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Functional Programming
with Scheme

Characteristics of Imperative Languages:
• Principal operation is the assignment of values

to variables.
• Programs are command oriented, and they

carry out algorithms with command level
sequence control, usually by selection and
repetition.

• Computing is done by effect.

Problem: Side effects in expressions.

Consequence: Following properties are invalid
in imperative languages:

Commutative, associative, and distributive
laws for addition and multiplication

How can we reason about programs and their
correctness if these fundamental properties of
mathematics are fallacious?
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Alternative: Functional Programming
Functional or applicative languages are based on
the mathematical concept of a function.

• Concerned with data objects and values
instead of variables.

• Principal operation is function application.

• Functions are treated as first-class objects that
may be stored in data structures, passed as
parameters, and returned as function results.

• Primitive functions are supplied, and the
programmer defines new functions using
functional forms.

• Program execution consists of the evaluation of
an expression, and sequence control is by
recursion.

• No assignment command; values communicated
through the use of parameters.
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• A discipline is enforced by functional
languages:

Side effects are avoided.
The entire computation is summarized by the
function value.

Principle of Referential Transparency:

The value of a function is determined by the
values of its arguments and the context in

which the function application appears, and is
independent of the history of the execution.

The evaluation of a function with the same
argument produces the same value every time
that it is invoked.

Lisp

Work on Lisp (List Processing) started in 1956
with an AI group at MIT under John McCarthy.

Principal versions are based on Lisp 1.5:

Common Lisp and Scheme
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Features of Lisp
• High-level notation for lists.
• Recursive functions are emphasized.
• A program consists of a set of function

definitions followed by a list of function
evaluations.

• Functions are defined as expressions.
• Parameters are passed by value.

Scheme Syntax
Atoms

<atom> ::= <literal atom> | <numeric atom>

<literal atom> ::= <letter>
| <literal atom> <letter>
| <literal atom> <digit>

<numeric atom> ::= <numeral> | – <numeral>

<numeral> ::= <digit> | <numeral> <digit>

Atoms are considered indivisible.
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Literal atoms consist of a string of alphanumeric
characters usually starting with a letter.

Most Lisp systems allow any special characters
in literal atoms as long as they cannot be
confused with numbers.

Also, most Lisp systems allow floating-point
numeric atoms.

S-expressions
<S-expr> ::= <atom>

| ( <S-expr> . <S-expr> )

 “(”, “.”, and “)” are simply part of the syntactic
representation of S-expressions—important
feature is that an S-expr is a pair of S-exprs or an
atom.
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General S-expressions can be given a graphical
representation:

(a . (b . c))

• Lisp-tree (or L-tree):

a

b c

• Cell-diagram (or box notation):

a b c

Atoms have unique occurrences in S-expressions
and can be shared.

Functions on S-expressions:

Selectors

car applied to a nonatomic S-expression,
returns the left part.

cdr applied to a nonatomic S-expression,
returns the right part.
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Examples

car[ ((a . b) . c) ] = (a . b)

cdr[ ((a . b) . c) ] = c

An error results if either is applied to an atom.

Implementation

a b

c

car returns the left pointer.

cdr returns the right pointer.

A Constructor

cons applied to two S-expressions, returns
the dotted pair containing them.
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Examples

cons[ p , q ] = (p . q)

cons[ (a . b) , (c . (a . d)) ] =
((a . b) . (c . (a . d)))

Implementation

Allocate a new cell and set its left and right
pointers to the two arguments.

c

a b

(a . b)

(a . c)

cons [ (a . b) , (a . c) ]
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Lists
Notion of an S-expression is too general for most
computing tasks, so Scheme deals primarily with
a subset of the S-expressions:  Lists.

Definition of Lists

1. The special atom ( ) is a list.

( ) is the only S-expression that is both an 
atom and a list; it denotes the empty list.

