
Introduction to XML Copyright 2006 by Ken Slonneger 1

Introduction to XML
Using XML Technologies: Course Overview
22C: 096 Topics in Computer Science
Design of portable data using the Extensible Markup Language;
techniques for validating XML documents (DTD, XML schemas,
and Relax NG); methods for exploring, processing, and
translating XML documents using Java (DOM, SAX, XSLT,
XPath, JDOM, and XQuery); applications of XML chosen from
among XHTML, SVG, XML-RPC, SOAP, and JAXB.
Prerequisite: 22C:021 or 22C:022

Extensible Markup Language
XML is a set of rules for defining semantic tags that describe the
structure and meaning of a document.
The user of XML chooses the names and placement of the tags
to convey the nature of the data stored in a document. XML can
be used to markup any data file to make it easier to understand
and process.
In addition, it has been applied to many special domains of data:
mathematics, music, vector graphics, the spoken word, financial
data, chemical symbols, and web pages among others.

Document Type Definitions
A DTD specification provides a means to describe the kinds of
entries allowed in a class of XML documents, which can then be
validated relative to the DTD to ensure that they have been
constructed properly.
A DTD specification also allows special definitions that can make
the creation of XML documents easier.

2 Copyright 2006 by Ken Slonneger Introduction to XML

XML Schemas
These specifications, written in XML, also provide a way to
define the structure and members of classes of XML
documents.
They allow a more detailed description of the types of the
elementary components of the documents, which can be
validated against the schemas.

Relax NG
Relax NG (relaxing) is a grammar-based schema language, as is
the XML Schema Language, but it has a more intuitive language
that is easy to grasp.
These schemas can be written in XML or in a compact notation.

Document Object Model
DOM provides a framework for a collection of Java methods that
can parse an XML document, producing a tree of nodes that can
be inspected and manipulated.
DOM also allows for the creation of XML documents using data
produced by a program.

Simple API for XML
SAX describes a set of Java methods that can parse an XML
document, notifying a program of the occurrences of various
kinds of nodes using callback methods similar to Java event
handling.

Introduction to XML Copyright 2006 by Ken Slonneger 3

JDOM
JDOM is a version of the Document Object Model that is
integrated more closely with Java.

XSL Transformations
XSLT is a transformation language that uses the Extensible
Stylesheet Language (XSL) to translate XML documents into
other XML documents with a different structure, into html
documents, or into plain text files.
XSLT is a declarative language with most of the features of a
general-purpose programming language.

XPath
XPath is the language used by XSLT to describe the location of
nodes in the tree corresponding to an XML document.
It is used also to define patterns that drive the pattern matching
for templates in XSLT and to define expressions for computing
values based on the data stored in the nodes in the tree
produced from the XML data.
This way of defining locations in an XML tree can also be used
for direct access in DOM and to specify information in XQuery.

XQuery
XQuery provides a means to query the content and structure of
a collection of XML documents.
XQuery is a declarative language comparable to SQL, the
language used to query relational databases.

4 Copyright 2006 by Ken Slonneger Introduction to XML

XML Remote Procedure Call
XML-RPC is an XML application designed to enable methods
calls over the Internet.
By specifying the calling information in XML, the RPC mechanism
becomes language independent.

Simple Object Access Protocol
SOAP provides a more robust and flexible protocol for remote
method calls.

Java Architecture for XML Binding
JAXB provides a mechanism for converting XML data into Java
objects and vice versa.

Extensible Hypertext Markup Language
XHTML is a version of html based on XML. Since XHTML
documents can be check for validity, they will be rendered more
predictably across different browsers.

Introduction to XML Copyright 2006 by Ken Slonneger 5

What is XML?
XML is a markup language (ML).
Markup information is inserted into the data to define its
structure and meaning.
Some markup languages use metadata to describe how a
document should look (its presentation).

Markup languages for presentation
• HTML (Hypertext Markup Language)
• RTF (Rich Text Format)
• TEX

XML, however, has nothing to do with presentation.
Why markup simple data? It just makes the file larger.

Example
We want to store a list of names and phone numbers.
Simple solution: Store data in a "flat" text file.

Rusty Nail
335-0055
Justin Case
354-9876
Pearl E. Gates
335-4582
Helen Back
337-5967

6 Copyright 2006 by Ken Slonneger Introduction to XML

Problems

How can we retrieve information easily?
• Read the file one line at a time and search for a name. But

what if a name is entered backwards?
• Extracting the last names requires tokenizing lines, but a

name may be two tokens or three tokens.
• The data structure is not resilient to change. If we alter its

structure, say add a city for each entry, the parser has to
be redesigned.

