
Semantic Prototyping:
Implementing Action Semantics

in Standard ML

Ruth Ruei
and

Ken Slonneger

The University of Iowa
1993

i

Table of Contents

1. Introduction.. 1

2. Implementation of Action Semantics in ML..................4

2.1 Data..4

2.2 Sorts ..5

2.3 Yielders ...8

2.4 Actions ... 12

2.4.1 Functional Facet... 13

2.4.2 Declarative Facet.. 14

2.4.3 Imperative Facet... 17

2.4.4 Reflective Facet ... 18

2.4.5 Basic Facet.. 20

2.4.6 Hybrid Action Notation.. 21

2.4.7 Auxiliary Actions .. 23

3. Specification of ∆ Using Action Semantics...............25

3.1 Commands.. 26

3.2 Expressions .. 29

3.3 Declarations .. 33

4. Running the System... 36

5. Conclusion.. 38

References ..40

ii

Appendix A: BNF for ∆ ..41

Appendix B: Abstract Syntax for ∆43

Appendix C: ML Definition of Action Semantics and ∆.45

Structure DataAndSorts...45

Structure DataEquations1 ..49

Structure Actions ..58

Structure DataEquations2 ..64

Structure TriangleSyntax..68

Structure TriangleSemantics...69

Structure StandardEnvironment..75

Function Run ...77

Appendix D: Utility Files for ML Implementation78

Loading the System ...78

Scanner Specification ..80

Parser Specification...82

Semantic Prototyping 1

1. Introduction

Over the past few years Peter Mosses (with the collaboration of David
Watt) has developed a framework, known as action semantics, for formally
describing the semantics of programming languages. The goal of their
efforts has been to produce formal semantic specifications that directly
reflect the ordinary computational concepts of programming languages and
that are easy to read and understand.

Action semantics has evolved out of the tradition of denotational
semantics, where syntactic entities (abstract syntax trees) are mapped
compositionally by semantic functions into semantic entities that act as
the denotations of the syntactic objects. The chief difference between the
two methods of formal specification lies in the nature of the semantic
entities. The semantic functions of denotational semantics map syntactic
phrases into primitive mathematical values, structured objects, and such
higher-order functions as are found in the lambda calculus where
functions can be applied to other functions. In contrast, action semantics
uses three kinds of first-order entities as denotations: actions, data, and
yielders. “First-order” means that actions cannot be applied to other
actions.

• The semantic entities known as actions incorporate the performance
of computational behavior, using values passed to them to generate
new values that reflect changes in the state of the computation.

• The data entities consist of mathematical values, such as integers,
Boolean values, and abstract cells representing memory locations, that
embody particles of information. Sorts of data used by action semantics
are defined by algebraic specifications (see the references).

• Yielders encompass unevaluated pieces of data whose values depend
on the current information incorporating the state of the computation.

In action semantics, the semantics of a programming language is defined
by mapping program phrases to actions. The performance of these actions
relates closely to the execution of the program phrases. Primitive actions
can store data in storage cells, bind identifiers to data, compute values,
test truth values, and so on. For example, the following primitive actions
contribute to describing programming languages:

complete Terminate normally the action being performed.

fail Abort the action being performed.

give _ Give the value obtained by evaluating a yielder.

2 Semantic Prototyping

allocateacell Allocate a memory location.

store _ in _ Store a value in a memory location.

bind _ to _ Bind an identifier to data produced by a yielder.

These examples illustrate a syntactic convention wherein parameters to
operations are indicated by underscores. Operations in action semantics
can be prefix, infix, or outfix. Outfix operators have only internal place
holders such as in “sum'(_,_)”. The last two examples above are considered
prefix since they end with a place holder. Infix operators begin and end
with argument places. The operations are evaluated with prefix having the
highest precedence and outfix the lowest. Prefix operators are executed
from right to left, and infix from left to right.

Other operations, the yielders in action semantics, simply give values
that depend on the current information, such as the current storage and
the current bindings:

the _ stored in _ Yield the value of a certain type stored in a
memory location.

the _ bound to _ Yield the object of a certain type bound to an
identifier.

For these yielders, the first parameter specifies the sort of data expected
from the operations. Action combinators combine existing actions,
normally using infix notation, to control the order in which subactions are
performed as well as the data flow to and from their subactions. Action
combinators are used to define sequential, selective, iterative, and block
structuring control flow as well as to manage the flow of information
between actions. The following two combinators model sequential control
and nondeterministic choice, respectively.

_ then _ Perform the first action; when it completes,
perform the second action.

_ or _ Perform either one of the two actions, choosing
one arbitrarily; if it fails, perform the other action
using the original state.

Unless otherwise specified (for example, with the combinator or), primitive
actions, yielders, and action combinators complete (terminate normally)
when the computations they depend on (their parameters) do not fail.
Failure at any point in the performance of an action normally propagates
to enclosing operations.

Semantic Prototyping 3

With these few operations, we can specify several programming language
constructs:

elaborate [var I : T] =
allocateacell

then
bind I to the given Cell

elaborate [const I ~ E] =
evaluate E

 then
bind I to the given Value

evaluate [I] =
give the Value stored in the Cell bound to I

or
give the Value bound to I

These examples are slightly simpler than the semantics of the
programming language considered here but convey the basic idea of action
specifications. One of the actions in the last example must fail, thereby
producing either the constant binding or the variable binding to the
identifier. Notice that these semantic definitions can be understood at a
superficial level even without a deep knowledge of action semantics. In
the sequel we describe these primitive action and action combinators in
more detail.

A specification of a programming language using action semantics
naturally breaks into two parts:

Programming Language

Action Notation

Meaning of Actions

Upper level

Lower level

Definition of the constructs
of the programming language
in terms of action notation.

Specification of the meaning
of action notation.

4 Semantic Prototyping

The description of action semantics in [Mosses92] specifies the meaning
of action notation formally using algebraic axioms to present the notation
for data, yielders, and actions, and structural operational semantics to
give the semantics of action performance. In this report we describe
action notation informally and provide a semantics of action performance
by presenting an implementation of action notation in Standard ML.

Using this lower level description of action performance, we present a
prototype implementation of an imperative programming language ∆, called
Triangle and defined by David Watt, by translating the upper level
specification of ∆ in action semantics into ML. The implementation closely
follows the semantic prototype proposed by Watt in his book Programming
Language Syntax and Semantics [Watt91]. The BNF syntax and the abstract
syntax of ∆ are given in Appendix A and Appendix B, respectively.