2. A dotted pair is a list if its right (cdr) element is
a list.

S-expressions that are lists use special notation:

(a . ()) is represented by (a)

(b . (a . ())) is represented by (b a)

(c . (b . (a . ()))) is represented by (c b a)
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Cell-diagrams for Lists

a

b

c d

Functions on Lists

car When applied to a nonempty list, returns
the first element of the list.

cdr When applied to a nonempty list, returns
the list with the first element removed.

cons When applied to an arbitrary S-
expression and a list, returns the list
obtained by appending the first
argument onto the beginning of the list
(the second argument).
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Examples

car[ (a b c) ]  =  a cdr[ (a b c) ]  =  (b c)

car[ ((a)) ]  =  (a) cdr[ ((a)) ]  =  ()

cons[(a) , (b c) ]  =  ((a) b c)

cons[ a , () ]  =  (a)

Syntax for Functions
Application of a function to a set of arguments is
expressed as a list:

(function-name   sequence-of-arguments)

Notation is called Cambridge Polish Form.

Predefined Numeric Functions

Unary functions

(add1  0) returns 1

(add1  (abs  -5)) returns 6

(sub1  -5) returns -6
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Binary functions

(-  16 9) returns 7

(quotient 17 5) returns 3

(/  17 5) returns 3.4

(-  (*  10 2)  (+ 13 3)) returns 4

N-ary functions:

(+  1 2 3 4 5) returns 15

(*   1 2 3 4 5) returns 120

(max 2 12 3 10) returns 12

(min (*  4 6) (+ 4 6) (- 4 6)) returns -2

Miscellaneous functions

(expt 2 5) returns 32

(sqrt 25) returns 5

(sqrt 2) returns 1.4142135623730951

(sin 1) returns 0.8414709848078965

(random 100) returns  87,  then 2,  …
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Predefined Predicate Functions

These are the Boolean functions of Scheme.

They return either the atom #t (for true) or the
atom #f (for false).

(negative? -6) returns  #t

(zero? 44) returns  #f

(positive? -33) returns  #f

(number? 5) returns  #t

(integer? 3.7) returns  #f

(>  6 2) returns  #t

(=  6 2) returns  #f

(>=  3 30) returns  #f

(<=  -5 -3) returns  #t

(odd? 5) returns  #t

(even? 37) returns  #f
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Scheme Evaluation
When the Scheme interpreter encounters an
atom, it evaluates the atom:

• Numeric atoms evaluate to themselves.

• Literal atoms #t and #f evaluate to themselves.

• All other literal atoms may have a value
associated with them.

A value may be bound to an atom using the
“define” operation, which makes the binding
and returns a value:

(define a 5) returns a

(define b 3) returns b

a returns 5

(+ a b) returns 8

(+ a c) returns ERROR
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When the Scheme interpreter encounters a list, it
expects the first item in the list to be an atom (or
special operator) that represents a function.

The rest of the items in the list are evaluated and
given to the function as argument values.

(*  a (add1 b)) returns  20

Question
How does one apply car to the list  (a b c)?

(car (a b c)) means that “a” is a function,
applied to the values of “b” and “c”,
whose value is passed to car.

Quote
Scheme evaluation is inhibited by the quote
operation.

(quote a) returns a unevaluated

(quote (a b c)) returns (a b c) unevaluated

(car (quote (a b c))) returns a

(cdr (quote (a b c))) returns (b c)

(cons (quote x) (quote (y z))) returns list (x y z)
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Quote may be abbreviated in the following way:

(cdr '((a) (b) (c))) returns  ((b) (c))

(cons 'p '(q)) returns  (p q)

Other Predefined Functions (Predicates)

pair? when applied to any S-expression,
returns #t if it is a pair, #f otherwise.

(pair? 'x) returns  #f

(pair? '(x)) returns  #t

atom? is the logical negation of pair? (not
standard in Scheme)

null? when applied to any S-expression,
returns #t if it is the empty list, #f
otherwise.

(null? '( )) returns  #t

(null? '(( ))) returns  #f

eq? when applied to two atoms, returns #t if
they are equal, #f otherwise.

(eq? 'xy 'x) returns  #f
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(eq? (pair? 'gonzo) #f) returns  #t

(eq? '(foo) '(foo)) returns  #f

Abbreviations for car and cdr

(car (cdr (cdr '(a b c)))) may be
abbreviated (caddr '(a b c))

Problem with eq?