New file
Rusty Nail
335-0055
Iowa City
Justin Case
354-9876
Coralville
Pearl E. Gates
335-4582
North Liberty
Helen Back
337-5967
Iowa City

Incorrect data entry is still a major problem.
What happens if the first "Iowa City" is omitted by accident?

Introduction to XML Copyright 2006 by Ken Slonneger 7

An Alternative: XML
Markup the phone data using tags that describe the information.

An XML file: phone.xml
<?xml version="1.0"?>
<phoneNumbers>
 <title>Phone Numbers</title>
 <entries>
 <entry>
 <name>Rusty Nail</name>
 <phone>335-0055</phone>
 <city>Iowa City</city>
 </entry>
 <entry>
 <name>Justin Case</name>
 <phone>354-9876</phone>
 <city>Coralville</city>
 </entry>
 <entry>
 <name>Pearl E. Gates</name>
 <phone>335-4582</phone>
 <city>North Liberty</city>
 </entry>
 <entry>
 <name>Helen Back</name>
 <phone>337-5967</phone>
 <city>Iowa City</city>
 </entry>
 </entries>
</phoneNumbers>

Now the document is easier to parse and more resilient to
change. Missing information does not alter the meaning of
existing data.

8 Copyright 2006 by Ken Slonneger Introduction to XML

Finding the last names still requires tokenizing the names in
the list. To make parsing the names easier, redefine the name
elements in the XML document.
Another XML file: phone2.xml

<?xml version="1.0"?>
<phoneNumbers>
 <title>Phone Numbers</title>
 <entries>
 <entry>
 <name>
 <first>Rusty</first>
 <last>Nail</last>
 </name>
 <phone>335-0055</phone>
 <city>Iowa City</city>
 </entry>
 <entry>
 <name>
 <first>Justin</first>
 <last>Case</last>
 </name>
 <phone>354-9876</phone>
 <city>Coralville</city>
 </entry>
 <entry>
 <name>
 <first>Pearl</first>
 <middle>E.</middle>
 <last>Gates</last>
 </name>
 <phone>335-4582</phone>
 <city>North Liberty</city>
 </entry>

Introduction to XML Copyright 2006 by Ken Slonneger 9

 <entry>
 <name>
 <first>Helen</first>
 <last>Back</last>
 </name>
 <phone>337-5967</phone>
 <city>Iowa City</city>
 </entry>
 </entries>
</phoneNumbers>

Now first and last names are easy to determine.
If a middle name designation is present it can be found as well.
If it is missing, that is readily apparent also.

Structure of an XML document

1. Always start with an xml declaration.
 <?xml version="1.0"?>

2. Follow the xml declaration with an optional document type
definition (DTD).

<!DOCTYPE rootElement ... >

3. Next comes the body of the XML document, which consists
of one root element

An element has a start tag: <nameOfElement>
and an end tag: </nameOfElement>
The content of an element, between the start tag and the
end tag, may be more elements, text, or both.
If the element contains no content, it can be written:

<nameOfElement/>

10 Copyright 2006 by Ken Slonneger Introduction to XML

Example
<?xml version="1.0"?>
<rootElement>
 This element contains text content only.
</rootElement>

4. Any element may have attributes defined in its starting tag.
<price currency="USD">57.95</price>

5. An element that contains both child elements and text is
said to have mixed content.

Mixed content is a bad idea when describing structured
information.
Mixed content is necessary when presenting textual
documents as parts of text may need to be marked up for
presentation.
<p>This element has mixed content.</p>

6. XML documents may include comments of the form:
<!-- this is the text of a comment -->

Comments may occur anywhere in a documents except
inside a tag and preceding the xml declaration.
Comments may continue over multiple lines.
This syntax can be used to "comment out" parts of an XML
document.

7. Special techniques can be used to represent character data.
a) Character references: &#ddd; and &#xhhhh;
 where d stands for a decimal digit and h for a
 hexadecimal digit.

Introduction to XML Copyright 2006 by Ken Slonneger 11

b) Entitiy references: &name;
Predefined entity references

< <
> >
& &
" "
' '

Since these five characters have special meaning for
an XML parser, they must be represented by these
entity references in many situations.
A user can define other enitities in a DTD.

c) A CDATA section, written as
<![CDATA[... text ...]]>

 may contain any characters since the XML parser will
 not interpret this text as XML markup.

