
Chapter 11 1

Axiomatic Semantics

• Based on techniques from predicate logic.

• More abstract than denotational semantics.

• There is no concept of “state of the machine”.

• Semantic meaning of a program is based on
assertions about relationships that remain the
same each time the program executes.

• Application: Proving programs to be correct.

Limitations

• Side effects disallowed in expressions.

• goto command difficult to specify.

• Aliasing not allowed.

• Scope rules difficult to describe ! require all
identifier names to be unique.

Concentrate on commands in Wren.

Chapter 11 2

Assertion

A logical formula, say
 (m ! 0 and (sqrt(m)) 2 = m), that is true

when a point in the program is reached.

Precondition: Assertion before a command.

Postcondition: Assertion after a command.

{ PRE } C { POST }

Partial Correctness

If the initial assertion (the precondition) is true
and if the program terminates, then the final
assertion (the postcondition) must be true.

Precondition + Termination ! Postcondition

Total Correctness

Given that the precondition for the program is
true, the program must terminate and the
postcondition must be true.

Total Correctness =
Partial Correctness + Termination

Chapter 11 3

Assignment Command

1) { true } m := 13 { m = 13 }

2) { n = 3 and c = 2 } n := c*n { n = 6 and c = 2 }

3) { k " 0 } k := k + 1 { k > 0 }

Notation

{ Precondition } command { Postcondition }

P[V"E] denotes substitution of E for V in P

Axiom for assignment command

{ P[V"E] } V := E { P }

Work backwards:

Postcondition: P # (n = 6 and c = 2)

Command: n := c*n

Precondition: P[V"E] # (c*n = 6 and c = 2)
(n = 3 and c = 2)

Chapter 11 4

Read and Write Commands

Notation

Use “IN = [1,2,3]” and “OUT = [4,5]” to
represent input and output files.

[M]L denotes list whose head is M and tail is L.

Use small caps, K, M, N, …, to represent
arbitrary numerals.

Axiom for Read Command

{ IN = [K]L and P[V"K] } read V { IN = L and P }

Axiom for Write Command

{ OUT=L and E=K and P }

write E

{ OUT=L[K] and E=K and P }

Note: L[K] means affix(L,K).

Chapter 11 5

Rules of Inference

H1,#H2,#...,#Hn#
 H

Compare with structural operational semantics.

Axiom for Command Sequencing

{P}#C1#{Q},##{Q}#C2#{R}#
 { P } C1 ; C2 { R }

Axioms for If Commands

{P#and#B}#C1#{Q},##{P#and#not#B}#C2#{Q}#
 { P } if B then C1 else C2 end if { Q }

{ P and B} C {Q}, (P and not B) $ Q

{ P } if B then C end if { Q }

Chapter 11 6

Weaken Postcondition

{P}#C{Q},##Q#$ #R

 { P } C { R }

Strengthen Precondition

P#$ #Q,##{Q}#C{R}

{ P } C { R }

And and Or Rules

{P}#C#{Q},##{P'}#C#{Q'}
 { P and P' } C { Q and Q' }

{P}#C{Q},##{P'}#C{Q'}
 { P or P' } C { Q or Q' }

Observation

{ false } any-command { any-postcondition }

Chapter 11 7

Example

{ IN = [4,9,16] and OUT = [0,1,2] }

read m; read n;
if m>=n then

a := 2*m
else

a := 2*n
end if;
write a

{ IN = [16] and OUT = [0,1,2,18] }

{ IN = [4,9,16] and OUT = [0,1,2] } $

{ IN = [4][9,16] and OUT = [0,1,2] and 4=4 }

read m;

{ IN = [9,16] and OUT = [0,1,2] and m=4 } $

{ IN = [9][16] and OUT = [0,1,2]
and m=4 and 9=9 }

read n;