Section 2 presents an implementation of action semantics in ML (the
lower level specification), and section 3 gives an action semantic
definition of the programming language ∆ (the upper level). Section 4
describes how to run the prototype implementation of ∆. Action semantics
itself and the programming language ∆ will be introduced gradually as the
text progresses.

2. Implementation of Action Semantics in ML

In this section, the three semantic entities, data, yielders, and actions,
as well as the concept of sorts are discussed. Actions are the engines
that process data and yielders. Yielders are entities that, depending on
the current information (the current state of the computation), can be
evaluated to yield data. Data are classified into sorts in action semantics.
In addition, we describe how the current information is organized in
action semantics.

The main features of action notation are developed independently of a
particular language specification as much as possible. However, to
illustrate the purpose of various parts of action notation, the examples
are put in the context of the programming language ∆, which will be
specified more fully in section 3.

2.1 Data

Data are pieces of information that are processed by actions in the course
of computation. All the distinct sorts of data manipulated by a
programming language need to be defined in its action semantics
description.

Semantic Prototyping 5

The programming language ∆ employs three simple data types, namely
truth values, integers and characters and two compound data types,
arrays and records. Variables, representing locations in memory,
constitute the essence of an imperative programming language and
therefore are included as a sort of data. Storage locations are modeled as
cells for simple data types and array variables and record variables for
the two compound data types. Argument lists are the data structures
used to pass data to functions and procedures, while text, consisting of a
list of characters, is used for input and output. Indirections and
unknown are two other sorts of data that are needed to manipulate
recursive bindings; they will be discussed in detail later. Actions
themselves are not data but they can be encapsulated in abstractions,
which are a sort of data.

The distinct sorts of data in our action semantics description are
represented in ML as follows.

datatype Datum =
truthvalue' of bool

 | integer' of int
 | char' of string
 | arrayvalue' of Datum list (* Value list *)
 | arrayvariable' of Datum list (* Variable list *)
 | recordvalue' of (Token * Datum) list (* (Token * Value) list *)

 | recordvariable' of (Token * Datum) list (* (Token * Variable) list *)
 | argumentlist' of Datum list (* Argument list *)
 | text' of Datum list (* Char list *)
 | cell' of int (* integers for locations *)
 | indirection' of int
 | unknown'
 | abstraction' of Action * Transients * Bindings;

The definition of Datum presupposes the specification of Transients, Bindings,
and Action. They will be described later. Note that abstractions are defined
as triples consisting of an action, together with transients and bindings.
Abstractions are used to model procedural objects in a programming
language. The type Token will be defined later to be of type string to give a
representation for identifiers.

2.2 Sorts

In action semantics, data are classified into sorts that are equipped with
various operations over the elements in the sorts. As with any semantic
methodology, programs are expected to be syntactically correct, including
both an adherence to the context-free syntax (BNF) and the context-
sensitive syntax (context constraints dealing with type checking) before
they are submitted to semantic analysis. In spite of this, action
semantics follows a strict type discipline in specifying the meaning of

6 Semantic Prototyping

language constructs. This careful delineation of types of objects
manipulated by actions adds to the information conveyed by the semantic
descriptions. Performing an action corresponding to a language construct
that violates type constraints results in failure.

In this implementation, each sort is represented by a function of the
following type:

type Sort = Datum -> Datum;

When a value of a particular sort is expected, the appropriate Sort function
verifies that the object in question belongs to the sort.

Simple Sorts

Various sorts of data serve as parameters to actions that describe type
conformity using the sort information. Each Sort function is defined as an
identity function if its argument datum is an element of the represented
sort; otherwise it raises an exception. For example,

exception Failure;

val TruthValue : Sort =
fn (truthvalue' tr) => truthvalue' tr
 | _ => raise Failure;

Sorts for integers, characters, array values, array variables, record values,
record variables, argument lists, text, cells, indirections, and abstractions
are defined in a similar way.

The ML base types bool, int and string implement the simple data types
TruthValue, Integer, and Char, respectively. Note that in ∆ an item of type
Char is a single character. Therefore, a size check is included in the
function for Sort Char.

val Char : Sort =
fn (char' ch) => (case (size ch) of

 1 => char' ch
| _ => raise Failure)

 | _ => raise Failure;

Another example tests whether an object is an abstraction, which
contains three kinds of entities, an action, transients, and bindings.

val Abstraction : Sort =
fn (abstraction' (A, ts, bs)) => abstraction' (A, ts, bs)
 | _ => raise Failure;

An abstraction encapsulates an action together with the transients and
bindings that will be used when the action is eventually performed as a

Semantic Prototyping 7

result of the action enact, which takes an abstraction as its parameter and
executes the enclosed action using the associated transients and
bindings.

Compound Sorts

These sorts are formed as the union of other sorts. The infix operation “\”
implements the sort join operation. Action semantics normally uses “|”
for the join operation.

infix 6 \;

fun (S1:Sort) \ (S2:Sort) =
fn (d: Datum) => S1 d

handle Failure => S2 d;

A programming language can be categorized by the kinds of values that are
produced by expressions, bound to identifiers, stored in memory, and
passed as arguments in the language. An action semantics specification
requires a sort definition for each of these kinds of data.

Value

The sort Value, a subsort of Datum, corresponds to the expressible values
in denotational semantics. In ∆ the sort Value includes truth values,
integers, characters, array values, and record values.

val Value : Sort = TruthValue \ Integer \ Char \ ArrayValue \ RecordValue

Bindable

Entities that can be bound to identifiers are called denotable values in
denotational semantics, while in action semantics they belong to the sort
Bindable. The sort Bindable, a subsort of Datum, includes the elements of
Value (defined above), together with variables, procedures, functions,
allocators and indirections for recursive bindings in ∆. Allocators are
procedural abstractions that encapsulate the allocation of a variable of a
certain type. These objects are bound to type identifiers as a result of
declarations in ∆.

val Bindable : Sort = Value \ Variable \ Procedure
\ Function \ Allocator \ Indirection

Storable

The sort Storable, also a subsort of Datum, corresponds to the storable
values in denotational semantics; it contains all the entities that can be
stored in individual cells. In ∆ the sort Storable comprises truth values,
integers, characters, and text.