File: code.xml
<?xml version="1.0"?>
<characters>

<code1>x>0 && x<=10 &&
ans=="no"</code1>

 <code2><![CDATA[x>0 && x<=10 &&
ans=="no"]]></code2>

 <special> Ü ô ý </special>
 <music> ♭ ♮ ❿ </special>
</characters>

12 Copyright 2006 by Ken Slonneger Introduction to XML

File Displayed in Firefox

8. Instructions for the application that is processing the XML
document can be placed in processing instructions,
delimited by <? and ?>.

<?xml-stylesheet href="style.css" type="text/css"?>

Introduction to XML Copyright 2006 by Ken Slonneger 13

Why not just use HTML?
HTML documents have markup information, and they can be
displayed by a browser. Why bother with XML?

<html> <!-- phone.html -->
 <head>
 <title>Phone Numbers</title>
 </head>
 <body>
 <h1>Phone Numbers</h1>

 Rusty Nail

 335-0055
 Iowa City

 Justin Case

 354-9876
 Coralville

 Pearl E. Gates

 335-4582
 North Liberty

 Helen Back

 337-5867
 Iowa City

 </body>
</html>

14 Copyright 2006 by Ken Slonneger Introduction to XML

All the same information is stored in this document, but
retrieving parts of the data will be very difficult.
How do we retrieve the phone number of Justin Case?
Although the tags describe a view of the data, they do not
suggest the meaning of the content. That is what XML does.

Purposes of HTML and XML
HTML has a predefined set of tags that are used to mark up a
document so that a web browser can display the document.
Tags do not describe the semantics of the document.
They describe the way the document will be displayed.

XML allows the user to mark up the data to describe the
meaning and structure of the document.
Tags have user-defined identifiers that provide semantics for
the information in the document.
XML documents have nothing to do with browsers, although
they can be translated into HTML documents for display by a
browser.

Differences between XML and HTML
1. XML is case sensitive.

2. XML requires end tags for all elements.

3. Attributes in XML must have values.

4. Attribute values in XML must be delimited with quotation
marks or apostrophes.

5. Browsers have considerable tolerance for incorrect HTML
coding.

Introduction to XML Copyright 2006 by Ken Slonneger 15

File: badphone.html
<html>
 <HEAD>
 <title>Phone Numbers</title>
 </HEAD>
 <body>
 <h1>Phone Numbers</h1>

 Rusty Nail

 335-0055
 Iowa City

 Justin Case

 354-9876
 Coralville

 Pearl E. Gates

 335-4582
 North Liberty

 Helen Back

 337-5867
 Iowa City

This HTML document is missing many of the end tags, but most
browsers can make sense out of it.
It has been estimated that 50% of program code in web
browsers is to provide tolerance for poor HTML coding.

16 Copyright 2006 by Ken Slonneger Introduction to XML

Some XML Details

Element (tag) Identifiers and Attribute Names
• Start with a letter, underscore, or colon.
• Follow with letters, digits, underscores, periods, hyphens,

or nothing.
• No spaces in identifiers.
• Case sensitive.
• Not "xml".

Attributes
• Binding of a value (the attribute value) to an identifier (the

attribute name).
• Value must be delimited by quotes or apostrophes.
• No duplicate attribute names for a given element.
• Order of attributes for an element is not significant.
• Few restrictions on attribute values, but since they are parsed,

character references may be needed to avoid confusion.
• Compare with a HashMap or a property list.

Example
<tag a="17" b='herky' c="don't" d='quote is "'>

The textual content in an element can usually be defined as an
attribute value as an alternative strategy.

Introduction to XML Copyright 2006 by Ken Slonneger 17

File: phoneAtt.xml

<?xml version="1.0"?>
<phoneNumbers>
 <entry city="Iowa City">
 <name>
 <first>Rusty</first>
 <last>Nail</last>
 </name>
 <phone>335-0055</phone>
 </entry>
 <entry city="Coralville">
 <name>
 <first>Justin</first>
 <last>Case</last>
 </name>
 <phone>354-9876</phone>
 </entry>
 <entry city="North Liberty">
 <name>
 <first>Pearl</first>
 <middle>E.</middle>
 <last>Gates</last>
 </name>
 <phone>335-4582</phone>
 </entry>
 <entry city="Iowa City">
 <name>
 <first>Helen</first>
 <last>Back</last>
 </name>
 <phone>337-5967</phone>
 </entry>
</phoneNumbers>

18 Copyright 2006 by Ken Slonneger Introduction to XML

Which are Better: Elements or Attributes
Attributes result in smaller data files.
Elements can contain substructure.
Elements may be easier to process using existing tools.
Elements should be used for data that are a nouns, and
attributes for adjectives.
The relationship between attribute names and attribute values
for an element is a function (single-valued):

f : xml-identifier ➝ string
Attributes can be used to provide IDs (unique identifiers) for
elements and IDREFs (references to existing IDs).