Expression (eq? x y) tests the equality of the
values of x and y.

Given the bindings:
(define x '(a b)) and (define y '(a b)),

x returns (a b), and
y returns (a b), but
(eq? x y)returns #f

Although the values appear to be the same, they
are two different copies of the same S-expression.

The test (eq? x y) returns #f because x and y
point to two separate objects.
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x

y

ba

But (eq? (car x) (car y)) returns #t because
(literal) atoms are always unique.

Special Forms

All the operations considered so far do not act in
the same way.

True Scheme functions always evaluate their
arguments.

When (+ (car '(2 4 6)) 5) is submitted to the
interpreter, each item is evaluated:

+ evaluates to the predefined
addition operation

(car ‘(2 4 6)) evaluates to the number 2

5 evaluates to the number 5.
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Several of the operations described so far do not
and cannot evaluate all of their operands.

(quote a) simply returns its operand
unevaluated.

(define x (+ 5 6)) evaluates its second
argument, but leaves its first
argument unevaluated.

These operations are called special forms to
distinguish them from normal Scheme functions.

Complete list of special forms in Scheme
and

begin
case
cond

define
delay

do
if

lambda
let
let*

letrec

or
quasiquote

quote
set!

while
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Defining Functions in Scheme

Special form “define” returns the name of function
being defined with the side effect of binding an
expression defining a function to that name.

(define name
(lambda (list-of-parameters) expression))

Examples:
(define disc (lambda (a b c)

(sqrt (- (*  b b)
(*  4 a c) )) ))

(disc 3 10 3)returns  8

(disc 5 8 -4) returns  12

(define  first  (lambda (L)  (car L)))

(define  second  (lambda (L)  (car (cdr L)) ))

(first  '((a b c))) returns  (a b c)

(second  '((a) (b) (c))) returns  (b)
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Conditional Form

Decisions in Scheme are represented as
conditional expressions using the special form
cond:

(cond  (c1 e1)  (c2 e2)  …  (cn en)  (else en+1)

which is equivalent to

if c1 then return e1

else if c2 then return e2
:

else if cn then return en

else return en+1

If all of c1, c2, …, cn are false and the else clause
is omitted, then the cond result is unspecified.

Note that for the purposes of testing,
any non-#f value represents true.
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Each condition in a cond may be followed by a
sequence of expressions whose last value is the
result returned.

The other expressions are evaluated for their
side effect only, say for output.

(cond ((= n 0)  (display “zero”) 0)
((positive? n)  (display ‘positive) 1)
(else  (display ‘negative) -1))

I f

Another special form for decision making is the
“if” operation.

(if  test  then-expression  else-expression)

Example
(if (zero? n)

0
(/ m n))
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Inductive or Recursive Definitions

Main control structure in Scheme is recursion.

Many functions can be defined inductively.

Example 1: Factorial

0!  =  1
n!  =  n • (n-1)! for n>0

(define  fact  (lambda (n)

(cond ((zero? n)  1))

(else  (*   n (fact (sub1 n)))) )))

Sample execution:
(fact  4)

=  4 • (fact 3)
=  4 • [3 • (fact 2)]

=  4 • [3 • [2 • (fact 1)]]
=  4 • [3 • [2 • [1• (fact 0)]]]

= 4 • [3 • [2 • [1• 1]]]   =   24
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Example 2: GCD  (assume a>0)

gcd(a,0)  =  a
gcd(a,b)  =  gcd(b,a mod b) if b>0

(define  gcd  (lambda (a b)

(cond ((zero? b)  a)

(else  (gcd b (modulo a b))) )))

Example 3:  91-function:

F(n)  =  n - 10  if n>100
F(n)  =  F(F(n+11))  otherwise

(define  F  (lambda (n)

(cond ((> n 100)  (- n 10))

(else  (F (F (+ n 11))) )))
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Lambda Notation

The anonymous function  λx,y . y2+x  is
represented in Scheme as

(lambda  (x y)  (+ (*  y y) x)).