8 Semantic Prototyping

val Storable : Sort = TruthValue \ Integer \ Char \ Text;

Variable

Variables represent memory locations. In ∆ the sort Variable, another
subsort of Datum, incorporates cells, array variables, and record variables.

val Variable : Sort = Cell \ ArrayVariable \ RecordVariable;

Function, Procedure, and Allocator

Functions and procedures are denoted by abstractions in action
semantics. Recall that allocators, of sort Bindable, are a special kind of
procedure used to manage storage allocation. The sorts Procedure,
Function, and Allocator are simply defined to be the same as the sort
Abstraction.

val Procedure : Sort = Abstraction;

val Function : Sort = Abstraction;

val Allocator : Sort = Abstraction;

Argument

Programming languages have restrictions on what can be passed as
arguments to functions and procedures. In ∆ arguments can be any type of
values or variables as well as functions and procedures. Sort Argument, a
subsort of Datum, is defined here to ensure the appropriateness of
arguments.

val Argument : Sort = Value \ Variable \ Procedure \ Function;

2.3 Yielders

Before we can define yielders, which depend on the current information
consisting of transients, bindings, and storage, we need to discuss these
kinds of information.

Transients

Intermediate results passed between actions are called transients and
take the form of a single datum or a tuple of data. These values model the
data given by expressions. They must be used immediately or be lost.
Transients are represented as lists of data in the ML implementation, so
that a single datum is a singleton list. In fact, a singleton tuple is
identified with the single datum it contains in action semantics.

type Transients = Datum list;

Semantic Prototyping 9

The auxiliary function take returns the nth datum in the given transients.

fun take (ts:Transients, n:int) : Datum =
case ts of nil => raise Failure

| h::t => if n = 1 then h
else if n > 1 then take (t, n-1)

else raise Failure;

Bindings

Bindings are maps from identifiers to data representing scoped
information, the kind of information modeled by environments in
denotational semantics. Bindings are accessible (visible) throughout the
performance of an action and its subactions, although they may be hidden
temporarily by the creation of inner scopes. Identifiers are tokens
implemented as strings of characters.

type Token = string;

Therefore, the entity Bindings is implemented as lists of Token-Datum
pairs.

type Bindings = (Token * Datum) list;

Five auxiliary functions are defined to manipulate bindings. A short
description and the definition of each function are given below; these
ML definitions can also be found under “structure DataEquations1” in
Appendix C.

• A constant function empty returns the empty binding, which is an
empty list.

val empty : Bindings = [];

• An association function assoc returns the singleton binding of the
given identifier to the given datum.

fun assoc (t:Token) (d:Datum) : Bindings = [(t,d)];

• A find function returns the datum bound to the given identifier in the
given bindings.

fun find (bs:Bindings) (t:Token) : Datum =
case bs of nil => raise Failure

| (t', dat)::rest => if t' = t then dat
else find rest t;

• A merge function returns the combination of the two given bindings,
raising an exception if identifiers clash (see Appendix C for the
definition of merge).

10 Semantic Prototyping

exception IdeClash;

fun merge (bs1:Bindings) (bs2:Bindings) : Bindings = ... ;

• An overlay function returns the combination of the two given bindings,
with the bindings given first overriding the second collection of
bindings.

fun overlay (bs1:Bindings) (bs2:Bindings) : Bindings = bs1 @ bs2;

Yielders

Given the transients and the bindings, yielders can be evaluated to yield
data. A yielder also depends on the current storage, but in this
implementation storage is handled as a global object. Therefore, the type
Yielder is represented by a function of the following type.

type Yielder = Transients * Bindings -> Datum;

A datum can be thought of as a special case of Yielder that yields itself
when evaluated. We make a datum into a yielder using the function yield.

fun yield (d:Datum) : Yielder = fn (ts, bs) => d;

Each distinct sort has operations that operate on yielders producing data
of the proper sort. For example,

fun not' (y:Yielder) : Yielder =
fn (ts, bs) =>

let val truthvalue' tr = TruthValue (y (ts, bs))
 in

truthvalue' (not tr)
end;

The function y (ts, bs) is expected to yield a TruthValue. The function not'
returns a TruthValue that is the logical not of the given argument when
given the current transients and bindings. The logical and (both) and or
(either) functions are also defined for TruthValue.

Similarly, operations on integers model the computation carried out when
a program is executed, for example,

fun sum (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))

 in
integer' (n1 + n2)

end;

Semantic Prototyping 11

The infix operation is determines whether two yielders produce the same
datum.

fun (y1:Yielder) is (y2:Yielder) : Yielder = … ;

A complete list of operations on the distinct sorts can be found in the ML
listing as the module “structure DataEquations1” in Appendix C. Additional
operations that produce yielders are associated with the various kinds of
current information that actions process. These are discussed with the
actions themselves.

Storage and the Redirection Table

There are two permanent structures in this implementation: storage and
the redirection table. Both of them can be implemented in the same way
as transients and bindings, can be passed as arguments from one action
to another, and can be given to yielders. However, we choose to
implement them imperatively using ML array structures that are visible
throughout the entire ML code to reduce the number of arguments passed
between actions.

ML array functions, sub and update, search and update arrays,
respectively. The function sub(a, i) returns the value stored as the ith
element of array a; update(a, i, x) updates the ith element of array a to be
the value x.

Storage

Storage consists of an arbitrary number of cells. A cell in the storage has
to be in one of the three states: unused’ (not allocated), undefined' (allocated
but not having a value assigned to it yet), or containing a storable value.
Data stored in cells are classified as stable information. Changes in
storage made during action performance are enduring, so that stable data
may only be altered by explicit actions. The ML operation array produces an
array of the given size with origin zero and with each component
initialized to the given value.

datatype State = unused' | undefined' | stored' of Datum;
val StorageSize = 1000;
val Storage = array (StorageSize, unused');

Redirections

The redirection table consists of an arbitrary number of indirections.
Indirections can be bound to identifiers and are used to specify self- and
mutually-referential bindings. Cells are locations in the storage, and
indirections are entries in the redirection table. An indirection in the

12 Semantic Prototyping

redirection table is either not in use or contains a redirection that is a
Bindable or the special value unknown'.

datatype RedirectionState = notused' | redirection' of Datum;
val RedirectionSize = 1000;
val Redirections = array (RedirectionSize, notused');

In a recursive definition of a subprogram with identifier I, the binding of I
to an indirection with value unknown' is included in the bindings
(environment) encapsulated with the subprogram. The indirection is then
changed to refer to the subprogram itself, thereby establishing a cyclic
structure that allows a recursive call of the subprogram.