{ IN = [16] and OUT = [0,1,2]
and m=4 and n=9 }

Chapter 11 8

Let S = { IN = [16] and OUT = [0,1,2]
and m=4 and n=9 }

and B # m"n

Then

(S and B) $ false,

and

S $ not B

So
{ S and B }, which is equivalent to false

a := 2*m

{ IN = [16] and OUT = [0,1,2]
and m=4 and n=9 and a=18 },

and

{ S and not B } $
{ IN = [16] and OUT = [0,1,2]

and m=4 and n=9 and 2•n=18 }

a := 2*n

{ IN = [16] and OUT = [0,1,2]
and m=4 and n=9 and a=18 }

Chapter 11 9

Therefore by one of the If axioms,

{ S }

if m>=n then
a := 2*m

else
a := 2*n

end if;

{ IN = [16] and OUT = [0,1,2]
and m=4 and n=9 and a=18 }

and

{ IN = [16] and OUT = [0,1,2]
and m=4 and n=9 and a=18 }

write a

{ IN = [16] and OUT = [0,1,2] [18]
and m=4 and n=9 and a=18 }

which implies

{ IN = [16] and OUT = [0,1,2,18] }

Chapter 11 10

While Command

{P#and#B}#C#{P}
{ P } while B do C end while { P and not B }

Loop Invariant: P

• Preserved#during execution of the loop

C

B

{ P }

{ P and B }

{ P and not B }

while

do

end while

1

2
3

Initialization: Show
the loop invariant is
initially true.

Preservation: Show
the loop invariant
remains true when
the loop executes.

Completion: Show
the loop invariant
and the exit
condition produce
the final assertion.

1

2

3

Main Problem: Constructing the loop invariant.

Chapter 11 11

Loop Invariant

• A relationship among the variables that does
not change as the loop is executed.

• Look for some expression that can be
combined with not B to produce part of
the postcondition.

• Construct a table of values to see what
stays constant.

• Combine what has already been computed
at some stage in the loop with what has yet
to be computed to yield a constant of some
sort.

Look at the factorial example carefully.

Chapter 11 12

Example: Exponent

{ N"0 and A"0 }

k := N; s := 1;
while k>0 do

s := A*s;
k := k-1

end while

{ s = AN }

Trace algorithm with small numbers A=2, N=5.

Build a table of values to find loop invariant.

k s 2k s•2k

5 1 32 32

4 2 16 32

3 4 8 32

2 8 4 32

1 16 2 32

0 32 1 32

Chapter 11 13

Notice that k is decreasing and that 2k represents
the computation that still needs to be done.

The value s•2k = 32 remains constant
throughout the execution of the loop.

Observe that s and 2k change when k changes.

Their product is constant, namely 32 = 25 = AN.

This suggests that s•Ak = AN as part of the
invariant.

The relation k"0 seems to be invariant, and
when combined with “not B”, which is k$0,
establishes k=0 at the end of the loop.

When k=0 is joined with s•Ak = AN, we get the
postcondition s = AN.

Loop Invariant:
{ k"0 and s•Ak = AN }.

Chapter 11 14

Verification of Program

Initialization:

{ N"0 and A"0 } $

{ N=N"0 and A"0 and 1=1 }

k := N; s := 1;

{ k=N"0 and A"0 and s=1 } $

{ k"0 and s•Ak = AN }

Preservation:

{ k"0 and s•Ak = AN and k>0 } $
{ k>0 and s•Ak = AN } $
{ k>0 and s•A•Ak-1 = AN } $

{ k>0 and A•s•Ak-1 = AN }

s := A*s;

{ k>0 and s•Ak-1 = AN } $

{ k-1"0 and s•Ak-1 = AN }

k := k-1

{ k"0 and s•Ak = AN }

Completion:

{ k"0 and s•2k = AN and k$0 } $
{ k=0 and s•2k = AN } $ { s = AN }

Chapter 11 15

Example: Nested While Loops

{ IN = [A] and OUT = [] and A " 0 }

! read x;
m := 0; n := 0; s := 0;

while x>0 do $ { outer loop invariant: C }

x := x–1; n := m+2; m := m+1;

% while m>0 do & { inner loop invariant: D }

m := m–1; s := s+1 '

end while; (

m := n)

end while; *

write s +

{ OUT = [A2] }

Chapter 11 16

Introduce boolean valued terms, called
predicates, to refer to the invariants.