It can be used in a function application in the
same way as a named function:

((lambda  (x y)  (+ (*  y y) x))  3 4) returns 19.

When we define a function, we are simply
binding a lambda expression to an identifier:

(define  fun  (lambda  (x y)  (+ (*  y y) x)))

(fun  3 4)  returns  19.

Note that lambda is a special form.
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Recursive Functions on Lists
1. Number of occurrences of atoms in a list of

atoms:

For example, (count1  '(a b c b a)) returns 5.

Case 1: List is empty => return 0

Case 2: List is not empty =>

it has a first element that is an atom =>

return  1 + number of atoms in cdr of list

(define  count1  (lambda (L)
(cond ((null? L)  0)

(else  (add1 (count1 (cdr L)))) )))

2. Number of occurrences of atoms at the top
level in an arbitrary list:

 (count2 '(a (b c) d a)) returns 3.

Case 1: List is empty => return 0

Case 2: List is not empty

Subcase a: First element is an atom =>

return  1 + number of atoms in cdr of list
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Subcase b: First element is not an atom =>

return number of atoms in cdr of list.

(define  count2  (lambda (L)
(cond ((null? L)  0)

((atom? (car L))  (add1 (count2 (cdr L))))
(else  (count2 (cdr L)))  )))

3. Number of occurrences of atoms at all levels
in an arbitrary list:

 (count3 '(a (b c) b (a))) returns 5.

Case 1: List is empty => return 0

Case 2: List is not empty
Subcase a: First element is an atom =>

return  1 + number of atoms in cdr of list

Subcase b: First element is not an atom =>

return number of atoms in car of list

+ number of atoms in cdr of list

(define  count3  (lambda (L)
(cond ((null? L)  0)

((atom? (car L))  (add1 (count3 (cdr L))))
(else (+ (count3 (car L)) (count3 (cdr L)))))
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More Functions on Lists

Length of a list

(define  length  (lambda (L)
(cond ((null? L)  0)

(else  (add1 (length (cdr L)))) )))

This function works the same as the predefined
length function except for speed and storage.

Equality of arbitrary S-expressions

• Use = for numeric atoms

• Use eq? for literal atoms

• Otherwise, use recursion to compare left
parts and right parts

(define  equal?  (lambda (s1 s2)
(cond ((number? s1)  (= s1 s2))

((atom? s1)  (eq? s1 s2))
((atom? s2)  #f)
((equal?  (car s1)  (car s2))

(equal?  (cdr s1) (cdr s2)))
(else  #f)  )))
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Concatenate two lists

(define  concat  (lambda (L1 L2)
(cond ((null? L1)  L2)

(else (cons (car L1)
(concat (cdr L1) L2))))))

For example,  (concat '(a b c) '(d e)) becomes
(cons 'a (concat '(b c) '(d e)))  =
(cons 'a (cons 'b (concat '(c) '(d e))))  =
(cons 'a (cons 'b (cons 'c (concat ‘() '(d e)))))  =
(cons 'a (cons 'b (cons 'c '(d e))))  =  (a b c d e)

Reverse a list

(define  reverse  (lambda (L)
(cond ((null? L)  ‘())

(else (concat (reverse (cdr L))
(list (car L)))) )))
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An improved reverse
Use a help function and a collection variable.

(define  rev  (lambda (L)  (help  L  ‘())))

(define  help  (lambda (L  cv)
(cond ((null? L)  cv)

(else  (help (cdr L) (cons (car L) cv))) )))

Membership in a list (at the top level):
(define  member  (lambda (e L)

(cond ((null? L)  #f)
((equal? e (car L))  L)
(else  (member e (cdr L))) )))

This Boolean function returns the rest of the list
starting with the matched element for true.
This behavior is consistent with the interpretation
that any non-#f object represents true.

Logical operations
(define  and  (lambda (s1  s2)

(cond (s1  s2)  (else  #f) )))
(define  or  (lambda (s1  s2)

(cond (s1  s1)  (s2  s2)  (else  #f) )))
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Scope Rules in Scheme

In Lisp 1.5 and many of its successors access to
nonlocal variables is resolved by dynamic
scoping : the calling chain is following until the
variable is found local to a function.

