar -c elems.rnc e1.xml
%
This Relax NG schema contains some redundancy.
The solution to this problem is to name some of the patterns
to support reuse and reduce the depth of the element nesting.

oneDef = element one { empty }
Relax NG is designed so that element and attribute names
cannot be confused with definition identifiers, which are always
introduced on the left side of an equal sign.

one = element one { empty }

Since a Relax NG schema may define several different
elements, we need a way to specify which will be the root of
the corresponding XML document.
The keyword start indicates which element is the root.

The file on the next page shows a Relax NG schema in which
each element is given a name.

8 Copyright 2006 by Ken Slonneger Relax NG

File: elems2.rnc

start = element root
{

one+,
(two | three)+,
four*,
(five*, six)+,
(one | two)?

}
one = element one { empty }
two = element two { empty }
three = element three { empty }
four = element four { empty }
five = element five { empty }
six = element six { empty }

Using Choice (the | operation)
In Relax NG the choice operator can be used between two
attributes for an element and between an attribute and an
element in specifying the content of an element.
The next Relax NG schema is a variation of the phone
example with two changes:
• A name element may have a gender attribute or an age

attribute (or no attribute at all).
• An entry element may have a phone element or a phone

attribute.

Relax NG Copyright 2006 by Ken Slonneger 9

File: phoneC.rnc

element phoneNumbers
{

element title { text },
element entries
{

element entry
{

element name
{

(attribute gender { text } | attribute age { text })?,
element first { text },
element middle { text }?,
element last { text }

},
(element phone { text } | attribute phone { text }),
element city { text }?

}*
}

}
Later we see how the text content and attribute values can be
specified more accurately using XML Schema datatypes.

Comments
In the Relax NG compact syntax, a comment is indicated by a
sharp symbol (#), which defines a comment from that point to
the end of the current line.

this is comment in RNC

10 Copyright 2006 by Ken Slonneger Relax NG

Mixed Content
Mixed content refers to the situation where an element has
both text and elements in its content.
With Relax NG mixed content is specified with a pattern
represented by the keyword mixed. The body of the mixed
specification describes the elements that can be combined
with text to form the mixed content.

Example
DTD Specification

<!ELEMENT narrative (#PCDATA | bold | italics | underline)*>
<!ELEMENT bold (#PCDATA>
<!ELEMENT italics (#PCDATA>
<!ELEMENT underline (#PCDATA>

Relax NG Specification

element narrative
{

mixed { (element bold { text } |
element italics { text } |
element underline { text })*

}
}

The following XML document can be validated relative to the
previous Relax NG definition.

<?xml version="1.0"?>
<narrative>

Teach a child to be <italics>polite</italics> and
<italics>courteous</italics> in the home and, when
he grows up, he'll <bold>never</bold> be able to
merge his car onto a <underline>freeway</underline>.

</narrative>

Relax NG Copyright 2006 by Ken Slonneger 11

Interleaving
As an alternative to sequencing (,) and choice (|), Relax NG
allows a combination of elements in which any order is
permitted for the elements. This interleaving is specified by an
ampersand (&).
For example, suppose that in the XML document for the
phone number entries, we do not care about the order of the
name, phone, and city elements inside each of the entry
elements.
The Relax NG definition on the next page shows the changes
needed to permit these elements to appear in any order.

File: phoneI.rnc

element phoneNumbers
{

element title { text },
element entries
{

element entry
{

element name
{

attribute gender { text }?,
element first { text },
element middle { text }?,
element last { text }

} &
element phone { text } &
element city { text }?

}*
}

}

12 Copyright 2006 by Ken Slonneger Relax NG

A special case of interleaving occurs when text is interspersed
with elements in mixed content.
In fact, the pattern for mixed can be defined using interleaving.

mixed { pat } is equivalent to text & pat?

The Relax NG specification for the narrative element can be
written as shown below.

File: narrative.rnc
element narrative
{

text & (element bold { text } |
 element italics { text } | element underline { text })*

}

To justify the term "interleave" for this combining operation,
observe the following definition.

