
1. The program name identifier has no restrictions.

2. All identifiers that appear in a block must be declared in that block or in an
enclosing block.

3. No identifier may be declared more than once at the top level of a block.

4. The identifier on the left side of an assignment command must be declared as a
variable, and the expression on the right side must be of the same type.

5. An identifier occurring as an (integer) element must be an integer variable or an
integer constant.

6. An identifier occurring as a Boolean element must be a Boolean variable or a
Boolean constant.

7. An identifier occurring in a read command must be an integer variable.

8. An identifier used in a procedure call must be defined in a procedure declaration
with the same (zero or one) number of parameters.

9. The identifier defined as the formal parameter in a procedure declaration is con-
sidered to belong to the top level declarations of the block that forms the body of
the procedure.

10. The expression in a procedure call must match the type of the formal parameter
in the procedure’s declaration.

Figure 9.19: Context Conditions for Pelican

Since environments map identifiers to types, we need a semantic domain
Sort to assemble the possible types. Note that we distinguish between con-
stants (integer and boolean) and variables (intvar and boolvar). It is important
to remember that every domain is automatically augmented with an error
value, and every semantic function and auxiliary function propagates error.

Semantic Domains
Boolean = { true, false }

Sort = { integer, boolean, intvar, boolvar, program, unbound }

Environment = Identifier → Sort

Semantic Functions
validate : Program → Boolean

examine : Block → Environment → Boolean

elaborate : Declaration → (Environment x Environment)

→ (Environment x Environment)

check : Command → Environment → Boolean

typify : Expression → Environment → Sort

Figure 9.20: Semantic Domains and Functions for Context Checking

We need two environments to elaborate each block:

1. One environment (locenv) holds the identifiers local to the block so that
duplicate identifier declarations can be detected. It begins the block as an
empty envirnoment with no bindings.

2. The other environment (env) collects the accumulated bindings from all
of the enclosing blocks. This environment is required so that the expres-
sions in constant declarations can be typified.

Both type environments are built in the same way by adding a new binding
using extendEnv as each declaration is elaborated.

The semantic equations in Figure 9.21 show that each time a block is initial-
ized, we build a local type environment starting with the empty environment.
The first equation indicates that the program identifier is viewed as lying in a
block of its own, and so it does not conflict with any other occurrences of
identifiers. This alteration in the context conditions for program identifiers
as compared to Wren makes the denotational specification much simpler.

validate [[program I is B]] =

examine [[B]] extendEnv(emptyEnv,I,program)

examine [[D begin C end]] env = check [[C]] env1

where (locenv, env1) = elaborate [[D]] (emptyEnv, env)

elaborate [[ε]] (locenv, env) = (locenv, env)

elaborate [[D1 D2]] = (elaborate [[D2]]) ° (elaborate [[D1]])

elaborate [[const I = E]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,typify [[E]] env),extendEnv(env,I,typify [[E]] env))

else error

elaborate [[var I : T]] (locenv, env) = if applyEnv(locenv,I) = unbound

then (extendEnv(locenv,I,type (T)),extendEnv(env,I,type (T)))

else error

elaborate [[var I, L : T]] = (elaborate [[var L : T]]) ° (elaborate [[var I : T]])

Figure 9.21: Checking Context Constraints in Pelican (Part 1)

As declarations are processed, the environment for the current local block
(locenv) and the cumulative environment (env) are constructed incremen-
tally, adding a binding of an identifier to a type for each individual declara-
tion while checking for multiple declarations of an identifier in the local envi-

ronment. If an attempt is made to declare an identifier that is not unbound
locally, the error value results. We assume that all semantic functions propa-
gate the error value.

check [[C1 ; C2]] env = (check [[C1]] env) and (check [[C2]] env)

check [[skip]] env = true

check [[I := E]] env =

 (applyEnv (env,I) = intvar and typify [[E]] env = integer)

or (applyEnv (env,I) = boolvar and typify [[E]] env = boolean)

check [[if E then C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[if E then C1 else C2]] env =

(typify [[E]] env = boolean) and (check [[C1]] env) and (check [[C2]] env)

check [[while E do C]] env = (typify [[E]] env = boolean) and (check [[C]] env)

check [[declare B]] env = examine [[B]] env

check [[read I]] env = (applyEnv(I, env) = intvar)

check [[write E]] env = (typify [[E]] env = integer)

typify [[I]] env = case applyEnv(env,I) of

intvar, integer : integer

boolvar, boolean : boolean

program : program

unbound : error

typify [[N]] env = integer

typify [[true]] env = boolean

typify [[false]] env = boolean

typify [[E1 + E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then integer else error
:

typify [[E1 and E2]] env =

if (typify [[E1]] env = boolean) and (typify [[E2]] env = boolean)

then boolean else error
:

typify [[E1 < E2]] env =

if (typify [[E1]] env = integer) and (typify [[E2]] env = integer)

then boolean else error

:

Figure 9.21: Checking Context Constraints in Pelican (Part 2)

Checking commands involves finding Boolean or integer expressions where
required and recursively checking sequences of commands that might occur.
The semantic function check applied to a declare command just calls the
examine function for the block. Simple expressions have their types deter-
mined directly. When we typify a compound expression, we must verify that
its operands have the proper types and then specify the appropriate result
type. If any part of the verification fails, error becomes the type value to be
propagated.

A program satisfies the context-sensitive syntax of Pelican if validate pro-
duces true when applied to it. A final value of false or error means that the
program does not fulfill the context constraints of the programming language.

The elaboration of the following Pelican program suggests the need for the
local environment for context checking. Observe the difference if the Boolean
variable is changed to “b”. Note that the expressions “m+21” cannot be typi-
fied without access to the global environment, env.

locenv env

program bad is [] []

const m = 34; [m|→integer] [m|→integer]

begin

declare [] [m|→integer]

var c : boolean; [c|→boolvar] [c|→boolvar, m|→integer]

const c = m+21; error

begin

write m+c;

end

end

Exercises

1. Apply the validate semantic function to these Pelican programs and elabo-
rate the definitions that check the context constraints for Pelican.

a) program a is b) program b is
const c = 99; const c = 99;
var n : integer; var b : boolean;

begin begin
read n; b := false;
n := c-n; if b and true
write c+1; then b := c end if;
write n b := c>0

end end

c) program c is d) program d is
var x,y,z : integer; var b : boolean;

begin const c = true;
read x; begin
y := z; b := not(c) or false;
declare read b;

var x,z : integer; write 1109
begin end

while x>0 do
x := x-1 end while; e) program e is

declare var m,n : integer;
var x,y : boolean; begin
const y = false; read m;

begin n := m/5;
skip write n+k

end end
end

end

2. Extend the denotational semantics for context checking Pelican to in-
clude procedure declarations and calls.

3. Extend the result in exercise 2 to incorporate procedures with an arbi-
trary number of parameters.

4. Reformulate the denotational semantics for context checking Pelican
using false in place of error and changing the signature of elaborate to

elaborate : Declaration → Environment x Environment
→ Environment x Environment x Boolean

Let typify applied to an expression with a type error or an unbound
identifier take the value unbound.

5. Following the denotational approach in this section, implement a con-
text checker for Pelican in Prolog.

9.7 CONTINUATION SEMANTICS

All the denotational definitions studied so far in this chapter embody what is
known as direct denotational semantics. With this approach, each seman-
tic equation for a language construct describes a transformation of argu-
ment domain values, such as environment and store, directly into results in
some semantic domain, such as a new environment, an updated store, or an
expressible value. Furthermore, the results from one construct pass directly

