
507

Chapter 13
ACTION SEMANTICS

The formal methods discussed in earlier chapters, particularly
denotational semantics and structural operational semantics, have
been used extensively to provide accurate and unambiguous defini-

tions of programming languages. Unlike informal definitions written in En-
glish or some other natural language, formal definitional techniques can
serve as a basis for proving properties of programming languages and the
correctness of programs. Although most programmers rely on informal speci-
fications of languages, these definitions are often vague, incomplete, and even
erroneous. English does not lend itself to precise and unambiguous definitions.

In spite of the arguments for relying on formal specifications of programming
languages, programmers generally avoid them when learning, trying to un-
derstand, or even implementing a programming language. They find formal
definitions notationally dense, cryptic, and unlike the way they view the be-
havior of programming languages. Furthermore, formal specifications are
difficult to create accurately, to modify, and to extend. Formal definitions of
large programming languages are overwhelming to both the language de-
signer and the language user, and therefore remain mostly unread.

Programmers understand programming languages in terms of basic concepts
such as control flow, bindings, modifications of storage, and parameter pass-
ing. Formal specifications often obscure these notions to the point that the
reader must invest considerable time to determine whether a language fol-
lows static or dynamic scoping and how parameters are actually passed.
Sometimes the most fundamental concepts of the programming language
are the hardest to understand in a formal definition.

Action semantics, which attempts to answer these criticisms of formal meth-
ods for language specification, has been developed over the past few years by
Peter Mosses with the collaboration of David Watt. The goal of their efforts
has been to produce formal semantic specifications that directly reflect the
ordinary computational concepts of programming languages and that are
easy to read and understand. In this chapter we present an introduction to
the methods of action semantics by specifying three languages: the calcula-
tor language from Chapter 9, Wren, and Pelican.

508 CHAPTER 13 ACTION SEMANTICS

13.1 CONCEPTS AND EXAMPLES

Action semantics has evolved out of the tradition of denotational semantics,
where syntactic entities (abstract syntax trees) are mapped compositionally
by semantic functions into semantic entities that act as the denotations of
the syntactic objects. The chief difference between the two methods of formal
specification lies in the nature of the semantic entities. The semantic func-
tions of denotational semantics map syntactic phrases into primitive math-
ematical values, structured objects, and such higher-order functions as are
found in the lambda calculus where functions can be applied to other func-
tions. In contrast, action semantics uses three kinds of first-order entities as
denotations: actions , data , and yielders . “First-order” means that actions
cannot be applied to other actions.

• The semantic entities known as actions incorporate the performance of
computational behavior, using values passed to them to generate new val-
ues that reflect changes in the state of the computation. Actions are the
engines that process data and yielders.

• The data entities consist of mathematical values, such as integers, Bool-
ean values, and abstract cells representing memory locations, that em-
body particles of information. Data are classified into sorts so that the
kinds of information processed by actions are well specified in a language
definition. Sorts of data are defined by algebraic specifications in the man-
ner discussed in Chapter 12.

• Yielders encompass unevaluated pieces of data whose values depend on
the current information incorporating the state of the computation. Yield-
ers are entities that, depending on the current storage and environment,
can be evaluated to yield data.

We begin our discussion of action semantics by considering the meaning of
several simple language constructs from Pelican (see section 9.5), first view-
ing denotational definitions and then introducing enough action notation to
describe the constructs in action semantics. Figure 13.1 displays the seman-
tic equations for a denotational specification of constant and variable decla-
rations and identifier evaluation.

Denotational semantics expresses the details of a semantic equation func-
tionally, so we see many parameters being passed to, and values returned
from, the semantic functions explicitly. In contrast, each action in action
semantics entails particular modes of control and data flow implicitly. Much
of the information processed by an action is manipulated automatically when
the action is performed.

50913.1 CONCEPTS AND EXAMPLES

elaborate [[const I = E]] env sto = (extendEnv(env,I,evaluate E env sto), sto)

elaborate [[var I : T]] env sto = (extendEnv(env,I,var(loc)), sto1)
where (sto1, loc) = allocate sto

evaluate [[I]] env sto =
if dval = int(n) or dval = bool(p)

then dval
else if dval = var(loc)

then if applySto(sto,loc) = undefined
then error
else applySto(sto,loc)

where dval = applyEnv(env,I)

Figure 13.1: Denotational Semantics for Part of Pelican

In action semantics, the meaning of a programming language is defined by
mapping program phrases to actions. The performance of these actions models
the execution of the program phrases. To define these few constructs from
Pelican, we need to describe several primitive actions, two operations that
yield data, and two composite actions. Primitive actions can store data in
storage cells, bind identifiers to data, compute values, test Boolean values,
and so on. The following primitive actions include the ones needed to define
the fragment of Pelican plus a few others as examples:

complete Terminate normally the action being performed.

fail Abort the action being performed.

give _ Give the value obtained by evaluating a yielder.

allocate a cell Allocate a memory location.

store _ in _ Store a value in a memory location.

bind _ to _ Bind an identifier to data produced by a yielder.

These examples illustrate a syntactic convention wherein parameters to op-
erations are indicated by underscores. Operations in action semantics can
be prefix, infix, or outfix. Outfix operators have only internal place holders
such as in “sum(_,_)”. The last two examples above are considered prefix
since they end with a place holder. Infix operators begin and end with argu-
ment places—for example, “_ or _”. The operations are evaluated with prefix
having the highest precedence and outfix the lowest. Prefix operators are
executed from right to left, and infix from left to right.

Other operations—the yielders in action semantics—give values that depend
on the current information, such as the current storage and the current
bindings:

the _ stored in _ Yield the value of a given type stored in a memory location.

510 CHAPTER 13 ACTION SEMANTICS

the _ bound to _ Yield the object of a certain type bound to an identifier.
the given _ Yield the value of the specified type given to the action.

Action combinators are binary operations that combine existing actions, us-
ing infix notation, to control the order in which subactions are performed as
well as the data flow to and from the subactions. Action combinators are
used to define sequential, selective, iterative, and block structuring control
flow as well as to manage the flow of information between actions. The fol-
lowing two combinators model sequential control and nondeterministic choice,
respectively:

_ then _

Perform the first action; when it completes, perform the second action
taking the data given by the first action.

_ or _

Perform either one of the two actions, choosing one arbitrarily; if it fails,
perform the other action using the original state.

With these operations, we specify the two declarations and identifier evalua-
tion from Pelican in Figure 13.2.

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

elaborate [[const I = E]] =
evaluate E

 then
bind I to the given Value

evaluate [[I]] =
give the Value stored in the Cell bound to I

or
give the Value bound to I

Figure 13.2: Action Semantics for Part of Pelican

These examples convey the basic idea of action specifications. Since prefix
operations are evaluated from right to left, we may omit the parentheses in
“bind I to (the given Cell)” and “give (the Value stored in (the Cell bound to I))”.
Observe that one of the actions in the last semantic equation must fail, thereby
producing either the constant binding or the variable binding to the identi-
fier. In the sequel we describe these primitive actions, yielders, and action
combinators in more detail.

511

A specification of a programming language using action semantics naturally
breaks into the two parts shown in the diagram below.

Programming Language

Action Notation

Meaning of Actions

Upper level

Lower level

Definition of the constructs
of the programming language
in terms of action notation.

Specification of the meaning
of action notation.

The description of action semantics in the book by Peter Mosses [Mosses92]
specifies the meaning of action notation (the lower level, which is also known
as microsemantics) formally using algebraic axioms to present the notation
and structural operational semantics to give the semantics of action perfor-
mance. Here we describe action notation using examples, short English defi-
nitions, and diagrams, concentrating our efforts in the upper level, also known
as macrosemantics, where semantics is bestowed on a programming lan-
guage in terms of action notation.

Data and Sorts

The data manipulated by a programming language need to be specified in a
semantic definition of the language. These data are static, mathematical ob-
jects that include entities such as cells, tuples, and maps—as well as the
expected sets of integers and Boolean values. These entities are required to
describe the behavior of programs in the language.

In action semantics, data are classified into sorts, which are sets of math-
ematical objects equipped with assorted operations on those objects. These
sorts are defined by algebraic specifications. The languages presented in this
chapter require the sorts TruthValue and Integer, which can be specified in a
way similar to the modules in Chapter 12. In the spirit of action semantics,
we define the sorts TruthValue and Integer following the syntax for algebraic
specifications found in [Mosses92]. We omit the equations in the specifica-
tions and refer the reader to Chapter 12 for examples.

13.1 CONCEPTS AND EXAMPLES

512 CHAPTER 13 ACTION SEMANTICS

module TruthValues
exports

sorts TruthValue
operations

true : TruthValue

false : TruthValue

not _ : TruthValue → TruthValue

both (_ , _) : TruthValue, TruthValue → TruthValue

either (_ , _) : TruthValue, TruthValue → TruthValue

_ is _ : TruthValue, TruthValue → TruthValue -- the equality relation
end exports
equations

:
end TruthValues

module Integers
imports TruthValues
exports

sorts Integer
operations

0 : Integer

1 : Integer

10 : Integer

successor _ : Integer → Integer

predecessor _ : Integer → Integer

sum (_ , _) : Integer, Integer → Integer

difference (_ , _) : Integer, Integer → Integer

product (_ , _) : Integer, Integer → Integer

integer-quotient (_ , _) : Integer, Integer → Integer

_ is _ : Integer, Integer → TruthValue -- the equality relation

_ is less than _ : Integer, Integer → TruthValue

_ is greater than _ : Integer, Integer → TruthValue
end exports
equations

:
end Integers

Sort operations allow sorts to be compared and combined to form new sorts.
These operations correspond to normal set operations.

513

Definition : Let S1 and S2 be two sorts.

a) The join or union of S1 and S2 is denoted by S1 | S2.

b) The meet or intersection of S1 and S2 is denoted by S1 & S2.

c) The notation S1 ≤ S2 means that S1 is a subsort of S2. ❚

The sorts used in an action semantics specification form a lattice according
to the partial order ≤. Every sort automatically includes a special element,
called nothing, representing the absence of information in much the same
way as ⊥ was used in domain theory. We use the sort Datum to include all the
values manipulated by actions and refer to tuples each of whose components
is a Datum as Data. Every Datum can be viewed as a member of Data (Datum ≤
Data), since a singleton tuple is identified with the individual in the tuple.
Using this notation, we can make a few assertions about sorts of data:

• The expressible values in Wren constitute the sort (Integer | TruthValue).