The outer invariant C is

C(x,m,n,s) #

(x"0 and m=2(A–x) and m=n"0
and s=(A–x)2 and OUT=[])

First prove this invariant is true initially by
pushing it back through the initialization code.

! " #

{ IN = [A] and OUT = [] and A"0 } $

{ A"0 and 0=2(A–A) and 0=(A–A)2

and IN = [A][] and OUT=[] }

read x;

{ x"0 and 0=2(A–x) and 0=(A–x)2

and IN = [] and OUT=[] } $

{ x"0 and 0=2(A–x) and 0=0 and 0=(A–x)2

 and OUT=[] }

Chapter 11 17

m := 0;

{ x"0 and m=2(A–x) and m=0
and 0=(A–x)2 and OUT=[] } $

{ x"0 and m=2(A–x) and m=0 and 0"0
and 0=(A–x)2 and OUT=[] }

n := 0;

{ x"0 and m=2(A–x) and m=n and n"0
and 0=(A–x)2 and OUT=[] }

s := 0

{ x"0 and m=2(A–x) and m=n"0
and s=(A–x)2 and OUT=[] }

Next show that the outer loop invariant and the
exit condition, followed by the write command,
produce the desired final assertion.

Chapter 11 18

* " +
{ C(x,m,n,s) and x$0 }

$ { x=0 and m=2A and m=n"0
and s=A2 and OUT=[] }

$ { s=A2 and OUT=[] }
and

{ s=A2 and OUT=[] }

write s

{ s=A2 and OUT=[A2] } $ { OUT = [A2] }.

Showing preservation of the outer loop invariant

($ ") " $) involves executing the inner loop,
so introduce the inner loop invariant D.

D(x,m,n,s) #

(x"0 and n=2(A–x) and m"0 and n"0
and m+s=(A–x)2 and OUT=[])

Chapter 11 19

First show the inner loop invariant is initially true
by starting with the outer loop invariant,
combined with the loop entry condition, and
pushing it through the assignment commands
before the inner loop.

$ " %
{ C(x,m,n,s) and x>0 }

{ x"0 and m=2(A–x) and m=n"0
and s=(A–x)2 and OUT=[] and x>0 }

$ { x–1"0 and m+2=2(A–x+1) and m+1"0 and

 m+2"0 and m+1+s=(A–x+1)2 and OUT=[] }

{ D(x–1,m+1,m+2,s) }

since (s=(A–x)2 and m+2=2(A–x+1))
 $ m+1+s=(A–x+1)2.

Therefore, by the assignment rule, we have:

$ { C(x,m,n,s) and x>0 } $ { D(x–1,m+1,m+2,s) }

x := x–1; n := m+2; m := m+1

% { D(x,m,n,s) }

Chapter 11 20

Next we need to show that the inner loop
invariant is preserved

& " ' " &
{ D(x,m,n,s) and m>0 }

m := m-1; s := s+1

{ D(x,m,n,s) }.

It suffices to show

(D(x,m,n,s) and m>0)

$ (x"0 and n=2(A–x) and m"0 and n"0
and m+s=(A–x)2 and OUT=[] and m>0)

$ (x"0 and n=2(A–x) and m–1"0 and n"0
and m–1+s+1=(A–x)2 and OUT=[])

D(x,m–1,n,s+1).

To complete the proof, show that the inner loop
invariant, combined with the inner loop exit
condition, pushed through the assignment
m := n, results in the outer loop invariant.