2.4 Actions

Actions are the operational entities in action semantics. Actions are
defined to carry out computational tasks. The point of action semantics is
to provide a collection of elementary actions that model the individual
computational duties performed when a program is executed.

A performance of an action uses the current information, namely the given
transients, the received bindings, and the current state of storage, to give
new transients, produce new bindings, and/or update the state of the
storage. If no intermediate result is to be passed on to the next action,
the transient is simply the empty tuple, in this case, the empty list.
Similarly, the empty binding is passed to the next action if the action
produces no bindings.

An action performance may complete (terminate normally), fail
(terminate abnormally), or diverge (not terminate at all). Actions are
defined as functions from a transients-bindings pair to another
transients-bindings pair since the storage is a permanent structure in
this implementation.

type Action = Transients * Bindings -> Transients * Bindings;

Action Notation

Depending on the principal type of information processed, actions are
classified into different facets, including:

• the functional facet that processes transient information,

• the declarative facet that processes scoped information,

• the imperative facet that processes stable information,

• the reflective facet that handles abstractions,

Semantic Prototyping 13

• the basic facet that provides a means to specify flow of control, and

• hybrid action notation that deals with recursive bindings.

2.4.1 Functional Facet

The primitive action check with signature check :: Yielder → Action serves as
a guard; it completes returning empty transients and bindings when its
argument evaluates to true, otherwise it fails.

fun check (tv:Yielder) : Action =
fn (ts, bs) =>

case tv (ts, bs) of
 truthvalue' true => (nil, empty)
| truthvalue' false => raise Failure
| _ => raise Failure;

The primitive action regive simply gives the given transients.

val regive : Action = fn (ts, bs) => (ts, empty);

The primitive action give with signature give :: Yielder → Action gives the
datum yielded by evaluating its argument.

fun give (y:Yielder) : Action =
fn (ts, bs) =>

let val dat = y (ts, bs)
 in

 ([dat], empty)
end;

Action combinators have the signature,
 combinator :: Action * Action → Action.

The functional action combinator then' performs the first action using the
transients and the bindings passed to the combined action and then
performs the second action using the transients given by the first action
and the bindings received by the combined action. The transients given by
the combined action are the transients given by the second action; the
bindings produced by the combined action are the bindings produced by
the first action merged with those produced by the second. Since “then” is
a reserved word in ML, we use then' for this combinator.

14 Semantic Prototyping

infix 1 then';

fun (A1:Action) then' (A2:Action) : Action =
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
val (ts2, bs2) = A2 (ts1, bs)
 in

(ts2, merge bs1 bs2)
end;

The yielder given retrieves and type checks the only datum in the given
transients. The function takes a parameter that is a Sort to document the
type of the datum in the transients.

fun given (S: Sort) : Yielder =
fn (ts, bs) =>

case ts of
[d] => S d

 | _ => raise Failure;

The yielder GIVEN retrieves and type checks the nth datum in the given
transients. Action semantics uses the notation “given d # n” for this
operation.

fun GIVEN (S:Sort) (n:int) : Yielder =
fn (ts, bs) =>

S (take (ts, n));

2.4.2 Declarative Facet

The primitive action bind :: Token * Yielder → Action produces the binding of
its first argument to its second. The first parameter of type Token
represents an identifier.

fun bind (t:Token) (y:Yielder) : Action =
fn (ts, bs) =>

let val dat = Bindable (y (ts, bs))
 in

(nil, assoc t dat)
end;

Although the signature of bind shows it as uncurried, we choose to define
bind as a curried function in ML.

The primitive action rebind reproduces the received bindings.

val rebind : Action = fn (ts, bs) => (nil, bs);

The yielder boundto :: Sort * Token → Yielder retrieves and type checks the
datum bound to its second argument, an identifier portrayed as a token.

Semantic Prototyping 15

infix 2 boundto;

fun (S:Sort) boundto (t:Token) : Yielder =
fn (ts, bs) =>

let val d = find bs t
 in

S d
handle Failure => let val indirection' i = Indirection d

 in
case sub (Redirections, i) of

 redirection' r => S r
| notused' => raise Failure

 end
handle Subscript => raise Failure

end;

The datum bound to an identifier may be a bindable or an indirection,
which is used to implement a recursive declaration. In the above action,
(find bs t) retrieves the datum bound to t in bs. (S d) type checks to see if d
is of the desired type. If not, (Indirection d) checks to see if d is an
indirection in the case that t represents a procedure or a function
identifier. If so, the redirection table is searched to retrieve the datum.

In action semantics Bindable behaves as a subsort of all sorts Sort and
boundto is restricted to bindable entities. The implementation of Bindable
as a function (not a type) in ML forces us use Sort, a type in ML, to specify
the first parameter for boundto. These remarks also apply to the ML
function storedin defined later.

The signature for boundto in [Mosses92] has the form

boundto :: Bindable * Yielder → Yielder.
But Token is a subsort of Datum, which is a subsort of Yielder, since a Datum
always yields itself when evaluated. So we simplify the implementation by
using the sort Token where identifiers are expected.

The declarative action combinator moreover allows the performance of the
two actions to be interleaved. Both actions use the transients and the
bindings passed to the combined action. The transients given by the
combined action are the transients given by the first action concatenated
with those given by the second. The bindings produced by the combined
action are the bindings produced by the first action overlaid by those
produced by the second.

16 Semantic Prototyping

infix 1 moreover;

fun (A1:Action) moreover (A2:Action) : Action =
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs)
 and (ts2, bs2) = A2 (ts, bs)

in
(ts1 @ ts2, overlay bs2 bs1)

end;

The declarative action combinator hence performs the first action using
the transients and the bindings passed to the combined action and then
performs the second action using the transients given to the combined
action and the bindings produced by the first action. The combined action
gives the transients given by the first action concatenated with those
given by the second. The bindings produced by the combined action are
those produced by the second action.

infix 1 hence;

fun (A1:Action) hence (A2:Action) : Action =
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, bs1)
 in

(ts1 @ ts2, bs2)
end;

The declarative action combinator before' performs the first action using
the transients and the bindings passed to the combined action and then
performs the second action using the transients given to the combined
action and the bindings received by the combined action overlaid by those
produced by the first action. The transients given by the combined action
are those given by the first action concatenated with those produced by
the second. The combined action produces the bindings produced by the
first action overlaid with those produced by the second.

infix 1 before';

fun (A1:Action) before' (A2:Action) : Action =
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, overlay bs1 bs)
 in

(ts1 @ ts2, overlay bs2 bs1)
end;

The action “furthermore A” is the same as “rebind moreover A”. The action
performs A, giving the transients given by A and producing the bindings
produced by A overlaying with those received by the action.