• (Integer | TruthValue) ≤ Datum.

• (Integer & TruthValue) = nothing.

The special value nothing plays a particularly important role in action specifi-
cations, representing the result of any operation or action that terminates
abnormally. Every sort automatically contains the value nothing, which rep-
resents the empty sort. Most actions and operations specify the sort of val-
ues that will be used and produced by their performance. Whenever the
wrong kind of value appears, the result will be nothing. As with any semantic
methodology, programs are expected to be syntactically correct—adhering to
both the context-free syntax (BNF) and the context-sensitive syntax (context
constraints dealing with type checking)—before they are submitted to se-
mantic analysis. In spite of this, action semantics follows a strict type disci-
pline in specifying the meaning of language constructs. This careful delinea-
tion of the types of objects manipulated by actions adds to the information
conveyed by the semantic descriptions. Performing an action corresponding
to a language construct that violates type constraints results in failure. An
operation (yielder) that fails for any reason produces the value nothing, and
an action that contains such an operation simply fails.

Although we can describe the sort of actions, actions themselves do not form
a subsort of Datum, since actions, which work on data, cannot manipulate
actions. Later we will see that actions can, however, be encapsulated into
data, called abstractions, that can be “enacted”, thereby causing the perfor-
mance of the actions. This mechanism enables action semantics to model
subprogram declaration and invocation.

Action semantics classifies data according to how far they tend to be propa-
gated during action performance.

13.1 CONCEPTS AND EXAMPLES

514 CHAPTER 13 ACTION SEMANTICS

• Transient Data or tuples of data given as the immediate results of action
performance are called transients. These values model the data
given by expressions. They must be used immediately or be
lost.

• Scoped These data consist of bindings of tokens (identifiers) to data as
in environments. They are accessible (visible) throughout the
performance of an action and its subactions, although they
may be hidden temporarily by the creation of inner scopes.

• Stable Stable data model memory as values stored in cells (or loca-
tions) defined in a language’s specification. Changes in storage
made during action performance are enduring, so that stable
data may be altered only by explicit actions.

When we describe actions themselves later, we will see that actions are also
classified by the fundamental kind of data that they modify. This classifica-
tion gives rise to the so-called facets of action semantics that are determined
by the kind of information principally involved in an action’s performance.

Yielders

During the performance of an action, certain current infor mation is main-
tained implicitly, including:

• The transients given to and given by actions

• The bindings received by and produced by actions

• The current state of the storage

Terms that evaluate to produce data, depending on the current information,
are called yielders . The yielders in an action semantics specification select
information for processing by actions from transients, bindings, and storage,
verifying its type consistency. Below we describe four yielders that play an
important role in language specification.

the given _ : Data → Yielder

Yield the transient data given to an action, provided it agrees with the
sort specified as Data.

the given _ # _ : Datum, PositiveInteger → Yielder

Yield the nth item in the tuple of transient data given to an action, pro-
vided it agrees with the sort specified as Datum, where n is the second
argument.

515

the _ bound to _ : Data, Token → Yielder

Yield the object bound to an identifier denoted by the Token in the current
bindings, after verifying that its type is the sort specified as Data.

the _ stored in _ : Data, Yielder → Yielder

Yield the value of sort Data stored in the memory location denoted by the
cell yielded by the second argument.

Token denotes a subsort of Yielder that gives identifiers. PositiveInteger is a
subsort of Integer. These yielders are evaluated during action performance to
produce values (Data) to be used by and given by actions.

Actions

Actions are dynamic, computational entities that model the operational be-
havior of programming languages. When performed, actions accept the data
passed to them in the form of the current information—namely, the given
transients, the received bindings, and the current state of storage—to give
new transients, produce new bindings, and/or update the state of the stor-
age. If no intermediate result is to be passed on to the next action, the tran-
sient is simply the empty tuple. Similarly, the empty binding, with every
identifier unbound, is passed to the next action if the action produces no
bindings.

Depending on the principal type of information processed, actions are classi-
fied into several different facets, including:

• Functional Facet : actions that process transient information

• Imperative Facet : actions that process stable information

• Declarative Facet : actions that process scoped information

• Basic Facet : actions that principally specify flow of control

• Reflective Facet : actions that handle abstractions (subprograms)

• Hybrid Action Notation : actions that deal with recursive bindings

An action performance may complete (terminate normally), fail (terminate
abnormally), or diverge (not terminate at all).

The Functional Facet

Actions and yielders classified in the functional facet primarily manipulate
the transients given to and given by actions. First we consider composite
actions in the functional and basic facets, a few of the so-called action

13.1 CONCEPTS AND EXAMPLES

516 CHAPTER 13 ACTION SEMANTICS

combinators. These combinators may also process scoped information, but
we defer the discussion of bindings until a later section in this chapter.

Action combinators have the signature

combinator : Action, Action → Action

and are normally written using infix notation. At this point we are concerned
only with control flow and the processing of transients.

The basic combinator “A1 and then A2” performs the first action and then
performs the second. We illustrate the control flow between the two actions
by a dashed line in a diagram that indicates that the first action must termi-
nate normally (complete) before the second action can be performed.

A2

A1
com

plete
A1 and then A2

Both actions can use the transients passed to the combined action. The tran-
sients given by each action are concatenated and given by the combined
action. We depict the concatenation of transients (tuples) by joining the data
flow lines. The transient from the first action precedes that from the second
in the concatenation, which is ordered from left to right. Adding the process-
ing of the transients to “A1 and then A2” gives the following diagram:

A2

A1

transients

transients

com
pleteA1 and then A2

The basic action combinator “A1 and A2” allows interleaving of the perfor-
mance of the two actions. The diagram below shows no control dependency

517

between the two actions, suggesting that they can be performed collaterally.
Both actions use the transients passed to the combined action. The tran-
sients given by each action are concatenated and given by the combined
action.

A2A1

transients

A1 and A2

transients

The functional action combinator “A1 then A2” performs the first action using
the transients given to the combined action and then performs the second
action using the transients given by the first action. The transients given by
the combined action are those given by the second action. The dashed line
shows the control dependency.

A2

A1

transients

transients

com
plete

A1 then A2

For each of these action combinators, if one of the actions gives the value
nothing, the result of the composite action is nothing. We say these combinators
are strict in the value nothing.

The sample language in the next section—namely, the calculator language
from section 9.2—uses a primitive functional action give : Yielder → Action,
which was mentioned earlier; “give Y” where Y is a yielder (a term that evalu-
ates to a data value) gives the value computed from Y as its transient.

13.1 CONCEPTS AND EXAMPLES

518 CHAPTER 13 ACTION SEMANTICS

The yielder “the given S” where S is a sort of data, retrieves and type checks
the datum in the given transient. The yielder takes a parameter that is a sort
to document the type of the datum in the transient.

The yielder “the given S#n” retrieves and type checks the nth datum in the
given transient tuple.

For example, the composite action

give sum (the given Integer#1, the given Integer#2)
and

give (the given Integer#1 is the given Integer#2)

provided with the tuple (3,5) as a transient, gives the tuple (8,false) as its
result. The operation is serves as equality for integers.

(3,5)

(8,false)

give sum (the given Integer#1,
 the given Integer#2)

give (the given Integer#1 is
 the given Integer#2)

The tuple (3,3) given as a transient will result in the tuple (6,true) as the
transient given by this composite action.

The Imperative Facet

Actions and yielders in the imperative facet deal with storage, allocating
memory locations, updating the contents of locations, and fetching values
from memory. All actions work on a common store consisting of an unlimited
number of cells , which are data of the sort Cell. Initially all cells are consid-
ered unused. When an object of sort Cell is allocated, it changes from being
unused to containing a special value called undefined. The values that may be
stored in memory belong to a sort called Storable, corresponding to the stor-
able values in denotational semantics. Thus when specifying an imperative
programming language, we need to specify the sort Storable. Any action may
alter the state of a cell, and such a modification remains in effect until some

519

other action modifies the cell again by storing a different value in it or by
deallocating the cell. Therefore we think of the data stored in cells as stable
information.

Cells form a sort of data that can be left unspecified. This abstract data type
requires only that cells are distinguishable and that we have an unlimited
number of them, although only a finite number will be in use at any one
time. We can view the current storage as a finite mapping from cells to the
sort (Storable | undefined).

Two primitive imperative actions allocate and update storage cells.

allocate a cell

Find an unused cell, storing the value undefined in it, and give the (object
of sort) Cell as the transient of the action.

The actual allocation algorithm is not important, as long as it always yields
an unused cell when performed. In [Mosses92] the allocate operation is a
hybrid action defined in terms of primitive actions from the imperative and
functional facets. We treat it as a primitive action to simplify the discussion.
The precedence rules for action semantics allow us to use multiword opera-
tion names without any confusion. The expression “allocate a cell” represents
a nullary operation. A primitive action defines the modification of a memory
cell.

store Y1 in Y2

Update the cell yielded by Y2 to contain the Storable yielded by Y1.

The imperative facet has no special action combinators, but any action has
the potential of altering storage. In the combination “A1 and then A2”, any
changes to storage by A1 precede those made by A2. In contrast, if both A1
and A2 in “A1 and A2” modify memory, the results are unpredictable because
of the possible interleaving.

The yielder “the S stored in Y” gives the datum currently stored in the cell
yielded by evaluating Y provided that the value given is a datum of sort S.
Otherwise, the yielder gives nothing.

Suppose that two locations, denoted by cell1 and cell2, have been allocated
and currently contain the value undefined. Also assume that the next cell to
be allocated is cell3. Figure 13.3 shows snapshots of the current storage as a
composite action is performed.

The first subaction to the combinator then gives cell3 as a transient to the
second subaction that stores a value there. Observe how indenting deter-
mines the grouping of the actions.