Chapter 11 21

(")
{ D(x,m,n,s) and m$0 } m := n { C(x,m,n,s) }.

It suffices to show

(D(x,m,n,s) and m$0)

$ (x"0 and n=2(A–x) and m"0 and n"0
and m+s=(A–x)2 and OUT=[] and m$0)

$ (x"0 and n=2(A–x) and n=n"0
and s=(A–x)2 and OUT=[])

C(x,n,n,s). ,

Derived Rule for Assignment

P#$ #Q[V"E]##

{ P } V := E { Q }

or P#$ #Q(E) #

{ P } V := E { Q(V) }

Chapter 11 22

Discovering a Loop Invariant

Make a table of values for a simple case and
trace values for the relevant variables.

Let A = 3 in the previous example.

Chapter 11 23

Positions where the invariant C(x,m,n,s) for the
outer loop should hold are marked by arrows.

Note how the variable s takes the values of the
perfect squares, 0, 1, 4, and 9, at these locations.

The difficulty is to determine what s is the square
of as its values increase.

Observe that x decreases as the program
executes.

Since A is constant, this means the value A–x
increases: 0, 1, 2, and 3.

This gives the relationship s = (A–x)2.

Also note that m is always even and increases:
0, 2, 4, 6.

This produces the relation m = 2(A–x) in the
outer invariant.

Chapter 11 24

For the inner loop invariant, s is not always a
perfect square, but m+s is.

Also, in the inner loop, n preserves the final
value for m as the loop executes.

So n also obeys the relationship n = 2(A–x).

Finally, the loop entry conditions are combined
with the value that causes loop exit.

For the outer loop, x>0 is combined with x=0
to add the condition x"0 to the outer loop
invariant. Combined with x$0, this gives x=0
at a crucial point.

In a similar way, m>0 is combined with m=0
to add m"0 to the inner loop invariant.
Combined with m$0, this gives m=0 at the
appropriate point.

The condition n"0 is added to D to enable the
proof to work.

Chapter 11 25

Constructing Invariants

a) PRE: { N"0 }

k := 1; s := 0;

while k<=N do s := s+k; k := k+1 end while

POST: { s = N•(N+1)/2 }

Loop Invariant: _______________________

Chapter 11 26

b) PRE: { A>0 and B>0 }

x := A; y := B;

while x<>y do if x>ythen x := x-y

else y := y-x end if
end while

POST: { x = gcd(A,B) }

Loop Invariant: _______________________

Chapter 11 27

c) PRE: { true }

k := 1; c := 0; s := 0;

while s <= 1000 do

s := s+k*k; c := c+1; k := k+1

end while

POST:
{"c is the smallest number of consecutive

squares starting at 1 whose sum is > 1000" }

Loop Invariant: _______________________

Chapter 11 28

Axiomatic Semantics for Pelican

• Assume programs have been checked for
syntactic correctness.

• Transform programs so that all identifiers
have unique names.

New Kind of Inference Rule

##H1, H2, ... , Hn##%&##Hn+1##
 ##

 H

Meaning: If Hn+1 can be proved from H1, H2,
... , Hn , then conclude that H is true.

Note: H1, H2, ... , Hn , Hn+1 and H are generally
either of the form { P } C { Q }
or are just simple assertions.

Chapter 11 29

Premises to rules may hold important information
gleaned from procedure definitions.

Given declarations

procedure p1 is b1;
procedure p2 (n : integer) is b2;

Form assertions (premises)

body(p1) = b1

parameter(p2) = n, body(p2) = b2

The information in constant declarations is added
to the precondition.

Given declarations

const k=5;
const f=false;

Add these assertions to the precondition for the
command that constitutes the body of the block:

k=5 and f=false

Note: An empty collection of assertions is
equivalent to true.

Chapter 11 30

In rules of inference, let “Procs” and “Const” stand
for the collections of assertions that
result from the declarations D in a block B.