Semantic Prototyping 17

fun furthermore (A:Action) : Action =
rebind moreover A;

2.4.3 Imperative Facet

The primitive action store :: Yielder * Yielder → Action stores the storable
value yielded by its first argument in the cell yielded by its second
argument.

fun store (y:Yielder) (c:Yielder) : Action =
fn (ts, bs) =>

let val stble = Storable (y (ts, bs))
 and cell' loc = Cell (c (ts, bs))
 in

update (Storage, loc, stored' stble);
(nil, empty)

end
handle Subscript => raise Failure;

The yielder storedin :: Sort * Yielder → Yielder retrieves the datum stored in
the cell yielded by its second argument, expecting it to be of the type
specified by the first argument. The first parameter of storedin is
restricted to Storable in action semantics.

infix 2 storedin;

fun (S:Sort) storedin (c:Yielder) : Yielder =
fn (ts, bs) =>

let val cell' loc = Cell (c (ts, bs))
 in

case sub (Storage, loc) of
 stored' stble => S stble
 | undefined' => raise Failure

 | unused' => raise Failure
end
handle Subscript => raise Failure;

The primitive action allocateacell searches the storage to look for an
unused cell, reserves it by initializing it to undefined', and gives the cell.

fun allocateacell : Action =
fn (ts, bs) =>

let fun loop loc =
(case sub (Storage, loc) of

 unused' => (update (Storage, loc, undefined');
([cell' loc], empty)

| _ => loop (loc + 1))
handle Subscript => raise Failure

 in
loop 2

end;

18 Semantic Prototyping

Note that the action starts searching from storage location 2. Storage
location 0 is reserved for input, and location 1 is reserved for output. In
action semantics, allocateacell is a composite action defined in terms of
more primitive functional and imperative actions. We specify it directly to
simplify the implementation.

The primitive action deallocate :: Yielder → Action marks the cell yielded by
its argument as unused' and, therefore makes the cell available for reuse.

fun deallocate (c:Yielder) : Action =
fn (ts, bs) =>

let val cell' loc = Cell (c (ts, bs))
 in

update (Storage, loc, unused');
(nil, empty)

end
handle Subscript => raise Failure;

2.4.4 Reflective Facet

The primitive action enact :: Yielder → Action activates the action
encapsulated in the abstraction yielded by its argument.

fun enact (a:Yielder) : Action =
fn (ts, bs) =>

let val abstraction' (A0, ts0, bs0) = Abstraction (a (ts, bs))
 in

A0 (ts0, bs0)
end;

The action incorporated in the abstraction is executed with the transients
and bindings that are packaged in the abstraction.

The yielder abstractionof :: Action → Yielder encapsulates its argument
action into an abstraction with empty transients and bindings.

fun abstractionof (A:Action) : Yielder =
fn (ts, bs) => abstraction' (A, nil, empty);

Actually action notation has abstractionof supply no transients or bindings
to the abstraction, but if no transients or bindings have been incorporated
in the abstraction by enaction-time, the enclosed action is performed
using empty transients and/or bindings. We include empty transients and
bindings at abstraction-time as an implementation decision.

The yielder closureof :: Yielder → Yielder encapsulates current bindings in
the abstraction presented to closureof. Performing this operation when
constructing the abstraction corresponds to a procedure or function

Semantic Prototyping 19

declaration that enforces static scoping by attaching the binding in effect
at the time of the declaration to the abstraction. A second application of
closureof is not allowed to change the bindings.

fun closureof (a:Yielder) : Yielder =
fn (ts, bs) =>

case a (ts, bs) of
 abstraction' (A, ts1, empty) => abstraction' (A, ts1, bs)
| abstraction' (A, ts1, bs1) => abstraction' (A, ts1, bs1)
| _ => raise Failure;

The yielder applicationof :: Yielder * Yielder → Yielder attaches the argument
list yielded by its second parameter as the transients that will be given to
the action encapsulated in the abstraction yielded by its first parameter
when that action is enacted. As with closureof, a second utilization of
applicationof on an abstraction cannot change the transients.

fun applicationof (a:Yielder) (y:Yielder) : Yielder =
fn (ts, bs) =>

let val arglist = ArgumentList (y (ts, bs))
 in

case a (ts, bs) of
 abstraction' (A, nil, bs1) => abstraction' (A, [arglist], bs1)
| abstraction' (A, ts1, bs1) => abstraction' (A, ts1, bs1)
| _ => raise Failure

end;

Note that the yielder y should evaluate to an argument list, a tagged list
of argument values, and that this list is given as transients to the
abstraction yielded by evaluating the yielder a when it is enacted.

2.4.5 Basic Facet

The basic primitive action complete simply terminates, passing no
transients and no bindings.

val complete : Action = fn (ts, bs) => (nil, empty);

The basic primitive actions fail and escape both raise exceptions.

val fail : Action = fn (ts, bs) => raise Failure;

exception Escape;

val escape : Action = fn (ts, bs) => raise Escape;

20 Semantic Prototyping

The basic action combinator or performs either action with the current
transients and bindings, and if the chosen action fails, the other
alternative is performed with the original transients and bindings.

infix 1 or;

fun (A1:Action) or (A2:Action) : Action =
fn (ts, bs) => A1 (ts, bs)

handle Failure => A2 (ts, bs);

In this implementation, the first alternative action is always chosen first;
only if and when it fails will the second alternative be performed.

The basic action combinator andthen performs the first action and then
performs the second. Both actions use the transients and the bindings
passed to the combined action. The transients given by each action are
concatenated and given by the combined action. The bindings produced by
each action are merged and produced by the combined action.

infix 1 andthen;

fun (A1:Action) andthen (A2:Action) : Action =
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, bs)
 in

(ts1 @ ts2, merge bs1 bs2)
end;

The basic action combinator and' allows the performance of the two
actions to be interleaved. Both actions use the transients and the
bindings passed to the combined action. The transients given by each
action are concatenated and given by the combined action. The bindings
produced by each action are merged and produced by the combined action.

infix 1 and';

fun (A1:Action) and' (A2:Action) : Action = A1 andthen A2;

In the ML implementation of action notation, and' is implemented exactly
the same as andthen, so that the first action is always performed before
the second with no interleaving.