File: interleave.rnc
element root
{

element item { text } &
(element first { text },
 element second { text },
 element third { text })

}

The elements first, second, and third must appear in that order,
but the element item may be placed at any of the four gaps in
that sequence.

Relax NG Copyright 2006 by Ken Slonneger 13

Enumerations
The values of an element or an attribute may be constrained
to a particular set of values by defining an enumeration using
strings and the choice operations (|).
Examples

attribute gender { "female" | "male" }?,
element city { "Iowa City" | "Coralville" |

"North Liberty" | "Hills" |
"Solon" }

element year { "2003" | "2004" | "2005" | "2006" }

This mechanism can be used to define constant (fixed)
attributes and elements.

attribute gender { "female" }?,
element city { "Iowa City" }

Note on String Matching
A literal string pattern will consider the string in the pattern to
match the string in the XML document if the strings are the
same after the whitespace in both strings is normalized.
A normalized string has each sequence of interior whitespace
replaced by a single space and has all leading and trailing
whitespace trimmed.
The following elements and attributes are valid with respect to
the Relax NG specifications shown above.

<city>Iowa City </city>
<city> North

Liberty</city>
<name gender=" female ">

14 Copyright 2006 by Ken Slonneger Relax NG

This normalized string matching can be circumvented
by using a built-in datatype with the keyword string.

attribute gender { string "female" | string "male" }?,
Now the values for the gender attribute must be exactly
"female" or "male".
A companion datatype with the keyword provides the default
behavior that we saw above.

attribute gender { token "female" | token "male" }?,
This specification matches the attribute shown below:

<name gender=" female">

Lists
The list pattern matches a sequence of tokens separated by
white space.

Example
element stateCodes { list { text } }

specifies an XML instance with the element
<stateCodes>

IA IL IN MN MI
NY NJ NM

</stateCodes>

Later we see how XML Schema simple types can be used in
Relax NG. Here is a specification that allows lists of even
length of floating-point numbers

element evenVec { list { (xsd:double, xsd:double)* } }

Relax NG Copyright 2006 by Ken Slonneger 15

XML Schema Datatypes
All predefined simple types from XML Schema are recognized
by Relax NG.
The prefix "xsd" is automatically linked to the XML Schema
datatypes.

element number { xsd:integer }

To use a different prefix, define it with the keyword datatypes.
datatypes xs=

"http://www.w3.org/2001/XMLSchema-datatypes"
element number { xs:integer }

Restriction
If the children of an element or the value of an attribute
matches a datatype pattern, then the complete content
of the element or attribute value must match that datatype
pattern.

Illegal Elements
element bad1
{

xsd:integer,
element note { text }

}

element bad2
{

xsd:integer,
text

}

A Legal Element
element good
{

xsd:integer,
attribute note { text }

}

16 Copyright 2006 by Ken Slonneger Relax NG

Facets
An XML Schema datatype may be modified by parameters
given by the facets of the simple types.
Facets are called "parameters" in Relax NG.

Two facets are disallowed in Relax NG:
whitespace and enumeration.

The values of the parameters (facets) must be delimited by
quotes or apostrophes.

Examples

element age { xsd:integer { minInclusive="0"
 maxInclusive="120" } }

element currency { xsd:decimal { fractionDigits="2" } }

element password { xsd:string { minLength="8"
maxLength="12" } }

element zipcode { xsd:string { pattern="[0-9]{5}" } }

element license { xsd:string { pattern="[A-Z]{3} \d{3}" } }

element tla { xsd:string { pattern="[A-Z][A-Z][A-Z]" } }

element pm { xsd:time { minInclusive="12:00:00"
maxInclusive="23:59:59" } }

Relax NG Copyright 2006 by Ken Slonneger 17

With these additional tools to specify the contents of
elements, we can define a Relax NG schema for the XML
document phoneX.xml with both the gender and areaCode
attributes.
Some elements are constrained by facet patterns and some
using enumerations.