13.1 CONCEPTS AND EXAMPLES

520 CHAPTER 13 ACTION SEMANTICS

Initial storage:

store 3 in cell1

 and then

store 5 in cell2
 and then

allocate a cell

then

store sum (the Integer stored in cell1,

 the Integer stored in cell2)

in the given Cell

cell1

cell2 5

cell3 8

3

cell1

cell2 undefined

3

3cell1

cell2 5

cell1 undefined

cell2 undefined

Figure 13.3: Current Storage While Performing an Action

Exercises

1. Assuming the value 5 as the given transient, diagram the following com-
posite actions:

a) give -7
and

give the given Integer
then

give product (the given Integer#1, the given Integer#2)

b) give difference (0,the given Integer)
then

give successor(the given Integer)
and

give predecessor(the given Integer)
then

give sum (the given Integer#1, the given Integer#2)

2. Actions from the functional facet can be viewed as describing a simple
language of expressions that define functions that take a value (the tran-

521

sient) and give a result (the new transient). Describe the functions de-
fined by the following actions:

a) give successor (the given Integer)
then

give product (the given Integer, the given Integer)

b) give product (2, the given Integer)
then

give successor (the given Integer)

c) give successor (the given Integer)
and then

give product (the given Integer, the given Integer)

d) give predecessor (the given Integer)
and

give successor (the given Integer)
then

give product (the given Integer#1, the given Integer#2)

3. Suppose that the following action is given a cell containing the integer 5
as a transient. What (possible) numbers can be stored in the cell after
performing this action?

store 0 in the given Cell
and

store successor (the Integer stored in the given Cell) in the given Cell
and then

store sum (the Integer stored in the given Cell, 10) in the given Cell

4. Suppose that the current storage contains only two defined cells:
{ cell1|→6, cell2|→-2 }. Describe the current storage after performing the
following action:

give Integer stored in cell1
and

give 10
then

store product (the given Integer#1, the given Integer#2) in the given cell1
then

give successor (the Integer stored in cell2)
then

store difference (the given Integer, the Integer stored in cell1) in cell2

Assuming that cell1 corresponds to the variable x and cell2 to y, what
assignment command(s) are modeled by the performance of this
action?

13.1 CONCEPTS AND EXAMPLES

522 CHAPTER 13 ACTION SEMANTICS

13.2 ACTION SEMANTICS OF A CALCULATOR

We use the calculator from section 9.2 as the first example of a complete
specification by means of action semantics. Here the definition of the calcu-
lator semantics is somewhat simplified by using the imperative facet to pro-
vide a storage location for the calculator memory. A module describes the
necessary imperative features needed for the specification.

module Imperative
imports Integers, Mappings
exports

sorts Storable = Integer,
Storage = Mapping [Cell to (Storable | undefined)],

Cell ≤ Datum
operations

cell1 : Cell
allocate a cell : Action
store _ in _ : Yielder, Yielder → Action

the _ stored in _ : Storable, Yielder → Yielder
:

end exports
equations

:
end Imperative

The module Imperative imports the module Mappings that specifies objects to
model finite functions, instantiating an object of sort Mapping using the nota-
tion “Mapping [domain to codomain]”. We use slightly different (from Chapter 12)
but equivalent notation–namely, Storage = Mapping [Cell to (Storable | undefined)]—
to instantiate the parameters to the Mappings module and to rename (really
give synonyms for) identifiers from the imported module. Using Mappings, Im-
perative can specify an empty map, a mechanism for adding a new ordered pair
to the map, a way to change the image of a domain element, and notation for
applying the map to a domain item. Here we only name the operations, actions,
data, and yielders, used to manipulate storage in action notation.

For reference we repeat the abstract syntax of the calculator language in
Figure 13.4, slightly modified for the action semantic specification. It is a
common practice to fit the definition of the abstract syntax to the method
used for the semantic specification. For example, we used different defini-
tions of abstract syntax in Chapter 8 and Chapter 9. However, since the
concrete syntax of the calculator language is unchanged from Chapter 9, we
are specifying the semantics of the same language.

523

Abstract Syntactic Domains

P : Program E : Expression D : Digit

S : ExprSequence N : Numeral

Abstract Production Rules

Program ::= ExprSequence

ExprSequence ::= Expression | Expression ExprSequence

Expression ::= Numeral | MR | Clear | Expression + Expression

| Expression – Expression | Expression x Expression

| Expression M+ | Expression = | Expression +/-

Numeral ::= Digit | Numeral Digit

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 13.4: Abstract Syntax for the Calculator Language

Semantic Functions

As with denotational semantics, meaning is ascribed to the calculator lan-
guage via semantic functions, mostly mapping syntactic domains to actions.
Because of the expressiveness of action semantics using the imperative facet,
we need fewer semantic functions.

meaning _ : Program → Action

perform _ : ExprSequence → Action

evaluate _ : Expression → Action

the value of _ : Numeral → Integer -- uses only nonnegative integers

digit value _ : Digit → Integer

The action that serves as the meaning of a program gives a value that can be
taken as the semantics of the program in the calculator language. This value,
corresponding to an expressible value in denotational semantics, is the inte-
ger shown in the display as a result of executing the program. We describe its
sort, a subsort of Datum, by the definition

Value = Integer -- expressible values.

The sort Action includes many operational behaviors but conveys no specifics
about the nature of individual actions. To make specifications more precise,
entities of sort Action can be qualified by describing the outcome , the sort of
information produced by an action, and the income , the sort of information
used by an action. A subsort of Action can be defined by writing

Action [outcome] [income].

13.2 ACTION SEMANTICS OF A CALCULATOR

524 CHAPTER 13 ACTION SEMANTICS

We omit the details that describe possible income and outcome entities for-
mally, but the terminology itself suggests the intent of the qualifications. The
semantic functions for the calculator are more accurately specified by the
following signatures:

meaning _ : Program → Action [completing | giving a Value | storing]
[using current storage]

perform _ : ExprSequence → Action [completing | giving a Value | storing]
[using current storage]

evaluate _ : Expression → Action [completing | giving a Value | storing]
[using current storage]

Note that the symbol |, which denotes the join or union of sorts, is an asso-
ciative operation.

Semantic Equations

The semantic function evaluate does the bulk of the work in specifying the
calculator language. The value given by performing the action resulting from
evaluate, and from the functions meaning and perform, is the value shown in
the display of the calculator. Although the display value can be considered as
the semantics of a phrase in the calculator language, meaning is more fully
specified by describing the activities performed to obtain this value. The ac-
tions of action semantics are designed to model these activities.

The evaluate function takes the nine different forms of expressions as its
actual parameter. For each we describe the intended operational behavior,
and then give the semantic equation that describes this behavior as an ac-
tion. Observe how closely the definition in action notation parallels the infor-
mal description.

• Numeral

To evaluate a numeral, simply display its integer value on the display.

evaluate N = give the value of N

The value given as a transient by the action give is the displayed integer.

• Memory Recall

Display the value stored in the single memory location that we assume has
been allocated initially and named cell1. The module Imperative asserts the
existence of a constant cell, cell1, to serve this purpose.

evaluate MR = give Integer stored in cell1
Again the transient given by the action is the displayed value.

525

• Clear

The clear operation resets the memory location to zero and displays zero.

evaluate Clear =
store 0 in cell1

and
give 0

Since we have no reason to perform one of these subactions before the
other, the composite action uses the and combinator. If interference were
possible between the two activities, we could use and then to establish or-
der. In the case of Clear , choosing an order of performance over-specifies
the behavior.

• Addition of T wo Expr essions

This binary operation gives the sum of the integers that result from the
two expressions. The left expression must be evaluated first since it may
involve a side effect by storing a value in the calculator memory.

evaluate [[E1 + E2]] =
evaluate E1

and then
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

The first combinator forms a tuple (a pair) consisting of the values of the
two expressions, which are evaluated from left to right. That tuple is given
to the sum operation, which adds the two components. Action semantics
uses indenting to describe the evaluation order of action operations. Pa-
rentheses are also allowed for this purpose, but generally the indenting
convention is easier to follow. For comparison, consider the semantic equa-
tion for addition written using parentheses.

evaluate [[E1 + E2]] = (evaluate E1 and then evaluate E2) then
(give sum (the given Integer#1, the given Integer#2))

Since evaluate is a prefix operation, it takes precedence over the and then
combinator. Actually none of these parentheses are necessary, but com-
posite actions are easier to read if they employ some grouping mechanism.

• Difference of T wo Expr essions

• Product of T wo Expr essions

Subtraction and multiplication are handled in the same way as addition,
but difference and product are used to implement the operations.

13.2 ACTION SEMANTICS OF A CALCULATOR

526 CHAPTER 13 ACTION SEMANTICS

• Add to Memory

Display the value of the current expression and add it to the calculator
memory.

evaluate [[E M+]] =
evaluate E

then
store sum (the Integer stored in cell1, the given Integer) in cell1

and
give the given Integer

The second subaction to then must propagate the transient from the first
subaction so that it can be given by the composite action. The primitive
action “store _ in _” yields no transient, which is represented by an empty
tuple. The action “give the given Integer” propagates the integer from the
evaluation of E. Action semantics views a single datum as identical to a
singleton tuple containing the same value. Concatenating the empty tuple
and the singleton tuple produces the value of E as the transient of the and
combinator. Without the subaction “give the given Integer”, the value from E
will be lost. It must be propagated as the resulting transient from the en-
tire action.

Action semantics has a primitive action regive that abbreviates “give the
given Data”. We use this abbreviation in some of the remaining examples,
although using regive reduces the information since the sort of the Data is
not specified.