Scheme and Common Lisp use static scoping:
nonlocal references are resolved at the point of
function definition.

Static scoping is implemented by associating a
closure (instruction pointer and environment
pointer) with each function as it is defined.

The run-time execution stack maintains static
links for nonlocal references.

Top-level define’s create a global environment
composed of the identifiers being defined.

A new scope is created in Scheme when the
formal parameters, which are local variables, are
bound to actual values when a function is
invoked.
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Local scope can be created by the let expression.

(let  ((id1 val1) … (idn valn))  expr)

Expression (let  ((a 5) (b 8))  (+ a b)) is an
abbreviation of the function application

((lambda (a b) (+ a b)) 5 8);

Both expressions return the value 13.

Also has a sequential let, called let*, that
evaluates the bindings from left to right.

(let*  ((a 5) (b (+ a 3)))  (* a b)) is equivalent to
(let  ((a 5))  (let  ((b  (+ a 3)))  (* a b))).

Finally, letrec must be used to bind an identifier
to a function that calls the identifier recursively.

Define fact as an identifier local to the expression.
>>> (letrec ((fact (lambda (n)

(cond ((zero? n) 1)
(else (* n (fact (sub1 n))))))))

(fact 5))
120
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Proving Correctness in Scheme
Correctness of programs in imperative
languages is difficult to prove:

• Execution depends on the contents of each
memory cell (each variable).

• Loops must be mentally executed.

• The progress of the computation is measured
by snapshots of the state of the computer after
every instruction.

Functional languages are much easier to reason
about because of referential transparency:
only those values immediately involved in a
function application need be considered.

Programs defined as recursive functions usually
can be proved correct by an induction proof.
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Example

(define expr (lambda (a b)
(if (zero? b)

1
(if (even? b)

(expr (* a a) (/ b 2))
(* a (expr a (sub1 b))) ))))

Precondition:  b≥0

Postcondition :  (expr a b)  =  ab

Proof of correctness: By induction on b.
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Basis: b = 0
Then ab  =  a0  = 1  and

(expr a b)  =  (expr a 0)  returns 1.

Induction step: Suppose that for any c<b,
(expr a c)  =  ac.

Let b>0 be an integer.

Case 1: b is even

Then
(expr a b) =  (expr (* a a) (/ b 2))

=  (a•a)b/2       by the induction hypothesis
=  ab

Case 2: b is odd (not even)

Then
(expr a b) =  (* a (expr a (sub1 b)))

=  a•(ab-1)       by the induction hypothesis
=  ab
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Higher-Order Functions

Expressiveness of functional programming comes
from treating functions as first-class objects.

Scheme functions can be bound to identifiers
using define and also be stored in structures:

(define  fn-list  (list add1  –  (lambda (n) (*  n n))))

or alternatively

(define fn-list
(cons add1 (cons – (cons (lambda (n) (*  n n)) ‘()))))

defines a list of three unary functions.

fn-list  returns  (#<PROC add1> #<PROC –> #<PROC>)

Procedure to apply each function to a number:

(define construction
(lambda (fl x)

(cond ((null? fl) '())
(else (cons ((car fl) x)

(construction (cdr fl) x))))))
so that

(construction fn-list 5) returns (6  -5  25)
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Definition: A function is called higher-order if it
has a function as a parameter or returns a
function as its result.

Composition

(define compose
(lambda (f g) (lambda (x) (f (g x)))))

(define inc-sqr
(compose add1 (lambda (n) (*  n n))))

(define sqr-inc
(compose (lambda (n) (*  n n)) add1))

Note that these two functions, inc-sqr and
sqr-inc are defined without the use of parameters.

(inc-sqr 5) returns 26

(sqr-inc 5) returns 36
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Apply to all

In Scheme “apply to all” is called map and is
predefined, taking a unary function and a list as
arguments, applying the function to each element
of the list, and returning the list of results.