File: phoneX.rnc

datatypes xs=
"http://www.w3.org/2001/XMLSchema-datatypes"

start = element phoneNumbers
{

element title { text },
element entries
{

element entry { name, phone, city? }*
}

}
name = element name

{
attribute gender { "female" | "male" }?,
element first { text },
element middle { text }?,
element last { text }

}
phone = element phone

{
attribute areaCode

{ xs:integer { pattern="\d{3}" } }?,
xsd:string { pattern="\d{3}-\d{4}" }

}
city = element city { "Iowa City" | "Coralville" |

"North Liberty" | "Hills" | "Solon" }

18 Copyright 2006 by Ken Slonneger Relax NG

Recursion in Relax NG
When a pattern has a name, it may refer to itself inside of its
definition, producing a recursively defined pattern.
References to recursively defined patterns must occur inside
an element pattern.
The recursive reference inside of the pattern must be optional
so that the recursion is not endless.
In the next example, the elements bold, italics, and span can
be nested inside of each other.

File: rec.rnc
start = root
root = element root { inline }
inline = (text | element bold { inline }

| element italics { inline }
| element span
 {

attribute style { text }?,
inline

}
)*

File: rec.xml
<?xml version="1.0"?>
<root>

I have always wished that my <italics>computer would
be as easy to <bold>use</bold> as my telephone
</italics>. My wish has come true.
<italics>I</italics> no longer <bold>know</bold> how to
<bold>use</bold> my telephone.

 <italics>Bjarne Stroustrup</italics>
</root>

Relax NG Copyright 2006 by Ken Slonneger 19

Namespaces in Relax NG
Relax NG schemas can recognize namespaces in XML
documents by means of simple declarations using the
keyword namespace.
These declarations can bind a prefix to a URI or create a
default namespace with no prefix.
As always, it is the URI that determines the namespace, not
the prefix.

File: phoneNS.xml
This simple version of the phone number database has no
attributes and uses a simple type for the name element.

<?xml version="1.0"?>
<ph:phoneNumbers

xmlns:ph="http://slonnegr.cs.uiowa.edu/phone">
 <ph:title>Phone Numbers</ph:title>
 <ph:entries>
 <ph:entry>
 <ph:name>Rusty Nail</ph:name>
 <ph:phone>335-0055</ph:phone>
 <ph:city>Iowa City</ph:city>
 </ph:entry>
 <ph:entry>
 <ph:name>Justin Case</ph:name>
 <ph:phone>354-9876</ph:phone>
 <ph:city>Coralvile</ph:city>
 </ph:entry>
 </ph:entries>
</ph:phoneNumbers>

In the Relax NG schema that follows we use a different prefix,
although we could have used "ph" just as well.

20 Copyright 2006 by Ken Slonneger Relax NG

File: phoneNS.rnc

namespace xyz = "http://slonnegr.cs.uiowa.edu/phone"
element xyz:phoneNumbers
{

element xyz:title { text },
element xyz:entries
{

element xyz:entry
{

element xyz:name { text },
element xyz:phone { text },
element xyz:city { text }?

}*
}

}

We can as well define the schema using a default namespace,
which involves adding the keyword default.

File: phoneNSD.rnc

default namespace = "http://slonnegr.cs.uiowa.edu/phone"
element phoneNumbers
{

element title { text },
element entries
{

element entry
{

element name { text },
element phone { text },
element city { text }?

}*
}

}

Relax NG Copyright 2006 by Ken Slonneger 21

Two Additional Features
A last example will illustrate two additional features of Relax
NG, one that allows a specification to be built in separate files
and one to supply information in a specification that is not part
of the grammar of patterns.

Merging Grammars: include
The include directive allows one specification to absorb the
definitions from another Relax NG grammar into its grammar.
Basic syntax: include "otherFile.rnc"

Annotations
Sometimes we want to include information in a Relax NG
specification that will not be used for validation.

An annotation can be written inside brackets that occur
immediately preceding the construct to be annotated.
The content of an annotation is a fragment of XML consisting
of zero or more attributes followed by zero or more elements.
An attribute in an annotation must be qualified with a prefix that
has been declared with a non-empty URI.
In the next example, only attributes appear in the annotations.

The information in an annotation is used primarily as
documentation for the (human) readers of the document.

The example that illustrates these two features is a Relax NG
specification corresponding to the product.dtd schema from
the DTD chapter. We begin by repeating that schema.