Bottom Line
Choice between using an element versus using an attribute is
somewhat subjective.

Recommended Strategy
• Use elements for the data described in the document.
• Use attributes for information about the interpretation of

that data (use attributes for metadata).

XML Declaration
Several properties can be specified in this declaration.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
Contrary to appearances, this declaration is not a processing
instruction and these bindings are not attributes (since xml is not
an element).

Introduction to XML Copyright 2006 by Ken Slonneger 19

Tree Structure of XML
The nested structure of elements and other components of an
XML document create a tree.
Exactly one element appears at the top level of the document,
and it can be taken as the root of the tree.
Example: phone2.xml

20 Copyright 2006 by Ken Slonneger Introduction to XML

Relationships between Elements

The nesting of elements defines parent-child relationships,
sibling relationships, and ancestor, descendent relationships.
Consider the views of elements from the element named
target in this XML document.

File: tree.xml
<?xml version="1.0"?>
<grandparent>
 <parent>
 <sibling>Older Sibling</sibling>
 <target>
 <child>First Child</child>
 <child>Second Child</child>
 <child>Third Child</child>
 </target>
 <sibling>Younger Sibling</sibling>
 <sibling>Youngest Sibling</sibling>
 </parent>
</grandparent>

Observe that the leaves of the tree rooted at the element
grandparent are textual nodes.
This view of the XML tree ignores the xml declaration and
other items that might occur at the top level.
We will define a document tree later that takes some of these
components into consideration.

Introduction to XML Copyright 2006 by Ken Slonneger 21

Well-Formed XML Documents

No XML processor (parser) will proceed with an XML document
that is not well-formed.
A well-formed document must adhere to the following rules:

1. The document begins with an XML declaration, for instance,
<?xml version ="1.0" standalone="yes"?>.
Nothing can come before this declaration.

2. Every element is either empty (<tag/>) or has a both a start
tag and a corresponding end tag.

3. The document has exactly one root element, which must
contain all of its other elements.
Only comments, white space, and processing instructions
may come after the close of the root element.
These items and one DTD declaration my come before the
root element, but after the xml declaration.

4. All elements nest properly. The end tag of each element
must precede the end tags of all of its ancestors.

5. The characters < and & can be used only to begin tags and
entities, except in a CDATA section. Use entity references
for these symbols.

6. Entity references are written with the format "<", and there
are only five predefined entities.

7. All attribute have values that are enclosed in either quotes
or apostrophes.

8. An element cannot have two attributes with the same
name.

22 Copyright 2006 by Ken Slonneger Introduction to XML

A Software Tool: xmlwf

The program xmlwf, which is installed on the Department's Linux
machines, tests an XML document to see if it is well-formed.

With a well-formed document, xmlwf returns nothing.
% xmlwf phone.xml
%

When applied to an ill-formed document, xmlwf indicates the
position of the first error.
% xmlwf badphone.xml
badphone.xml:16:25: mismatched tag

For more information that you probably do not need:
% man xmlwf

Most browsers will display XML documents in some form.
Browsers will not accept XML documents that are not well-
formed.

The quality of error messages varies with the different browsers.

Try these files on your favorite browser:

http://www.cs.uiowa.edu/~slonnegr/xml/badphone.xml

http://www.cs.uiowa.edu/~slonnegr/xml/att.xml

Introduction to XML Copyright 2006 by Ken Slonneger 23

Namespaces
Suppose we want to combine two XML documents that were
created independently.
How can we ensure that the identifiers for elements in the two
documents do not clash?
The solution is to create a namespace for one or both of the
documents so that tag identifiers have unique names of the form
namespace:ident.

Namespaces are a common mechanism
• Consider basketball teams. Both Iowa and Illinois have

players with the number 5, namely Alex Thompson for Iowa
and Deron Williams for Illinois. When both of these players
are on the court at the same time, how do we tell them
apart? Basketball teams use namespaces defined by team
uniforms to make the distinction.

• On my computer I have several different files with the
same name, readme.txt. How do I know which is which?
Clearly they must be in different directories, so the distinct
path names create namespaces to distinguish the files,
say /space/slonnegr/java/ToDoList/readme.txt and
/space/slonnegr/xml/DOMTree/readme.txt.