The action unfolding :: Action → Action performs its argument action, but
whenever the dummy action unfold is encountered, the argument action is
performed in place of unfold.

fun unfolding (A:Action) : Action =
furthermore (bind "unfold'" (abstractionof A)) hence A;

Semantic Prototyping 21

In the ML implementation, the abstraction of A is bound to the special
identifier “unfold'” and this binding overlaying the bindings received by
“unfolding A” is passed to A. Therefore, whenever the dummy action unfold is
encountered in A, the abstraction of A can be obtained from the bindings
and enacted with the transients and bindings current at the time of the
unfold.

The primitive action unfold is a dummy action, standing for the argument
action of the innermost enclosing unfolding.

val unfold : Action =
fn (ts, bs) =>

case (Abstraction boundto "unfold'") (ts, bs) of
 abstraction' (A, ts1, bs1) => A (ts, bs)
| _ => raise Failure;

The actions unfolding and unfold are used to describe indefinite iteration,
the while command in ∆. Inside a performance of unfolding, an invocation
of unfold has the effect of restarting the original action.

2.4.6 Hybrid Action Notation

The action indirectlybind :: Token * Yielder → Action takes two parameters, an
identifier and a yielder, and produces the binding of the identifier to an
indirection, augmenting the redirection table with the indirection
initialized to refer to the datum yielded by evaluating the yielder.

fun indirectlybind (t:Token) (y:Yielder) : Action =
fn (ts, bs) =>

let fun loop n =
 (case sub (Redirections, n) of

 notused’ => n
| _ => loop (n + 1))

handle Subscript => raise Failure
 in

let val dat = y (ts, bs)
 and i = loop 0
 in

case dat of
 unknown' => (update (Redirections, i, redirection' unknown');

 (nil, assoc t (indirection' i)))
| _ => let val dat' = Bindable (dat)

 in
update (Redirections, i, redirection' dat');
(nil, assoc t (indirection' i))

end
end

end;

22 Semantic Prototyping

The local function loop searches the redirection table for the next
available indirection. The action “indirectlybind t y” evaluates y and calls the
local function loop to perform the search. The datum yielded by evaluating
y may either be unknown' or a bindable; in either case, the redirection table
is updated and the binding of the identifier t to the indirection is given
with the empty transient.

The action redirect takes two arguments, an identifier and a yielder, and
changes the indirection bound to the identifier to refer to the datum
yielded by evaluating the yielder.

fun redirect (t:Token) (y:Yielder) : Action =
fn (ts, bs) =>

let val indirection' i = (Indirection boundto t) (ts, bs)
 and dat = y (ts, bs)
 in
 case dat of

 unknown' => (update (Redirections, i, redirection' unknown');
 (nil, empty))

| _ => let val dat' = Bindable (dat)
 in

update (Redirections, i, redirection' dat');
(nil, empty)

end
end;

The action recursivelybind takes two arguments, an identifier and a
yielder, and produces the binding of the identifier to an indirection and at
the same time augments the redirection table with the indirection,
initialized to refer to the datum yielded by evaluating the yielder using the
current bindings overlaid by the indirection binding for the identifier.

fun recursivelybind (t:Token) (y:Yielder) : Action =
furthermore (indirectlybind t (yield unknown')) hence
((redirect t y) and' (bind t (Indirection boundto t)));

In the above action, “furthermore (indirectlybind t (yield (unknown')))” produces all
the given bindings plus the binding of t to an indirection “indirection' i” that
is initialized to unknown'. All these bindings are given to “(redirect t y) and'
(bind t (Indirection boundto t))”. The subaction “redirect t y” updates the contents
of indirection i, which is bound to t in the given bindings, to contain the
value yielded by evaluating y. The purpose of the second subaction “bind t
(Indirection boundto t)” is to reproduce the binding of t to the indirection i as
the bindings of the action. Recall that the action combinator hence only
produces the bindings produced by its second action. The action
recursivelybind is necessary for handling self-referential bindings. Examples
will be seen later when we specify the action semantics of procedures and
functions that may contain recursive calls. The ML code for action
primitives, action combinators, and related yielders can be found under
“structure Actions” in Appendix C.

Semantic Prototyping 23

2.4.7 Auxiliary Actions

We need some auxiliary yielders and actions that are defined specifically
for this implementation of the programming language ∆. They will be
described briefly next. A complete implementation of the auxiliary
operations in ML can be found under “structure DataEquations2” in Appendix
C.

The Primitive Allocator

In the imperative facet, an action allocateacell is defined to allocate a
memory cell. An abstraction is needed to encapsulate this action so that
the abstraction can be bound to simple type identifiers. When a variable
declaration with these types is elaborated, the abstraction can be enacted
to allocate a cell for the variable. Therefore, primitiveallocator is defined to
encapsulate the action of allocateacell.

val primitiveallocator : Yielder = closureof (abstractionof (allocateacell));

Storage Functions

The action store and the yielder storedin are defined in the imperative facet
to store a simple value in a cell and retrieve a simple value stored in a
cell, respectively. But ∆ also employs compound data types, arrays and
records. Therefore, more general forms of store and storedin are needed. The
action assignto can store any value (simple or compound) in its
corresponding variable (cell, array variable, or record variable), and the
yielder valueassignedto will retrieve the corresponding value stored in any
type of Variable. See Appendix C for the ML code of these operations.

fun valueassignedto (y:Yielder) : Yielder = ... ;
fun assignto (y1:Yielder, y2:Yielder) : Action = ... ;

Input and Output

The following functions, also specified in “structure DataEquations2”, are
defined to handle ∆ input and output.