• Equal

The equal key terminates an evaluation, displaying the value from the
current expression.

evaluate [[E =]] = evaluate E

• Change Sign

The +/- key flips the sign of the integer produced by the latest expression
evaluation.

evaluate [[E +/-]] =
evaluate E

then
give difference (0, the given Integer)

The meaning function initializes the calculator by storing zero in the memory
location and then evaluates the expression sequence. The storing operation
gives an empty transient. The semantic function perform evaluates the ex-
pressions in the sequence one at a time, ignoring the given transients. The
semantic functions value of and digit value have essentially the same behavior

527

as the corresponding functions in denotational semantics. All of the seman-
tic equations for the action semantics of the calculator language are col-
lected in Figure 13.5.

meaning P =
store 0 in cell1

and then
perform P

perform [[E S]] =
evaluate E

then
perform S

perform E = evaluate E

evaluate N = give the value of N

evaluate MR = give Integer stored in cell1

evaluate Clear =
store 0 in cell1

and
give 0

evaluate [[E1 + E2]] =
evaluate E1

and then
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

evaluate [[E1 – E2]] =
evaluate E1

and then
evaluate E2

then
give difference (the given Integer#1, the given Integer#2)

evaluate [[E1 x E2]] =
evaluate E1

and then
evaluate E2

then
give product (the given Integer#1, the given Integer#2)

Figure 13.5: Semantic Equations for the Calculator Language (Part 1)

13.2 ACTION SEMANTICS OF A CALCULATOR

528 CHAPTER 13 ACTION SEMANTICS

evaluate [[E M+]] =
evaluate E

then
store sum (the Integer stored in cell1, the given Integer) in cell1

and
regive -- give the given Data

evaluate [[E =]] = evaluate E

evaluate [[E +/-]] =
evaluate E

then
give difference (0, the given Integer)

the value of [[N D]] = sum (product (10,the value of N), the value of D)

the value of D = digit value D

digit value 0 = 0
 :
digit value 9 = 9

Figure 13.5: Semantic Equations for the Calculator Language (Part 2)

The use of the combinator “and then” in the definition of meaning and perform
is only used to sequence the control flow since the transients are ignored
between the subactions.

Action semantics uses the emphatic brackets “[[” and “]]” slightly differently
than denotational semantics. Semantic functions are applied to abstract syn-
tax trees. In action semantics the notation “[[E1 + E2]]” denotes the abstract
syntax tree composed of a root and three subtrees, E1, +, and E2. Since E1 is
already an abstract syntax tree, we have no need for another set of brackets
in the expression “evaluate E1”. We omit the brackets in each semantic equa-
tion that gives meaning to an abstract syntax tree that consists of a single
subtree (a single object) as in “evaluate Clear ”.

A Sample Calculation

As an example, consider the calculator program elaborated in Figure 9.7:

12 + 5 +/- = x 2 M+ 123 M + MR +/- – 25 = + M R =

This sequence of calculator keystrokes parses into three expressions, so that
the overall structure of the action semantics evaluation has the form

meaning [[12 + 5 +/- = x 2 M+ 123 M + MR +/- – 25 = + M R =]]

529

= store 0 in cell1
and then

perform [[12 + 5 +/- = x 2 M + 123 M + MR +/- – 25 = + M R =]]

= store 0 in cell1
and then

evaluate [[12 + 5 +/- = x 2 M +]]
then

evaluate [[123 M+]]
then

evaluate [[MR +/- – 25 = + M R =]]

The first expression begins with an empty transient and with cell1 containing
the value 0. We show the transient (as a tuple) given by each of the subactions
as well as the value stored in cell1.

Transient cell1
evaluate [[12 + 5 +/- = x 2 M+]] = () 0

give the value of 12 (12) 0
and then

give the value of 5 (5) 0
then

give difference (0, the given Integer) (-5) 0
then (12,-5) 0

give sum (the given Integer#1, the given Integer#2) (7) 0
and then

give the value of 2 (2) 0
then (7,2) 0

give product (the given Integer#1, the given Integer#2) (14) 0
then

store sum (the Integer stored in cell1, the given Integer) in cell1 () 14
and

regive (14) 14

This action gives the value 14, which is also the value in cell1. The second
expression starts with 14 in memory, ignoring the given transient, and re-
sults in the following action:

evaluate [[123 M+]] =
give the value of 123 (123) 14

then
store sum(the Integer stored in cell1,the given Integer) in cell1 () 137

and
regive (123) 137

13.2 ACTION SEMANTICS OF A CALCULATOR

530 CHAPTER 13 ACTION SEMANTICS

This action gives the value 123 and leaves the value 137 in cell1. The third
expression completes the evaluation, starting with 137 in memory, as fol-
lows:

evaluate [[MR +/- – 25 = + M R =]] =
give Integer stored in cell1 (137) 137

then
give difference (0, the given Integer) (-137) 137

and then
give the value of 25 (25) 137

then (-137,25) 137
give difference (the given Integer#1, the given Integer#2) (-162) 137

and then
give Integer stored in cell1 (137) 137

then (-162,137) 137
give sum (the given Integer#1, the given Integer#2) (-25) 137

This final action gives the value -25, leaving the value 137 in the calculator’s
memory.

Exercises

1. Evaluate the semantics of these combinations of keystrokes using the
action semantics definition in this section:

a) 8 +/- + 5 x 3 =

b) 7 x 2 M+ M+ M+ – 15 + M R =

c) 10 – 5 +/- M+ 6 x MR M+ =

Consult the concrete syntax of the calculator language in section 9.2
when parsing these programs. For instance, the program in part a is
grouped in the manner as shown by the parentheses below:

((((8 +/-) + 5) x 3) =)

2. Add to the calculator a key sqr that computes the square of the value in
the display. Alter the semantics to model the action of this key. Its syn-
tax should be similar to that of the +/- key.

3. Prove that for any expression E, meaning [[E = M+]] = meaning [[E M+ =]].

4. Some calculators treat “=” differently than the calculator in this section,
repeating the most recent operation, so that “2 + 5 = = ” leaves 12 on the
display and “2 + 5 = = = ” leaves 17. Consider the changes that must be
made in the action semantics to model this alternative interpretation.

531

13.3 THE DECLARATIVE FACET AND WREN

Actions and yielders in the declarative facet deal primarily with scoped infor-
mation in the form of bindings between identifiers, represented as tokens,
and various semantic entities such as constants, variables, and procedures.
In this section we illustrate several fundamental concepts from the declara-
tive facet, along with a couple of actions dealing with control flow from the
basic facet, in specifying the programming language Wren. Since Wren has
such a simple structure with respect to declarations—namely, a single global
scope—only a few features of the declarative facet are introduced. More com-
plicated actions from the declarative facet are discussed in section 13.4, where
we provide an action specification of Pelican.

One aspect of defining a programming language involves specifying what
kinds of values can be bound to identifiers, the so-called denotable values in
denotational semantics. In action semantics the subsort of Datum that con-
sists of entities that can be bound to identifiers is known as the sort Bindable.
Wren allows binding identifiers only to simple variables, which are modeled
as cells in action semantics. The algebraic specification in a module called
Declarative suggests the salient aspects of the entities in the declarative facet.

module Declarative
imports Imperative, Mappings
exports

sorts Token
Variable = Cell,
Bindable = Variable,
Bindings = Mapping [Token to (Bindable | unbound)]

operations
empty bindings : Bindings
bind _ to _ : Token, Yielder → Action
the _ bound to _ : Data, Token → Yielder
produce _ : Yielder → Action

:
end exports
equations

:
end Declarative

The term “empty bindings” denotes bindings with every identifier unbound.
Action semantics establishes a binding using the primitive declarative action
“bind T to Y”, which produces a singleton binding mapping that we represent
informally by [T|→B] where B is the datum of sort Bindable yielded by Y.

13.3 THE DECLARATIVE FACET AND WREN

532 CHAPTER 13 ACTION SEMANTICS

A declarative yielder finds the value associated with an identifier in the cur-
rent bindings. The term “the S bound to T” evaluates to the entity bound to
the Token T provided it agrees with the sort S; otherwise the yielder gives
nothing. The action “produce Y” creates the bindings consisting of the map
yielded by Y. It corresponds to the action “give Y” in the functional facet.

Before considering composite actions from the declarative facet, we observe
that the action combinators defined earlier process bindings as well as tran-
sients. Although the action combinators introduced as part of the functional
and basic facets do not concentrate on processing bindings, they receive
bindings as part of the current information and produce possibly new bind-
ings as a result of their subactions. The bindings of two actions can combine
in two fundamental ways:

merge(bindings1,bindings2):

Merging the sets of bindings means to form their (disjoint) union with the
understanding that if any identifier has bindings in both sets, the opera-
tion fails, producing nothing.

overlay(bindings1,bindings2):

The bindings are combined in such a way that the associations in bind-
ings1 take precedence over those in bindings2.

In the following diagrams, scoped information flows from left to right whereas
transients still flow from top to bottom. We depict the merging of bindings by
having the lines for scoped information connected by a small circle suggesting
a disjoint union. Later when action combinators use the overlay operation, the
lines show a break indicating which set of bindings takes precedence.

transients

A1

bindings

transients

A2

A1 and A2

bindings

533

A2

A1

transients

com
plete

bindings

transients

A1 and then A2

bindings

For both of the combinators and and and then, each action receives the bind-
ings for the composite action, and the bindings produced by the subactions
are merged. The only difference between these two action combinators is
that and then enforces an ordering in the performance of the two subactions.

The action combinator then has the same declarative behavior as the
combinator and then.

A2

A1

transients

transients

com
pletebindings

A1 then A2

bindings

The only primarily declarative action combinator required in the Wren speci-
fication is the composite action hence. This combinator sequences the bind-
ings with the first subaction receiving the original bindings, the second
subaction receiving the bindings produced by the first, and the bindings
produced by the combined action being those produced by the second
subaction. The combinator hence processes transients in the same way as
the combinator and then.

13.3 THE DECLARATIVE FACET AND WREN

534 CHAPTER 13 ACTION SEMANTICS

A2

A1

bindings

bindings

transients

A1 hence A2

transients

com
plete

The Programming Language Wren

We now turn to describing an action specification of Wren (see section 1.3 or
9.3 for the syntax of Wren). We omit that part of action semantics used to
describe input and output, so the read and write commands from Wren are
ignored in this chapter. Input and output require the communicative facet, a
topic beyond the scope of our presentation. In the action semantics descrip-
tion of Wren, we specify the declarative information of the language despite
the simplicity of its scope rules. The kinds of information processed by Wren
can be specified as the three sorts:

sorts Value = Integer | TruthValue, -- expressible values

Storable = Integer | TruthValue, -- storable values

Bindable = Variable -- denotable values (Variable = Cell)

Four new semantic functions provide meaning to the phrases of Wren. The
signatures below include the outcome and income to help describe the be-
havior of the resulting actions.

run _ : Program → Action [completing | diverging | storing]
[using current storage]

elaborate _ : Declaration → Action [completing | binding | storing]
[using current bindings | current storage]

execute _ : Command → Action [completing | diverging | storing]
[using current bindings | current storage]

535

evaluate _ : Expression → Action [completing | giving a Value]
[using current bindings | current storage]

For each syntactic construct, we give a brief informal description of its se-
mantics and then provide its definition in action semantics.