Rule for Blocks (Block):

##Procs##%&##{ P and Const }#C {#Q#}
 ##

{ P }##D begin C end!!{#Q#}

Consider an anonymous block, declare Blk:

declare
const a = 2;
const c = -1;
var m,n : integer;

begin
m := 99;
n := a*m + c;
write n

end

Chapter 11 31

Want to prove that:

{ OUT = [] } Blk { OUT = [197] }

Procs is empty (equivalent to true).

Const contains the assertion a = 2 and c = -1.

Proof Proceeds:

{ OUT = [] and a=2 and c=-1 } $

{ OUT = [] and a=2 and c=-1 and 99=99 }

m := 99;

{ OUT = [] and a=2 and c=-1 and m=99 } $

{ OUT = [] and a=2 and c=-1 and a•m+c = 197 }

n := a*m + c;

{ OUT = [] and a=2 and c=-1 and n = 197 }

write n

{ OUT = [][197] and a=2
and c=-1 and n = 197 } $

{ OUT = [197] }

Chapter 11 32

Nonrecursive Procedures

No parameter (Call0):

#{#P#}#B#{#Q#},##body(proc)#=#B#
 { P } proc { Q }

One parameter (Call1):

#{P}#B#{Q},#body(proc)=B,#parameter(proc)=F#
{ P[F"E] } proc(E) { Q[F"E] }

Chapter 11 33

Example: declare Blk

declare
procedure addup(num : integer) is '

var k : integer; ')
begin))

k := 1;) (Blk
while k<=num do (Bod)

sum := sum+k;))
k := k+1))

end while))
end *)

begin addup(A) end *

Prove
 { A " 0 and sum = 0 } Blk { sum = A•(A+1)/2 }

For this block,

sum is nonlocal,

Procs contains the assertions
body(addup) = Bod
parameter(addup) = num,

and Const is the empty (true) assertion.

Chapter 11 34

Want to show:
 body(addup) = Bod,

parameter(addup) = num
%& { A " 0 and sum = 0 and true }

addup(A)
{ sum = A•(A+1)/2 }

Let P # { num " 0 and sum = 0 }
and Q # { sum = num•(num+1)/2 }

Then P[num"A] # { A " 0 and sum = 0 }
and Q[num"A] # { sum = A•(A+1)/2 }

Using rule for a procedure invocation with a
parameter, we need to show:

{ num " 0 and sum = 0 }
k := 1; '
while k<=num do (Bod

sum := sum+k; k := k+1)
end while *

{ sum = num•(num+1)/2 }

Chapter 11 35

This derivation is left as an exercise.

Notes

• The declaration var k : integer plays no role in
the derivation.

• For the block Bod, Const and Procs are empty.

Conclusion

Since { P } Bod { Q },

it follows that

{ P[num"A] } addup(A) { Q[num"A] }.

Now use (Block) to get the original assertion:

 { A " 0 and sum = 0 } Blk { sum = A•(A+1)/2 }

Chapter 11 36

Parameter Restrictions

• Want pass by value semantics.

• Transform each procedure into one with a
new local variable for the parameter that acts
in place of the formal parameter.

procedure p(f : integer) is procedure p(f : integer) is
begin var local#f : integer;

f := f * f; - begin
write f local#f := f;

end local#f := local#f * local#f;
write local#f

end

• Actual parameter may not be altered inside
the procedure.

• Add a new variable in the calling environment
to pass the value.

procedure p(f : integer) is procedure p(f : integer) is
begin begin

y := y + f; - y := y + f;
read x read x

end end
 : :
p(x); new#x := x;

p(new#x);

Chapter 11 37

Recursive Procedures

Example:

Find the first power of 2 bigger than 1000.