22 Copyright 2006 by Ken Slonneger Relax NG

Example: product.dtd
Describe a catalog of tools to be sold by some company.

<!ELEMENT catalog (product+)>
<!ELEMENT product

 (specifications+, options?, price+, notes?)>
<!ATTLIST product name CDATA #REQUIRED>
<!ATTLIST product category
 (HandTool|Table|ShopPro) "HandTool">
<!ATTLIST product partnum NMTOKEN #REQUIRED>
<!ATTLIST product plant
 (Boston|Buffalo|Chicago) "Chicago">
<!ATTLIST product inventory
 (InStock|BackOrdered|Discontinued) "InStock">

<!ELEMENT specifications (#PCDATA)>
<!ATTLIST specifications weight CDATA #IMPLIED>
<!ATTLIST specifications power NMTOKEN #IMPLIED>

<!ELEMENT options EMPTY>
<!ATTLIST options finish (Metal|Polished|Matte) "Matte">
<!ATTLIST options adapter
 (Included|Optional|NotApplicable) "Included">
<!ATTLIST options case
 (HardShell|Soft|NotApplicable) "HardShell">

<!ELEMENT price (#PCDATA)>
<!ATTLIST price msrp CDATA #IMPLIED>
<!ATTLIST price wholesale CDATA #IMPLIED>
<!ATTLIST price street CDATA #IMPLIED>
<!ATTLIST price shipping CDATA #IMPLIED>

<!ELEMENT notes (#PCDATA)>

Relax NG Copyright 2006 by Ken Slonneger 23

Relax NG Version
One difference with this new version is that the pattern
syntax of Relax NG has no way to specify default values
for attributes. The best we can do is supply these values
in annotations that are attached to the attributes in question.
The annotation attribute defaultValue defines a default value
for the attributes that require one.
Remember that this attribute must have a prefix.
We use the namespace "http://uxt.examples/annotations" to
define the prefix.
The second new feature in this example is illustrated by
dividing the specification into two files and using the include
directive to combine them.

File: product.rnc
namespace a = "http://uxt.examples/annotations"
include "pdefs.rnc"
start = element catalog { product+ }
product =

element product
{

attribute name { text },
[a:defaultValue = "HandTool"]
attribute category
{ "HandTool" | "Table" | "ShopPro" }?,
attribute partnum { xsd:NMTOKEN },
[a:defaultValue = "Chicago"]
attribute plant { "Boston" | "Buffalo" | "Chicago" }?,

24 Copyright 2006 by Ken Slonneger Relax NG

[a:defaultValue = "InStock"]
attribute inventory
{ "InStock" | "BackOrdered" | "Discontinued" }?,
specifications+,
options?,
price+,
element notes { text }?

}

File: pdefs.rnc
namespace a = "http://uxt.examples/annotations"
specifications =

element specifications
{

attribute weight { text }?,
attribute power { xsd:NMTOKEN }?,
text

}
options =

element options
{

[a:defaultValue = "Matte"]
attribute finish { "Metal" | "Polished" | "Matte" }?,
[a:defaultValue = "Included"]
attribute adapter
{ "Included" | "Optional" | "NotApplicable" }?,
[a:defaultValue = "HardShell"]
attribute case
{ "HardShell" | "Soft" | "NotApplicable" }?

}

Relax NG Copyright 2006 by Ken Slonneger 25

price = element price
{

attribute msrp { text }?,
attribute wholesale { text }?,
attribute street { text }?,
attribute shipping { text }?,
text

}

Notes on the Example
The full power of Relax NG data types has not been used in
this example.
For compatibility, the types from the DTD specification have
been translated mechanically. A careful analysis of the original
XML document might lead to a more precise specification of
the types of elements and attributes in this example.
The XML document products.xml from the DTD chapter
validates with respect to this Relax NG specification, as
shown by the following application of jing.

% java -jar jing.jar -c products.rnc products.xml
%

26 Copyright 2006 by Ken Slonneger Relax NG

Keywords in Compact Relax NG
attribute

default

datatypes

div

element

empty

external

grammar

include

inherit

list

mixed

namespace

notAllowed

parent

start

string

text

token