• The action allocateinputcell allocates the cell (cell' 0), which is created to
hold the input file, a string of characters.

val allocateinputcell : Action =... ;

• The action allocateoutputcell allocates the cell (cell' 1), which is
delegated for output file.

val allocateoutputcell : Action = ... ;

24 Semantic Prototyping

• The yielder endofinput checks whether the input cell is empty.

val endofinput : Yielder = ... ;

• The yielder nextcharacter returns the first character currently stored in
the input cell.

val nextcharacter : Yielder = ... ;

• The action skipacharacter removes the first character stored in the
input cell.

val skipacharacter : Action = ... ;

• The action skipaline removes all the characters until an end-of-line
character is found and then removes the end-of-line character as well.

val skipaline : Action = ... ;

• The action skipblanks removes all blank characters until a non-blank
character is found in the input cell.

val skipblanks : Action = ... ;

• The action readanunsignedinteger reads and consumes the characters
forming an unsigned integer in the input cell and gives the
corresponding integer value.

val readanunsignedinteger : Action = ... ;

• The action readasignedinteger reads and consumes a signed integer in
the input cell and gives the integer value.

val readasignedinteger : Action = ... ;

• The action rewrite sets the output cell to empty.

val rewrite : Action = ... ;

• The action writechar appends the character yielded by its argument to
the end of output.

fun writechar (ch:Yielder) : Action = ... ;

• The action writeunsignedint writes to output the characters
corresponding to the unsigned integer yielded by its argument.

fun writeunsignedint (i:Yielder) : Action = ... ;

Semantic Prototyping 25

• The action writesignedint writes to output the signed integer given by
its argument.

fun writesignedint (i:Yielder) : Action = ... ;

3. Specification of ∆ Using Action Semantics

Since actions are implemented as functions that map the information
passed to the action into the information passed out of the action, they are
executable and can thereby be viewed as providing an interpreter for a
programming language defined using the notation of action semantics. The
abstract syntax of ∆ in ML can be found under “structure TriangleSyntax” in
Appendix C, and the complete action semantic definition of ∆ in ML can be
found in the module “structure TriangleSemantics” in the same appendix.

Program

The output produced by executing a ∆ program given particular input, a file
represented as an ML string of characters, is taken to be the meaning of
that program. Before a ∆ program can be executed, the input cell needs to
be allocated and initialized to contain the given text (the input to the
program). The output cell also needs to be allocated and initialized to
empty text, and a standard environment, which provides the initial
bindings for all ∆ programs, needs to be elaborated. At the end of
executing the program, the text stored in the output cell is given as the result
of the program. The following action is defined to run a ∆ program.

fun run (prog' C) =
(allocateinputcell and' allocateoutputcell)

andthen
(store (given Text) inputcell and' rewrite)

andthen
(elaborateStandardEnvironment hence execute C)

andthen
(give (Text storedin outputcell));

3.1 Commands

The execution of a command is modeled as an action that either
completes or diverges, although it may update the storage as well; the
outcome of the action performance may depend on the current bindings
and the current state of storage. Therefore, the semantic function for
commands is defined as a function that takes the following form.

execute :: Command -> Action [completing | diverging | storing]
[using current bindings | current storage]

26 Semantic Prototyping

The preceding signature shows how action notation can restrict the sort of
actions produced by the execute function by specifying the possible
outcome and income of the actions. The modified sort of actions has the
form “Action[outcome][income]”. See [Mosses92] for more details on sorts
of actions.

Below we give an informal description of each ∆ command followed by its
semantic equation in action notation in ML. Observe how closely the
action notation resembles the informal description. The ML code requires
more parentheses than standard action notion, whose rules of operator
precedence reduce the number of parentheses. Also, action notation
permits multiword identifiers, such as “and then”, which cannot be
expressed in ML. In spite of these conventions, the ML translation of
action notation resembles the original quite closely.

• An empty command

Do nothing.

execute (emptycmd') = complete;

• An assignment command: V := E

First the variable name needs to be identified and the expression E
evaluated, and then the variable identified by V is updated in
storage with the value yielded by E.

execute (assign' (V, E)) =
(identify V and' evaluate E)

then'
assignto (GIVEN Value 2, GIVEN Variable 1);

Performing “identify V” gives the variable denoted by V and “evaluate E”
gives the value yielded by evaluating E. Each of these operations will
be described soon.

• An anonymous block with local declarations command: let D in C

Execute C in an environment with the bindings produced by
elaborating D overlaying the current bindings.

execute (letcmd' (D, C)) =
furthermore (elaborate D)

hence
execute C;

“elaborate D” produces the bindings obtained by elaborating the
declarations in D.

Semantic Prototyping 27

• An if command: if E then C1 else C2

The expression E is evaluated first. If it evaluates to true, then C1
is executed; otherwise C2 is executed.

execute (ifcmd' (E, C1, C2)) =
evaluate E

then'
((check (given TruthValue is TRUE) andthen execute C1)

or
 (check (given TruthValue is FALSE) andthen execute C2));

One and only one of the check actions succeeds.

• A while command: while E do C

The expression E is evaluated first. If its value is true, C is
executed and then the while command is started again; otherwise
the while command terminates.

execute (while' (E, C)) =
unfolding

(evaluate E
then'

((check (given TruthValue is TRUE)
andthen execute C andthen unfold)

or
(check (given TruthValue is FALSE) andthen complete)));

The phrase “andthen complete” may be omitted. It simply provides
symmetry to the or construct.

• A sequential command: C1; C2

Execute C1 and then execute C2.

execute (seqcmd' (C1, C2)) =
execute C1 andthen execute C2;

• An anonymous block without local declarations command: begin C end

Execute C.

execute (block' C) =
execute C;

28 Semantic Prototyping

• A procedure call command: t (Args)

The actual parameter sequence is evaluated to yield an argument list,
and then the procedure is invoked with that argument list.

execute (proccall' (t, Args)) =
givearguments Args

then'
enact (applicationof (Procedure boundto t) (given ArgumentList));

The operation “givearguments Args” evaluates the expressions in Args
and makes the values yielded into an argument list.

The Triangle programming language allows parameters of four kinds:
value parameters (really constant parameters), variable parameters,
procedure parameters, and function parameters. The actual individual
parameters are given by an action giveargument defined as follows.

fun giveargument (valarg' E) =
evaluate E

| giveargument (vararg' V) =
identify V

then'
give (given Variable)

| giveargument (procarg' t) =
give (Procedure boundto t)

| giveargument (funarg' t) =
give (Function boundto t)

3.2 Expressions

The evaluation of an expression is modeled as an action that either gives
a value or diverges; the value given by the action performance may depend
on the current bindings and the current state of storage. Therefore, the
semantic function for expressions is defined as a function of the following
type.

evaluate :: Expression -> Action [giving a Value | diverging]
[using current bindings | current storage]

The description and the semantic equation in action notation for each
form of ∆ expressions are given below. Again, note how closely the action
notation resembles the informal description.