• The Java API contains thousands of classes and
interfaces that have been developed by many different
groups of programmers. Frequently, class or interface
names are duplicated in the library. To avoid the confusion
due to the existence of duplicate names, the Java API is
divided into packages that play the role of namespaces to
identify all of the classes and interfaces uniquely. Here are
two common examples.

java.util.List
java.awt.List

24 Copyright 2006 by Ken Slonneger Introduction to XML

Example Continued

In the first of the two documents, after the starting tag for the
root element, define a namespace attribute xmlns.

Replace
<rootElem>

with
<first:rootElem

xmlns:first="http://www.cs.iowa.edu/~slonnegr/first">
and put the prefix "first:" before each of the element tags in the
document.

<first:product> … </first:product>

Perform the same transformation with the second document, but
use a different prefix and a different namespace identifier (URI).

<second:rootElem2
xmlns:second="http://www.cs.iowa.edu/~slonnegr/second">
:

</second:rootElem2>
Now the documents may be combined in any way consistent
with the nesting rules of XML.

The names "first" and "second" have only local definitions and
could be any identifiers that follow the rules for XML identifiers
(for element tags). The identifiers xml and xmlns must be
avoided as namespace prefixes.
The real specifications of the namespaces are the Uniform
Resource Identifiers (URI), which are commonly written in the
format of an http domain owned by the user.
A URL is a special case of a URI.
The URI does not have to refer to an existing location on the
web.

Introduction to XML Copyright 2006 by Ken Slonneger 25

File: phoneNS.xml

<?xml version="1.0"?>
<ph:phoneNumbers
 xmlns:ph="http://slonnegr.cs.uiowa.edu/phone">
 <ph:title>Phone Numbers</ph:title>
 <ph:entries>
 <ph:entry>
 <ph:name>Rusty Nail</ph:name>
 <ph:phone>335-0055</ph:phone>
 <ph:city>Iowa City</ph:city>
 </ph:entry>
 <ph:entry>
 <ph:name>Justin Case</ph:name>
 <ph:phone>354-9876</ph:phone>
 <ph:city>Coralville</ph:city>
 </ph:entry>
 <ph:entry>
 <ph:name>Pearl E. Gates</ph:name>
 <ph:phone>335-4582</ph:phone>
 <ph:city>North Liberty</ph:city>
 </ph:entry>
 </ph:entries>
</ph:phoneNumbers>

A namespace declaration, the xmlns attribute, may occur with
any element, not just the root element.
In any case, the scope of the namespace being defined
extends to the end tag corresponding to the start tag of the
element with the attribute.
These scope rules mean that a child element can redefine a
new namespace with its own attribute definition.
Most XML authors appear to place all namespace definitions
with the root element of the document.

26 Copyright 2006 by Ken Slonneger Introduction to XML

Obvious Constraint
Two namespaces cannot share the same prefix name in
the same element of an XML document.

Namespace prefixes are usually used only on element
identifiers since attribute names already belong to an existing
element. If necessary, however, prefixes can be placed on
attribute names.

Default Namespaces

A namespace can be declared for an element without a prefix
identifier.

<someElem xmlns="http://slonnegr.cs.iowa.edu/mydefault">
Then that element and all its descendant elements are in this
namespace unless they have a prefix putting them into a
different namespace.
Attributes are not in the default namespace or any namespace
unless they have an explicit prefix.

Components of Names
Consider the element name first:product.
We say product is the local name of the element and
first:product is the qualified name.

Introduction to XML Copyright 2006 by Ken Slonneger 27

Existing Namespaces

Many XML applications are defined in terms of fixed
namespaces.
XSLT (conventional prefix is "xsl")

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XML Schema (conventional prefix is "xs")
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">

XHTML (usually a default namespace with no prefix)
<html xmlns="http://www.w3.org/1999/xhtml">

MathML
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">

Undeclaring a Namespace
A default namespace can be removed starting with some
descendant element by this kind of declaration.

<descElem xmlns="">

28 Copyright 2006 by Ken Slonneger Introduction to XML

XML Design Principles
1. Element identifiers should be self-describing. The names

should be meaningful without excessive abbreviation.

2. Normally elements with the same name should have the
same structure. The children of a particular element should
usually appear in the same order. This property may be
required if the document is to be validated.

3. Use consistent indenting to show the structure of the
elements in the document.

4. Use comments to explain unusual decisions in the design
of the XML document.

5. Mixed content should be avoided except in the case of
narrative text that requires markup in the middle of the text.

6. Follow the rules for a well-formed document carefully.

7. Each XML document should be tested to be well-formed
using some software tool, either xmlwf, a browser, or an
XML parser.