(map  add1  '(1 2 3))  returns  (2 3 4)

(map  (lambda (n) (*  n n))  '(1 2 3))
returns  (1 4 9)

(map  (lambda (ls) (cons 'a ls))  '((b c) (a) ()))
returns  ((a b c) (a a) (a))

Map can be defined as follows:

(define map
(lambda (proc lst)

(if (null? lst)
'()
(cons (proc (car lst)) (map proc (cdr lst))))))
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Reduce or Accumulate

Higher-order functions are developed by
abstracting common patterns from programs.

Consider the functions that find the sum or the
product of a list of numbers:

(define sum
(lambda (ls)

(cond ((null? ls) 0)
(else (+ (car ls) (sum (cdr ls)))))))

(define product
(lambda (ls)

(cond ((null? ls) 1)
(else (*  (car ls) (product (cdr ls)))))))

Common pattern:

(define reduce
(lambda (proc init ls)

(cond ((null? ls) init)
(else (proc (car ls)

(reduce proc init (cdr ls)))))))
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Sum and product can be defined using reduce:

(define sum  (lambda (ls) (reduce + 0 ls)))

(define product  (lambda (ls) (reduce *  1 ls)))

Filter

By passing a Boolean function, filter in only those
elements from a list that satisfy the predicate.

(define filter
(lambda (proc ls)

(cond ((null? ls)  ‘())
((proc (car ls)) (cons (car ls)

(filter proc (cdr ls))))
(else (filter proc (cdr ls))) )))

(filter even? ‘(1 2 3 4 5 6))  returns  (2 4 6)

(filter (lambda (n) (> n 3)) ‘(1 2 3 4 5))  returns  (4 5)
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Currying
A binary functions, for example, + or cons, takes
both of its arguments at the same time.

(+ a b) will evaluate both a and b so that values
can be passed to the addition operation.

It may be advantageous to have a binary function
take its arguments one at a time.

Such a function is called curried.

(define curried+
(lambda (m)

(lambda (n)  (+ m n)) ))

Note that if only one argument is supplied to
curried+, the result is a function of one argument.

(curried+ 5) returns  #<procedure>

((curried+ 5) 8) returns  13

Unary functions can be defined using curried+:

(define add2  (curried+ 2))

(define add5  (curried+ 5))
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Curried Map

(define cmap
(lambda (proc)

(lambda  (lst)
(if (null? lst)

'()
(cons (proc (car lst))

((cmap proc) (cdr lst))))))

(cmap add1)  returns  #<procedure>

((cmap add1)  '(1 2 3))  returns  (2 3 4)

((cmap  (cmap add1))  '((1) (2 3) (4 5 6)))
returns  ((2) (3 4) (5 6 7))

(((compose cmap cmap)  add1)  '((1) (2 3) (4 5 6)))
returns  ((2) (3 4) (5 6 7))

The notion of currying can be applied to functions
with more than two arguments.
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Tail Recursion
Functional programming is criticized for use of
recursion and its inefficiency.

Scheme and some other functional languages
have a mechanism whereby implementations
optimize certain recursive functions by reducing
the storage on the run-time execution stack.

Example: Factorial

(define factorial
(lambda (n)

(if (zero? n)
1
(*  n (factorial (sub1 n))) )))

When (factorial 6) is invoked, activation records
are needed for seven invocations of the function,
namely (factorial 6) through (factorial 0).

At its deepest level of recursion all the
information in the expression,

(*  6 (*  5 (*  4 (*  3 (*  2 (*  1 (factorial 0))))))),

is stored in the run-time execution stack.
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Example: Factorial with Tail Recursion
(define fact

(lambda (n)
(letrec

((fact-help (lambda (prod count)
(if (> count n)

prod
(fact-help (*  count prod)

(add1 count)) ))))
(fact-help 1 1))))

No need to save local environment when recursive
call made, since no computation remains.

Definition: A function is tail recursive if its only
recursive call is the last action that occurs during
any particular invocation of the function.

Execution of (fact 6) proceeds as follows:
(fact 6)

(fact-help 1 1)
(fact-help 1 2)
(fact-help 2 3)
(fact-help 6 4)
(fact-help 24 5)
(fact-help 120 6)
(fact-help 720 7)