• Program

First elaborate the declarations, which involve only variables, and then
execute the body of the program using the resulting bindings. The pro-
gram identifier is ignored, serving as documentation only.

run [[program I is D begin C end]] = elaborate D hence execute C

• Variable Declaration

Allocate a cell from storage and then bind the identifier to that cell. The
definition handles declarations of a single variable only. Multiple variable
declarations can be treated as a sequence of declarations.

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

• Empty Declaration

Produce no bindings. “[[]]” denotes an empty tree.

elaborate [[]] = produce empty bindings

• Sequence of Declarations

Elaborate the first declaration and then elaborate the second using the
bindings from the first and producing the combined bindings.

elaborate [[D1 D2]] = elaborate D1 and then elaborate D2

The bindings in D1 should be visible to the second declaration, although in
Wren D2 has no way to refer to an identifier in D1. For this reason, the “and
then” combinator suffices to specify declaration sequencing in Wren. With
and then each subaction constructs bindings independently, and the two
sets of bindings are merged. In a program that satisfies the context con-
straints for Wren, no conflict can arise between the declarations in D1 and
D2 when they merge. The combinator then could be used as well since the
transients play no role in these declarations.

• Sequence of Commands

Execute the first command and then execute the second.

execute [[C1 ; C2]] = execute C1 and then execute C2

13.3 THE DECLARATIVE FACET AND WREN

536 CHAPTER 13 ACTION SEMANTICS

• Skip

Do nothing.

execute skip = complete

• Assignment

Find the cell bound to the identifier and evaluate the expression. Then
store the value of the expression in that cell.

execute [[I := E]] =
give the Cell bound to I and evaluate E

then
store the given Value#2 in the given Cell#1

The parameters to the and combinator are presented without indentation.
The “bound to” yielder and the give action take precedence because prefix
operations are always performed before infix ones. Parentheses can be
used to alter precedence or to enhance clarity.

To describe the decision process in if and while commands, we need an
action combinator that belongs to the basic facet and a primitive action from
the functional facet. The action combinator or models nondeterministic choice.
“A1 or A2” arbitrarily chooses one of the subactions and performs it with the
given transients and the received bindings. If the chosen action fails, the
other subaction is performed with the original transients and bindings. The
effect of or is shown in the diagram below with k = 1 or k = 2, but which one is
not specified by action semantics.

A3-k

Ak

bindings

transients

fail

bindings

transients

bindings

transients

A1 or A2

Although most action combinators are strict relative to failure (if one of the
subactions fails, the composite action also fails), “A1 or A2” can complete (suc-
ceed) even though one of its subactions fails. However, if the chosen action

537

fails after making a change to storage, the change is irrevocable, the other
action is ignored, and the whole action fails.

The primitive functional action “check Y”, where Y is a yielder that gives a
TruthValue, completes if Y yields true and fails if it yields false. The action gives
empty transients and produces empty bindings. The action check acts as a
guard, which when combined with the composite action or enables a specifi-
cation to carry out decision making.

• If Commands

The if commands evaluate the Boolean expression that serves as the test,
and then they perform the then command or the else command depend-
ing on the test. If the else part is missing, the command does nothing
when the condition is false.

execute [[if E then C1 else C2]] =
evaluate E

then
check (the given TruthValue is true) and then execute C1

or
check (the given TruthValue is false) and then execute C2

execute [[if E then C]] =
evaluate E

then
check (the given TruthValue is true) and then execute C

or
check (the given TruthValue is false) and then complete

The operation is acts as equality for the sort TruthValue. Observe that for
each of the if commands only one of the conditions supplied to the action
check can be true. The phrase “and then complete” may be omitted from the
second definition. It simply provides symmetry to the or combinator. Also,
the first check test can read

check (the given TruthValue) and then execute C.

To complete the specification of commands in Wren, we need two more ac-
tions, unfolding _ and unfold, from the basic facet to define the while com-
mand. These actions serve only to determine the flow of control during the
performance of subactions.

unfolding _

The composite action unfolding : Action → Action performs its argument
action, but whenever the dummy action unfold is encountered, the argu-
ment action is performed again in place of unfold.

13.3 THE DECLARATIVE FACET AND WREN

538 CHAPTER 13 ACTION SEMANTICS

unfold

The primitive action unfold is a dummy action, standing for the argument
action of the innermost enclosing unfolding.

The diagram below suggests the behavior of the action unfolding A. Whenever
the action A performs unfold, it is restarted with the transients and bindings
that are given to unfold. Eventually we expect A to complete producing the
final transients and bindings.

A
bindings

transients

transients

bindings

unfold

unfold

unfolding A

The actions unfolding and unfold are used to describe indefinite iteration—in
this case, the while command in Wren. Inside a performance of unfolding, an
invocation of unfold has the effect of restarting the original action.

• While Command

The Boolean expression is evaluated first. If its value is true, the body of the
loop is executed and then the while command is started again when the
execution of the loop body completes; otherwise, the command terminates.

execute [[while E do C]] =
unfolding

evaluate E
then

check (the given TruthValue is true)
and then execute C

and then unfold
or

check (the given TruthValue is false) and then complete

We conclude the specification of Wren by giving the semantic equations for
evaluate, the function that defines the meaning of expressions.

539

• Variable Name

Give the value stored in the memory location bound to the variable.

evaluate I = give Value stored in the Cell bound to I

The precedence rules of action semantics assume that this action is inter-
preted as “give (the Value stored in (the Cell bound to I))”.

• Literal

Give the value of the literal.

evaluate N = give the value of N

evaluate true = give true

evaluate false = give false

• Arithmetic on T wo Expr essions

Evaluate the two expressions and give the sum of their values.

evaluate [[E1 + E2]] =
evaluate E1

and
evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

Since Wren allows no side effects in expressions, we have no need to specify
an order of evaluation of the components in a binary expression. Subtrac-
tion, multiplication, and division are handled in a similar manner. If the
integer-quotient operation is given zero as a divisor, the operation gives noth-
ing, and that causes the action to fail.

evaluate [[E1 / E2]] =
evaluate E1

and
evaluate E2

then
give integer-quotient (the given Integer#1, the given Integer#2)

• Unary Minus

Evaluate the expression and give the negation of the resulting value.

evaluate [[- E]] =
evaluate E

then
give difference (0, the given Integer)

13.3 THE DECLARATIVE FACET AND WREN

540 CHAPTER 13 ACTION SEMANTICS

• Relational Expr essions

Evaluate the two expressions and give the result of applying the appropri-
ate relation operation to the two values.

evaluate [[E1 < E2]] =
evaluate E1

and
evaluate E2

then
give (the given Integer#1 is less than the given Integer#2)

• Binary Boolean Operations

Evaluate the two expressions and give the result of applying the appropri-
ate Boolean operation to the two values.

evaluate [[E1 and E2]] =
evaluate E1

and
evaluate E2

then
give both (the given TruthValue#1, the given TruthValue#2)

• Boolean Not

Evaluate the expression and give the logical negation of the given value.

evaluate [[not(E)]] =
evaluate E

then
give not (the given TruthValue)

Exercises

1. Add these language constructs to Wren and define them using action
semantics.

a) repeat-until commands
Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

c) expressions with side effects
Expression ::= ... | begin Command return Expression end

541

2. Provide a definition of conditional (short-circuit) and and or in action
semantics. Use the syntactic forms “E1 and then E2” and “E1 or else
E2” for these expressions.

3. Extend Wren to allow constant declarations and explain how the action
specification needs to be modified.

4. Give an action specification of the vending machine in exercise 8 of sec-
tion 9.3.

13.4 THE REFLECTIVE FACET AND PELICAN

The major changes when we move from Wren to Pelican (see section 9.5) have
to do with declarations: Identifiers can now also be bound to constant values
and to procedures. Therefore the sort Bindable includes two more possibilities.

sorts Bindable = Variable | Value | Procedure -- denotable values

In action semantics procedure objects are modeled as abstractions, which
are yielders that encapsulate actions. We defer specifying procedures until
later in this section. Now we consider the scope rules of Pelican, which are
more complicated than those in Wren, requiring several additional declara-
tive actions.

rebind

This primitive declarative action reproduces all of the received bindings.
The action rebind propagates bindings in a manner analogous to the way
regive propagates transients. The effect of rebind is to extend the scope of
the current bindings.

_ moreover _

As with the combinator and, moreover allows the performance of the two
actions to be interleaved. Both actions use the transients and bindings
passed to the combined action. The bindings produced by the combined
action are the bindings produced by the first action overlaid by those
produced by the second. Transients are handled as with the and
combinator.

The diagram below shows the blending of the bindings using the overlay
operation by means of a broken line. The bindings that follow the solid line
take precedence.

13.4 THE REFLECTIVE FACET AND PELICAN

542 CHAPTER 13 ACTION SEMANTICS

A2

A1

transients

bindings

A1 moreover A2

transients

bindings

_ before _
The declarative action combinator before performs the first action using
the transients and the bindings passed to the combined action, and then
performs the second action using the transients given to the combined
action and the bindings received by the combined action overlaid by those
produced by the first action. The combined action produces the bindings
produced by the first action overlaid with those produced by the second.
The transients given by the combined action are those given by the first
action concatenated with those given by the second.

A2

transients

transients

A1 before A2

A1

com
plete

bindings

bindings

Pelican allows several more kinds of bindings than Wren. We give the three
sorts that specify the kinds of information processed by Pelican, noting that
only Bindable is different from the specification for Wren.