Main program:

pw := 2 ; cnt := 1 ; done := false ; pow

where

procedure pow is
begin

done := pw>1000;
if not(done) then

cnt := cnt+1; pw := 2*pw; pow end if
end

Using Call0:

{P} pow {Q}
if {P1} pow {Q1}

if {P2} pow {Q2}
if {P3} pow {Q3}

if {P4} pow {Q4} …

Chapter 11 38

New Rule: Recursion0

##{P}##proc!{Q}# %&##{ P }#B#{#Q#}, body(proc)=B

{ P }##proc!{#Q#}

Continue Example:

Want to prove:

{ true }

pw := 2 ; cnt := 1 ; done := false ; pow

{ pw=2cnt > 1000 and 2cnt-1 $ 1000 }

Recursive Assumption:

{ pw=2cntand 2cnt-1 $ 1000 } = P

pow

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$1000 } = Q

Assume # has higher precedence than and.

Chapter 11 39

Need to show the following correctness
specification for the body of the procedure:

{ pw=2cntand 2cnt-1 $ 1000 } = P

done := pw>1000;
if not(done) then

cnt := cnt+1; pw := 2*pw; pow end if

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$1000 } = Q

We are allowed to use the recursive assumption
when pow is called from within itself.

P = { pw=2cnt and 2cnt-1 $ 1000 } $

{ (pw>1000) # (pw>1000) and pw=2cnt

and 2cnt-1$ 1000 }

done := pw>1000;

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$ 1000 } = S

Let B = not(done)

Chapter 11 40

Case 1: S and B

S and B $

{ done=false and pw$1000 and pw=2cnt

and 2cnt-1 $ 1000 } $

{ 2cnt+1-1$1000 and 2•pw=2cnt+1 }

cnt := cnt+1;

{ 2cnt-1$1000 and 2•pw=2cnt }

pw := 2*pw;

{ 2cnt-1$1000 and pw=2cnt } = P

pow

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$1000 } = Q

by the recursion assumption.

Case 2: S and not(B)

S and not(B) $

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$ 1000 } = Q

Chapter 11 41

Now assemble the proof:

{ true } $

{ 2=2 }

pw := 2;

{ pw=2 } $

{ pw=2 and 1=1}

cnt := 1;

{ pw=2 and cnt=1} $

{ pw=2 and cnt=1 and false=false}

done := false;

{ pw=2 and cnt=1 and done=false} $

{ pw=2cnt and 2cnt-1 $ 1000 } = P

pow

{ done#(pw>1000) and pw=2cnt

and 2cnt-1$1000 } = Q

Chapter 11 42

For partial correctness, we can assume
termination of the code.

Inspection indicates that termination of pow
means that done=true.

Therefore, we may conclude:

{ pw>1000 and pw=2cnt and 2cnt-1$1000 }

which implies

{ pw=2cnt>1000 and 2cnt-1$1000 }

Chapter 11 43

Recursive Procedure with a Parameter

Recursion1

+f({P[F"f]} proc(f) {Q[F"f]})
#%&#{P}#B#{Q}, body(proc)=B. parameter(proc)=F
##\#######################################

{ P[F"E] } proc(E) { Q[F"E] }

Example: Number of Digits

procedure count(m : integer) is
begin

if m < 10 then
ans := 1

else
count(m/10);
ans := ans+1

end if;
end;

Use a global variable “ans” to hold the answer
as we return from the recursive calls.

Chapter 11 44

Want to prove:

{K > 0 }
num := K;

{ num > 0 } = P[F"E]
count(num)

{ 10ans-1 $ num < 10ans }. = Q[F"E]

“num” is the original actual parameter E.

“m” is the formal parameter F for each call.

Substitute the body of the procedure and bind
the formal parameter to the actual parameter.

Must show

{ m = > 0 } = P
if m < 10

then ans := 1
else count(m/10); ans := ans+1

end if;

{ 10ans-1 $ m < 10ans } = Q

assuming as an induction hypotheses

+f({ f > 0 } count(f) { 10ans-1 $ f < 10ans }),

which is +f({ P[F"f] } count(f) { Q[F"f] })

Chapter 11 45

Use the If-Else rule.