543

sorts Value = Integer | TruthValue, -- expressible values

Storable = Integer | TruthValue, -- storable values

Bindable = Variable | Value | Procedure -- denotable values

The semantic functions for Pelican have the same signatures as in the speci-
fication of Wren, but we need to add several semantics equations for the
additional language constructs in Pelican. We postpone describing proce-
dures for now and concentrate on constant declarations and the declar e
command.

• Constant Declaration

Evaluate the expression and then bind its value to the identifier.

elaborate [[const I = E]] =
evaluate E

then
bind I to the given Value

• Sequence of Declarations

Elaborate the declarations sequentially. Since the scope rules for Pelican
are more complicated, allowing nested scopes, we use the composite ac-
tion before to combine the bindings from the two declarations so that D1
overlays the enclosing environment and D2 overlays D1.

elaborate [[D1 D2]] = elaborate D1 before elaborate D2

The “and then” combinator no longer suffices for declaration sequencing.
Pelican requires that each declaration has access to the identifiers that are
defined earlier in the same block as well as those in any enclosing block,
as illustrated by the declaration sequence below:

const max = 50;

max1 = max+1;

Pelican allows “dynamic expressions” in constant definitions. Using before
ensures that identifiers elaborated in D1 are visible when D2 is elaborated.
Pelican does not require that D2 overlay D1, since declarations in a se-
quence must have distinct identifiers. They may just as well be merged,
but no problems arise when before performs an overlay at two points in the
processing of bindings. Now that we have the combinator before, it can
also be used in place of and then in defining declaration sequencing in
Wren.

• Variable Name or Constant Identifier

An identifier can be bound to a constant value or to a variable. Evaluating
an identifier gives the constant or the value assigned to the variable.

13.4 THE REFLECTIVE FACET AND PELICAN

544 CHAPTER 13 ACTION SEMANTICS

evaluate [[I]] =
give the Value stored in the Cell bound to I

or
give the Value bound to I

Only one of the subactions to the or combinator succeeds, so that the
action gives the appropriate value denoted by the identifier I.

• Anonymous Block (declar e)

Elaborate the declarations in the block, producing bindings that overlay
the bindings received from the enclosing block, and execute the body of
the block with the resulting bindings. The bindings created by the local
declaration are lost after the block is executed.

execute [[declar e D begin C end]] =
rebind moreover elaborate D

hence
execute C

The action rebind propagates the bindings given to it. Therefore the action
“rebind moreover elaborate D” overlays the received bindings (from the en-
closing block) with the local bindings from D to provide the environment in
which C will execute.

As an illustration of this mechanism for handling the declarations in Pelican,
consider the following program.

program scope is
const c = 5;
var n : integer ;

begin
declare

const m = c+8; -- D1
const n = 2* m; -- D2

begin
 : -- C
end;

 :
end

Assuming that the first cell allocated is cell1, the action that elaborates the
first two declarations produces the bindings [c|→5, n|→cell1], which are re-
ceived by the body of the program and therefore by the declare command.
The following action models the execution of the declare command.

545

execute [[declare D1; D2; begin C end]] =
rebind moreover elaborate [[D1 D2]]

hence
execute C

Working from the inside, we first elaborate the declarations

elaborate [[D1 D2]] = elaborate D1 before elaborate D2.

The diagram below, with the empty transients omitted, illustrates the activi-
ties carried out by the before combinator.

[m |→13, c |→5, n |→cell1]

[m |→13]

[n |→26, m |→13]

[n |→26]

elaborate D1

elaborate D2

[c |→5, n |→cell1]
com

plete

This action, elaborate [[D1 D2]], serves as the second subaction in

rebind moreover elaborate [[D1 D2]],

which is depicted in the next diagram.

rebind

elaborate [D1 D2]

[c |→5, n |→cell1]

[n |→26, m |→13]

[n |→26, m |→13, c |→5][c |→5, n |→cell1]

Therefore the body of the anonymous block will execute in an environment
containing three bindings, [n|→26, m|→13, c|→5].

The Reflective Facet and Procedures

The reflective facet addresses those actions and yielders that allow the de-
scription of subprogram declaration and invocation. The activity of a proce-
dure in Pelican can be modeled by the performance of an action. Recall that
actions themselves are not data but can be incorporated in data called ab-

13.4 THE REFLECTIVE FACET AND PELICAN

546 CHAPTER 13 ACTION SEMANTICS

stractions. Objects that can be bound to identifiers in Pelican include proce-
dures, which are modeled as abstractions.

sorts Procedure = Abstraction
Bindable = Variable | Value | Procedure

View an abstraction datum as an entity with three components, the action
itself and the transients and bindings, if any, that will be given to the action
when it is performed.

Action
Transients

Bindings
Abstraction =

As with subprograms in a programming language, we concern ourselves with
two aspects: the creation of a procedural object by means of a declaration
and the invocation of the object that sets it into action. When a Pelican pro-
cedure declaration is elaborated, the code of the procedure modeled as an
action is incorporated into an abstraction using an operation that acts as a
yielder.

abstraction of _ : Action → Yielder

The yielder “abstraction of A” encapsulates the action A into an abstraction
together with no transients and no bindings.

A
—

—

If we want the action inside an abstraction to be performed with certain
transients and bindings, they must be supplied after the abstraction is con-
structed. The current bindings are inserted into an abstraction using an
operation on yielders.

closure of _ : Yielder → Yielder

The yielder “closure of Y” incorporates the bindings received by the en-
closing action into the abstraction given by Y. Attaching the declaration-
time bindings, those bindings in effect when the subprogram is declared,
ensures that the resulting action performs the defined procedure in its
static environment, thereby producing static scoping for resolving refer-
ences to nonlocal identifiers. Assuming that StaticBindings denotes the
current bindings in effect when the declaration is elaborated, the term
“closure of abstraction of A” yields the object shown below. In this example,
bindings are inserted into an abstraction at abstraction-time.

547

A
—

StaticBindings

Once bindings are incorporated into an abstraction, no further changes can
be made to the bindings. A later performance of “closure of _” will have no
effect. Dynamic scoping ensues if bindings are attached at enaction-time—
that is, when a procedure is called and the action in its abstraction is to be
performed. We define the execution of a procedure using a reflective action
enact that takes as its parameter a yielder that gives an abstraction.

enact _ : Yielder → Action

The action “enact Y” activates the action encapsulated in the abstraction
yielded by Y, using the transients and bindings that are included in the
abstraction. If no transients or bindings have been incorporated into the
abstraction, the enclosed action is given empty transients or empty bind-
ings at enaction-time.

Procedures Without Parameters

We now have enough action notation to specify parameterless procedures in
Pelican, handling both their declaration and call, but first we repeat that
procedures are represented by the subsort of Datum known as Abstraction in
the action specification.

sorts Procedure = Abstraction

• Procedure Declaration (no parameter)

Bind the identifier of the declaration to a procedure object that incorpo-
rates the body of the procedure, so that it will be executed in the declara-
tion-time environment.

elaborate [[procedure I is D begin C end]] =
bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

The abstraction bound to I incorporates the current (static) bindings and
empty transients. Executing the body of the procedure resembles the ex-
ecution of a declare command (see the semantic equation for declare).

13.4 THE REFLECTIVE FACET AND PELICAN

548 CHAPTER 13 ACTION SEMANTICS

• Procedure Call (no parameter)

Execute the procedure object bound to the identifier.

execute [[I]] = enact the Procedure bound to I

Recall that the procedure object, an abstraction, brings along its static
environment. The action corresponding to a parameterless procedure ex-
pects no transients, and the abstraction bound to I has empty transients.

Procedures With A Parameter

We need a mechanism that allows an actual parameter to be passed to the
procedure. Another operation on yielders constructs an unevaluated term—
a yielder—that provides a way for the current transient to be incorporated
into the abstraction.

application of _ to _ : Yielder, Yielder → Yielder

The yielder “application of Y1 to Y2” attaches the argument value yielded by Y2
as the transient that will be given to the action encapsulated in the abstrac-
tion yielded by Y1 when that action is enacted. As with bindings, a further
supply of transients to an abstraction is ignored. The argument, a value, is
inserted into the abstraction when the procedure is called.

• Procedure Call (one parameter)

Evaluate the actual parameter, an expression, and then execute the proce-
dure bound to the identifier with the value of the expression.

execute [[I (E)]] =
evaluate E

then
enact application of (the Procedure bound to I) to the given Value

Assuming that Abs, the abstraction bound to I, incorporates the action A
and the bindings StaticBindings, and that Val is the value of the expression
E, “application of Abs to the given Value” creates the abstraction that will be
enacted. The actual parameter(s) to a procedure provide the only transient
information that is relevant at enaction-time.

A
(Val)

StaticBindings

To specify the declaration of procedures with one parameter, we need an-
other action combinator thence that combines the behavior of then for tran-
sients and hence for bindings. Therefore both transients and bindings flow
sequentially through the two actions.

549

A2

A1

bindings

bindings

transients

transients

com
pleteA1 thence A2

The action encapsulated in an abstraction formed by a declaration of a pro-
cedure with a parameter expects a value, the actual parameter, to be given
to it as a transient. This value is stored in a new memory location allocated
by the action. The command that constitutes the body of the procedure is
executed in an environment that consists of the original static environment,
inserted into the abstraction using “closure of”, overlaid by the binding of the
formal parameter to the allocated variable, and then overlaid by the local
declarations.

• Procedure Declaration (one parameter)

Bind the procedure identifier in the declaration to a procedure object that
incorporates the body of the procedure, so that when it is called, it will be
executed in the declaration-time environment and will allocate a local vari-
able for the actual parameter passed to the procedure.

elaborate [[procedure I1 (I2) is D begin C end]] =
bind I1 to

closure of
abstraction of

allocate a cell and give the given Value and rebind
thence

rebind
moreover

bind I2 to the given Cell#1
and

store the given Value#2 in the given Cell#1
hence

rebind moreover elaborate D
hence

execute C

13.4 THE REFLECTIVE FACET AND PELICAN

550 CHAPTER 13 ACTION SEMANTICS

The three uses of rebind ensure that the bindings at each stage of the
specification are extensions of the bindings at the previous stage. The
first argument to thence passes a tuple consisting of a Cell and a Value
(Integer or TruthValue) as transients to the second argument. The action
combinators thence and hence are associative, so we have no need of in-
dentation in the expression “A1 thence A2 hence A3 hence A4”.

Recursive Definitions

The specifications of procedure declarations shown above do not allow re-
cursive calls of the procedures, since the identifiers (procedure names) being
declared are not included in the bindings associated with the abstractions
created by the declarations. The details of the hybrid actions that implement
recursive bindings are beyond the scope of our discussion of action seman-
tics. We can, however, describe a hybrid action for establishing recursive
bindings that is defined in terms of more primitive actions.

recursively bind _ to _ : Token, Bindable → Action

The action “recursively bind T to abstraction of A” produces the binding of T,
an identifier, to an abstraction Abs so that the bindings attached to the
action A incorporated in Abs include the binding being produced.

A
—

Abs =
[T |→Abs]

Therefore the action “recursively bind _ to _” permits the construction of a
circular binding.

elaborate [[procedure I is D begin C end]] =
recursively bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

To illustrate the effects of a recursive declaration, consider the bindings cre-
ated by a Pelican program.

program example is
const c = 5;
var b : boolean ;
procedure p is … begin … end;

begin … end

551

Let A denote the action corresponding to the body of the procedure. The
action “closure of abstraction of A” creates the abstraction Abs shown below,
which does not allow a recursive call of the procedure.

A
—

Abs =
[c |→5, b |→cell1]

The action “bind p to closure of abstraction of A” produces the binding [p|→Abs].
Any reference to the procedure identifier p inside the procedure is an illegal
reference, yielding nothing. In contrast, the action “recursively bind p to closure
of abstraction of A” changes the abstraction Abs into a new abstraction Abs'
whose attached bindings include the association of the procedure abstrac-
tion with p. Now a recursive call is permitted.

A
—

Abs' =
[p |→Abs', c |→5, b |→cell1]

The recursive action produces the binding [p|→Abs'], which when overlaid on
the previous (enclosing) bindings, produces the bindings [p|→Abs', c|→5,
b|→cell1] to be received by the procedure p and the body of the program.

Figure 13.6 collects the definitions for an action semantic specification of
Pelican. Observe how many of the definitions are identical to those of Wren.

Translating to Action Notation

Action notation can be viewed as a metalanguage for the semantic specifica-
tion of programming languages. The semantic equations in Figure 13.6 de-
fine a translator from Pelican programs into action notation, which can act
as an intermediate language in an interpreter or a compiler. By providing an
interpreter of action notation, we can obtain a prototype implementation of
any programming language with a specification in action semantics. A trans-
lator of action notation into a machine language produces a compiler of the
language.

The metalanguage of action semantics can also be used to verify semantic
equivalence between language phrases. Although an action specification can
be read at an informal level, it is a formal definition. Furthermore, action
notation can be manipulated algebraically using properties such as associa-
tivity, commutativity, and identity laws to prove the equivalence of certain
action expressions. Two language phrases are semantically equivalent if their
translations into action notation are equivalent. Discovering the algebraic
properties of action notation is an area of ongoing research. See the further
readings for more on this topic.

13.4 THE REFLECTIVE FACET AND PELICAN

552 CHAPTER 13 ACTION SEMANTICS

run _ : Program → Action [completing | diverging | storing]
[using current storage]

run [[program I is D begin C end]] = elaborate D hence execute C

elaborate _ : Declaration → Action [completing | binding | storing]
[using current bindings | current storage]

elaborate [[]] = produce empty bindings

elaborate [[D1 D2]] = elaborate D1 before elaborate D2

elaborate [[var I : T]] =
allocate a cell

then
bind I to the given Cell

elaborate [[const I = E]] =
evaluate E

then
bind I to the given Value

elaborate [[procedure I is D begin C end]] =
recursively bind I to

closure of
abstraction of

rebind moreover elaborate D
hence

execute C

elaborate [[procedure I1 (I2) is D begin C end]] =
recursively bind I1 to

closure of
abstraction of

allocate a cell and give the given Value and rebind
thence

rebind
moreover

bind I2 to the given Cell#1
and

store the given Value#2 in the given Cell#1
hence

rebind moreover elaborate D
hence

execute C

Figure 13.6: Semantic Equations for Pelican (Part 1)

553

execute _ : Command → Action [completing | diverging | storing]

[using current bindings | current storage]

execute [[C1 ; C2]] = execute C1 and then execute C2

execute [[declar e D begin C end]] =
rebind moreover elaborate D

hence
execute C

execute skip = complete

execute [[I := E]] =
give the Cell bound to I and evaluate E

then
store the given Value#2 in the given Cell#1

execute [[if E then C]] =
evaluate E

then
check (the given TruthValue is true) and then execute C

or
check (the given TruthValue is false) and then complete

execute [[if E then C1 else C2]] =
evaluate E

then
check (the given TruthValue is true) and then execute C1

or
check (the given TruthValue is false) and then execute C2

execute [[while E do C]] =
unfolding

evaluate E
then

check (the given TruthValue is true) and then
execute C and then unfold

or
check (the given TruthValue is false) and then complete

execute I = enact the Procedure bound to I

execute [[I (E)]] =
evaluate E

then
enact application of (the Procedure bound to I) to the given Value

Figure 13.6: Semantic Equations for Pelican (Part 2)

13.4 THE REFLECTIVE FACET AND PELICAN

554 CHAPTER 13 ACTION SEMANTICS

evaluate _ : Expression → Action [completing | giving a Value]
[using current bindings | current storage]

evaluate I =
give the Value stored in the Cell bound to I

or
give the Value bound to I

evaluate N = give the value of N

evaluate true = give true

evaluate false = give false

evaluate [[E1 + E2]] =
evaluate E1 and evaluate E2

then
give sum (the given Integer#1, the given Integer#2)

 : :

evaluate [[– E]] =
evaluate E

then
give difference (0, the given Integer)

evaluate [[E1 >= E2]] =
evaluate E1 and evaluate E2

then
give not (the given Integer#1 is less than the given Integer#2)

 : :

evaluate [[E1 or E2]] =
evaluate E1 and evaluate E2

then
give either (the given TruthValue#1, the given TruthValue#2)

 : :

evaluate [[not (E)]] =
evaluate E

then
give not (the given TruthValue)

Figure 13.6: Semantic Equations for Pelican (Part 3)

We conclude this section by translating a Pelican program into its equivalent
action notation. This task is aided by the property of compositionality: Each
phrase is defined solely in terms of the meaning of its immediate subphrases.
Furthermore, any phrase may be substituted for a semantically equivalent
phrase without changing the meaning of the program.

555

We illustrate a translation of the following Pelican program annotated as
shown below:

program action is
const max = 50; -- D1
var sum : integer ; -- D2
var switch : boolean ; -- D3

var n : integer ; -- D4
procedure change is -- D5

begin
n := n+3;
switch := not(switch)

end;
begin

sum := 0; -- C1
n := 1; -- C2
switch := true ; -- C3
while n<=max do -- C4

if switch then sum := sum+n end if ;
change

end while
end

The overall structure of the translation takes the form

 run [[program I is D1 D2 D3 D4 D5 begin C1; C2; C3; C4 end]]

= elaborate [[D1 D2 D3 D4 D5]] hence execute [[C1; C2; C3; C4]]

= elaborate D1 before elaborate D2 before elaborate D3
before elaborate D4 before elaborate D5

hence
execute C1 and then execute C2 and then execute C3 and then execute C4

The elaboration uses the property that the combinators and then and before
are both associate. We proceed by elaborating the four declarations in the
program.

elaborate D1 = give the value of 50 then bind max to the given Value

elaborate D2 = allocate a cell then bind sum to the given Cell

elaborate D3 = allocate a cell then bind switch to the given Cell

elaborate D4 = allocate a cell then bind n to the given Cell

13.4 THE REFLECTIVE FACET AND PELICAN

556 CHAPTER 13 ACTION SEMANTICS

elaborate D5 =
recursively bind change to closure of(abstraction of(

rebind
moreover

produce empty bindings
hence

give the Cell bound to n
and

give the Value stored in Cell bound to n
or

give the Value bound to n
and

give the value of 3
then

give sum(the given Integer#1,the given Integer#2)
then

store the given Value#2 in the given Cell#1
and then

give the Cell bound to switch
and

give the Value stored in Cell bound to switch
or

give the Value bound to switch
then

give not(the given Truthvalue)
then

store the given Value#2 in the given Cell#1))

The translation of the Pelican program is completed by expanding the four
commands.

execute C1 = give the Cell bound to sum and give the value of 0
then

store the given Value#2 in the given Cell#1

execute C2 = give the Cell bound to n and give the value of 1
then

store the given Value#2 in the given Cell#1

execute C3= give the Cell bound to switch and give true
then

store the given Value#2 in the given Cell#1

557

execute C4 =
unfolding

give the Value stored in Cell bound to n
or

give the Value bound to n
and

give the Value stored in Cell bound to max
or

give the Value bound to max
 then

give not(the given Integer#1 is greater than the given Integer#2)
then

check (the given Truthvalue is true)
and then

give the Value stored in Cell bound to switch
or

give the Value bound to switch
then

check the given Truthvalue is true
 and then

give the Cell bound to sum
and

give the Value stored in Cell bound to sum
 or

give the Value bound to sum
and

give the Value stored in Cell bound to n
or

give the Value bound to n
then

give sum(the given Integer#1,the given Integer#2)
 then

store the given Value#2 in the given Cell#1
 or

check the given Truthvalue is false
 and then

complete
and then

enact the Procedure bound to change
and then unfold

 or
check the given Truthvalue is false and then complete

13.4 THE REFLECTIVE FACET AND PELICAN

558 CHAPTER 13 ACTION SEMANTICS

Exercises

1. Suppose that the current bindings contain two pairs: [x|→cell1, y |→2].
Consider two actions:

A1 = bind y to 15

A2 = bind x to successor(the Integer bound to y)

What are the (possible) current bindings after performing the following
composite actions?

a) A1 and then A2
b) A1 hence A2
c) A1 and A2
d) A1 moreover A2
e) A1 before A2

2. Extend Pelican to include a definite iteration command using the syntax

for I := E1 to E2 do C end for

and assuming iteration over integer values only. Following the seman-
tics of the for command in Pascal and Ada, provide an action specifica-
tion of this command. Observe the difference in how Pascal and Ada
treat the loop variable I:

a) Pascal: Assume I has been declared in the block containing the for
command.

b) Ada: The for command implicitly declares I to have the subrange
E1..E2 and to have scope extending through the body of the
command only.