Case 1: m < 10

{ m > 0#and m<10 } $

{ 101-1 $ m < 101}

ans := 1

{ 10ans-1 $ m < 10ans }

Case 2: m " 10

{ m > 0 and m "10 } $

{ m/10 "1 } $

{ m/10 > 0 }

count(m/10) -- use f = m/10

{ 10ans-1 $ m/10 < 10ans } $

{ 10ans+1-1 $ m < 10ans+1 }

ans := ans+1

{ 10ans-1 $ m < 10ans }

Chapter 11 46

Termination

Most commands terminate unconditionally.

Problem Areas

• Indefinite iteration (while).

• Calling a recursively defined procedure.

Defn: A partial order > on a set W is well-
founded if there exists no infinite decreasing
sequence of distinct elements from W.

Consequence

Given a sequence of elements {xi|i"1} from W
such that x1 > x2 > x3 > x4 > …, the sequence
must stop (or repeat) after a finite number of
elements.

If the partial order is strict (asymmetric) any
decreasing sequence must have distinct
elements and so must be finite.

Chapter 11 47

Examples of Well-founded Orderings

1. Natural numbers N ordered by >.

2. Cartesian product NxN with a lexicographic
ordering:

<m1,m2> > <n1,n2>
if [m1 > n1] or [m1 = n1 and m2 > n2].

3. The positive integers P ordered by the relation
“properly divides”:

m > n if (-k[m = n•k] and m!n).

Steps in Showing Termination (while)

1. Find a set W with a strict well-founded

ordering >.

2. Find a termination expression E with the
properties:

a) Whenever control passes through the top of
the iterative loop, the value of E is in W, and

b) E takes a smaller value with respect to >
each time the top of the iterative loop is
passed.

Chapter 11 48

In the context of a while command,
“while B do C end while”

with invariant P, the two conditions take the form

a) P $ E,W

b) { P and B and E=A } C { A > E }

Example

{ N"0 and A"0 }

k := N; s := 1;
while k>0 do

s := A*s;
k := k-1

end while

{ s = AN }

Take W = N, the set of natural numbers
ordered by >.

Therefore, m , W if and only if m " 0.

Take E = k as the termination expression.

Chapter 11 49

The loop invariant P is

{ k"0 and s•Ak = AN }

The conditions on the termination expression
must hold at the location of the invariant.

The two conditions follow immediately:

a) P $

 k"0 and s•Ak = AN $

 E = k , W

b) { P and B and E = D } $

{ k"0 and s•Ak = AN and k>0 and k = D } $

{ k –1= D–1 }

s := A*s; k := k-1

{ E = k = D–1 < D }

What if N"0 is missing from Precondition?

Chapter 11 50

Termination of Recursive Procedures

Use an induction proof for termination.

Example: A procedure counts the digits in a
number.

procedure count(m : integer) is
begin

if m < 10 then
ans := 1

else
count(m/10);
ans := ans+1

end if
end;

This procedure terminates (normally) if it is
passed a nonnegative integer.

{ num = K > 0 }
count(num)

{ 10ans-1 $ num < 10ans }.

The depth of recursion depends on the number of
digits in num.

Chapter 11 51

Lemma: If num>0, the command “count(num)”
halts.

Proof: Induction on the number of digits in num.

Basis: num has one digit, that is, 0$num<10.

Then count(num) terminates because the if test
succeeds.

Induction Step: As an induction hypothesis,
assume that count(num) terminates when num

has k digits, namely 10k-1$num<10k.

Suppose that num has k+1 digits, namely

10k$num<10k+1. Then num/10 has k digits.

So count(num) causes the execution of the code:

if num < 10
then ans := 1
else count(num/10);

ans := ans+1
end if

which terminates since count(num/10)
terminates.