3. Modify Pelican so that parameters are passed by

a) reference

b) value-result

4. Modify Pelican so that it uses dynamic scoping to resolve nonlocal vari-
able references.

5. Suppose that Pelican is extended to include functions of one parameter,
passed by value. The abstract syntax now has productions of the form

Declaration ::= … | function Identifier1 (Identifier2) is Declaration
begin Command return Expression end

and

Expressions ::= … | Identifier (Expression).

559

Make all the necessary changes in the action definition of Pelican to
incorporate this new language construct.

6. A unit for a binary operation @ : A,A → A is an element u of A such that
for all a∈A, a@u = u@a = a. Using the primitive actions complete, fail,
regive, and rebind, identify units for the following action combinators:

and then, and, then, or, hence, moreover, before, and thence.

7. Which of the binary combinators in exercise 6 are associative, commu-
tative, and/or idempotent?

8. Translate the following Pelican programs into action notation:

a) program facwhile is
var n : integer ;
var f : integer ;

begin
n := 8; f := 1;
while n>1 do

f := f* n; n := n–1
end while

end

b) program facproc is
const num = 8;
var n : integer ;
var f : integer ;
procedure fac(n : integer) is

procedure mul(m : integer) is
begin f := f* m end;

begin
if n=0 then f := 1 else fac(n–1); mul(n) end if

end;
begin n := num; fac(n) end

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

Prolog serves well as an implementation language for a translator from Peli-
can to action notation. The compositional definitions of the meaning of Peli-
can given in Figure 13.6 convert to Prolog clauses directly. The resulting
actions can be represented as Prolog structures by writing actions, yielders,
and auxilliary operations with prefix syntax. First we show a sample execu-
tion of the translator. The output has been edited (indented) to make the
scope of the actions easier to determine.

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

560 CHAPTER 13 ACTION SEMANTICS

>>> Translating Pelican into Action Semantics <<<
Enter name of source file: small.pelican
 program small is
 const c = 34;
 var n : integer;
 begin
 n := c+21
 end
Translated Action:

hence(
 before(
 then(give(valueof(34)),bind(c,given(Value))),
 before(then(allocateacell,bind(n,given(Cell))),
 produce(emptybindings))),
 andthen(
 then(
 and(give(boundto(Cell,n)),
 then(and(or(give(storedin(Value,boundto(Cell,c))),
 give(boundto(Value,c))),
 give(valueof(21))),
 give(sum(given(Integer,1),given(Integer,2))))),
 storein(given(Value,2),given(Cell,1))),
 complete))
yes

Since this translation is purely a static operation, we need not be concerned
with stores and environments—these are handled when action notation is
interpreted or compiled. At the top level a predicate run translates a program.
Observe that we have dispensed with the syntactic category of blocks to match
the specification in Figure 13.6, thereby giving another example of tailoring
the abstract syntax to the specification method. Several small changes will
be needed in the parser to reflect this alteration in the abstract syntax.

run(prog(Decs,Cmds),hence(ElaborateD,ExecuteC)) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

The Prolog predicate that implements the translation of programs builds Prolog
structures that represent the equivalent action using calls to the predicates
elaborate and execute to construct pieces of the structure. Two clauses deal
with sequences of the declarations.

elaborate([],produce(emptybindings)).

561

elaborate([Dec|Decs],before(ElaborateDec,ElaborateDecs)) :-
elaborate(Dec,ElaborateDec),
elaborate(Decs,ElaborateDecs).

Individual declarations are translated by Prolog clauses that match the ac-
tion definitions in Figure 13.6 in their logical structure.

elaborate(var(T,var(Ide)),then(allocateacell,bind(Ide,given('Cell')))).

elaborate(con(Ide,E),then(EvaluateE,bind(Ide,given('Value')))) :-
 evaluate(E,EvaluateE).

elaborate(proc(Ide,param(Formal),Decs,Cmds),
recursivelybind(Ide,

closureof(abstractionof(
hence(hence(

thence(and(allocateacell,and(give(given('Value')),rebind)),
moreover(rebind,

and(bindto(Formal,given('Cell',1)),
storein(given('Value',2),given('Cell',1))))),

moreover(rebind,ElaborateD)),
ExecuteC))))) :- elaborate(Decs,ElaborateD),

execute(Cmds,ExecuteC).

We leave the clause for procedures with no parameters as an exercise. Com-
mands are translated by the predicate execute. We provide several examples
and leave the remaining clauses as exercises.

execute([Cmd|Cmds],andthen(ExecuteCmd,ExecuteCmds)) :-
execute(Cmd,ExecuteCmd),
execute(Cmds,ExecuteCmds).

execute([],complete).

execute(declare(Decs,Cmds),hence(moreover(rebind,ElaborateD),ExecuteC)) :-
elaborate(Decs,ElaborateD),
execute(Cmds,ExecuteC).

execute(skip,complete).

execute(assign(Ide,Exp),then(and(give(boundto('Cell',Ide)),EvaluateE),
storein(given('Value',2),given('Cell',1)))) :-

evaluate(Exp,EvaluateE).

13.5 LABORATORY: TRANSLATING INTO ACTION NOTATION

562 CHAPTER 13 ACTION SEMANTICS

execute(if(Test,Then),
then(EvaluateE,or(andthen(check(is(given('Truthvalue'),true)),ExecuteC),

andthen(check(is(given('Truthvalue'),false)),complete)))) :-
evaluate(Test,EvaluateE),
execute(Then,ExecuteC).

execute(while(Test,Body),unfolding(
then(EvaluateE,or(andthen(check(is(given('Truthvalue'),true)),

andthen(ExecuteC,unfold)),
andthen(check(is(given('Truthvalue'),false)),complete))))) :-

evaluate(Test,EvaluateE),
execute(Body,ExecuteC).

execute(call(Ide,E),
then(EvaluateE,enact(application(boundto('Procedure',Ide),given('Value'))))) :-

evaluate(E,EvaluateE).

Expressions are translated by the Prolog predicate evaluate. Again we show
several of the clauses, leaving the rest as exercises. Observe how closely the
Prolog clauses agree with the action specifications.

evaluate(ide(Ide),or(give(storedin('Value',boundto('Cell',Ide))),
give(boundto('Value',Ide)))).

evaluate(num(N),give(valueof(N))).

evaluate(minus(E),then(EvaluateE,give(difference(0,given('Integer'))))) :-
evaluate(E,EvaluateE).

evaluate(plus(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(sum(given('Integer',1),given('Integer',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(neq(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(not(is(given('Integer',1),given('Integer',2)))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

evaluate(and(E1,E2), then(and(EvaluateE1,EvaluateE2),
give(both(given('Truthvalue',1),given('Truthvalue',2))))) :-

evaluate(E1,EvaluateE1),
evaluate(E2,EvaluateE2).

This action notation translator is just the first step in building a prototype
implementation of Pelican. To complete the task, we need to construct an
interpreter for actions. Although this code can be written in Prolog, the num-

563

ber of parameters may make the clauses cumbersome. For example, a predi-
cate for interpreting an action combinator (a binary operation) will require
six parameters for incoming transients, bindings, and store and three pa-
rameters for the resulting information. A language that allows us to main-
tain the store imperatively may produce more readable code. See the further
readings at the end of this chapter for an alternative approach.

Exercises

1. Complete the implementation in Prolog of the action notation translator
by writing the missing clauses.

2. Add these language constructs to Pelican and extend the translator by
defining clauses that construct the appropriate action notation.

a) repeat-until commands
Command ::= ... | repeat Command until Expression

b) conditional expressions
Expression ::= ... | if Expression then Expression else Expression

c) expressions with side effects
Expression ::= ... | begin Command return Expression end

d) definite iteration commands
Command ::= …

| for Identifier := Expression to Expression do
Command end for

3. Write a Prolog predicate that prints the resulting action following the
indenting conventions of action semantics. Use the example at the end
of section 13.4 as a model.

4. Write an interpreter for action notation in Prolog or some other pro-
gramming language to produce a prototype system for this subset of
Pelican (no input and output).

13.6 FURTHER READING

The standard reference for action semantics is the book by Peter Mosses
[Mosses92]. He uses a subset of Ada to illustrate the full power of action
semantics, including the communicative facet, which is beyond the scope of
our presentation. Mosses also gives a formal specification of action notation
(the lower level) using structural operational semantics. This book contains

13.6 FURTHER READING

564 CHAPTER 13 ACTION SEMANTICS

an extensive description of the literature that covers the development of ac-
tion semantics over the past ten years. Note that action notation has evolved
over this time frame from a more symbolic notation to a more English-like
presentation. Mosses uses a slightly different framework for the algebraic
specification of data, the so-called unified algebras [Mosses89].

A shorter introduction to action semantics can be found in a technical report
[Mosses91]. These works contain extensive bibliographies that point to the
earlier literature on action semantics. When consulting the earlier papers,
note that the notation of action semantics has evolved considerably during
its development.

David Watt [Watt91] has a lengthy description of action semantics with many
examples, culminating in a complete action specification of Triangle, his ex-
ample imperative programming language. Watt is also involved in a project,
called ACTRESS, using action semantics to construct compilers [Brown92].

We mentioned in section 9.5 that Prolog may not be the best language in
which to write an action interpreter. Functional programming provides a bet-
ter paradigm for manipulating actions. Watt suggests implementing action
semantics in ML [Watt91]. A full description of using ML to develop semantic
prototypes of programming languages can be found in [Ruei93]. In this re-
port a programming language is translated into ML functions that represent
the actions and yielders. These ML functions are executed directly to provide
a prototype interpreter for the language Triangle.