Semantic Prototyping 29

• Literal: N or C

If an expression consists of an integer literal N or a character C,
evaluating the expression merely gives the integer value N or the
character value C, respectively.

evaluate (intval' N) =
give (yield (integer' N));

evaluate (char' C) =
give (yield (char' C));

Since give expects a yielder as its parameter, the data integer' N and char'
C must be converted to yielders using yield.

• Variable Name: V

If the expression consists of a variable name V, evaluating the
expression gives the value bound to V (if V is declared as a constant) or
the value stored in the variable bound to V (if V is declared as a
variable).

evaluate (name' V) =
identify V

then'
(give (given Value) or give (valueassignedto (given Variable)));

In the above action, “identify V” gives the object bound to V, either a
value or a variable. If a value is given, that value is given by the
combined action; otherwise the value assigned to the variable is given
by the combined action. Recall that the action combinator or performs
either action and if the chosen action fails, the other alternative will
be performed.

• Function Call: t (Args)

The evaluation of a function call is very similar to the execution of a
procedure call command. The actual parameter sequence Args is
evaluated to yield an argument list, and then the function t is invoked
with the argument list.

evaluate (funcall' (t, Args)) =
givearguments Args

then'
enact (applicationof (Function boundto t) (given ArgumentList));

30 Semantic Prototyping

See the action semantics for a procedure call for a description of the
method of giving actual parameters.

• Binary Operation: E1 O E2

The evaluation of a binary operation entails performing the operation of
the binary operator O with the values obtained by evaluating E1 and E2
as its two arguments.

evaluate (binaryop' (O, E1, E2)) =
(evaluate E1 and' evaluate E2)

then'
enact (applicationof (Function boundto id(O))

((argunitlist (GIVEN Value 1)) catto
 (argunitlist (GIVEN Value 2))));

In the above action, “id (O)” returns the name of the operator O, and
“argunitlist (given Value)” makes the given value into a singleton argument
list. The function catto concatenates the two lists. Remember a
function is an abstraction. The binding of predefined operations to
their meanings takes place in the elaboration of the standard
environment, for example:

val elaborateStandardEnvironment : Action =
:
(bind (id "+") (binaryoperator

(give (sum ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "-") (binaryoperator

(give (difference ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "*") (binaryoperator

(give (product ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
:

where

fun binaryoperator (A:Action) : Yielder =
closureof

(abstractionof
(((give (headof (given ArgumentList)))

and'
 (give (headof (tailof (given ArgumentList)))))

then' A));

• Unary Operation: O E

The evaluation of an unary operation involves performing the operation
of the unary operator O with the value yielded by evaluating the
expression E as the only argument.

Semantic Prototyping 31

evaluate (unaryop' (O, E)) =
evaluate E

then'
enact (applicationof (Function boundto id(O))

(argunitlist (given Value));

Unary operations are bound in the standard environment in a manner
similar to binary operations. See Appendix C for details.

• Parenthesized Expression: (E)

A parenthesized expression is evaluated by simply evaluating E.

evaluate (paren' E) = evaluate E;

• Block Expression: let D in E

A block expression is evaluated by evaluating E in an environment with
the bindings produced by elaborating D overlaying the current bindings.

evaluate (letexp' (D, E)) =
furthermore (elaborate D)

hence
evaluate E;

• Conditional Expression: if E then E1 else E2

For an if expression, the expression E is evaluated first. If it evaluates
to true, the value of E1 is returned; otherwise the value of E2 is
returned.

evaluate (ifexp' (E, E1, E2)) =
evaluate E

then'
((check (given TruthValue is TRUE) andthen evaluate E1)

or
 (check (given TruthValue is FALSE) andthen evaluate E2));

• Record-Aggregate: RA

The evaluation of a record-aggregate involves building a record value by
evaluating the expression of each constituent field of the record.

evaluate (recaggr' RA) = evaluateRecord RA

evaluateRecord (nil) = give (yield (recordvalue' nil))

32 Semantic Prototyping

evaluateRecord ((t, E) :: RA) =
(evaluate E and' evaluateRecord RA)

then'
give (unitrecord (t, GIVEN Value 1) joinedto GIVEN RecordValue 2);

The action “evaluateRecord ((t, E) :: RA)” is the action that does most of
the work here. A record-aggregate is a list of identifier-expression
pairs. This action takes the head of the list, evaluates its expression
E, and calls itself to process the tail of the list. It then makes the
identifier t and the value given by evaluating E into a unit record, and
joins this record to the record value given by evaluating the tail, giving
this joined record. The purpose of the action “evaluateRecord (nil)” is to
handle the situation when the end of the list is reached. All it does is
to give the empty record.

• Array-Aggregate: AA

The evaluation of an array-aggregate involves building an array value by
evaluating the expression corresponding to each element of the array.

evaluate (arraggr' AA) = evaluateArray AA;

evaluateArray (nil) = give (yield (arrayvalue' nil));

evaluateArray (E :: AA) =
(evaluate E and' evaluateArray AA)

then'
give (unitarray (GIVEN Value 1) abuttedto GIVEN ArrayValue 2);

Array aggregation is handled in a manner similar to record aggregation.
See Appendix C for definitions of the utility operations used to
construct records and arrays, namely unitrecord, joinedto, unitarray, and
abuttedto.

3.3 Declarations

The elaboration of a declaration is modeled as an action that either
produces bindings or diverges (a constant declaration with a function call
in its expression may diverge if execution of the function diverges). The
bindings produced by the action performance may depend on the current
bindings and the current state of storage. Therefore, the semantic
function for a declaration is defined as a function of the following type.

elaborate :: Declaration -> Action [binding | diverging]
[using current bindings | current storage]

Semantic Prototyping 33

Again we give a description and the semantic equation in action notation
for each form of ∆ declaration below.

• Constant Declaration: const t ~ E

Elaborating a constant declaration involves binding the identifier t to
the value yielded by evaluating E.

elaborate (constdec' (t, E)) =
evaluate E

then'
bind t (given Value);

• Variable Declaration: var t : T

The elaboration of a variable declaration results in binding the
identifier t to a Variable (a cell, record variable, or array variable) that
can accommodate an entity of type T.

elaborate (vardec' (t, T)) =
allocatevariable T

then'
bind t (given Variable);

The operation “allocatevariable T” will allocate enough memory locations
and make them into a variable structure that can accommodate an
entity of type T.

• Subprogram Declaration: proc t (Fmls) ~ C or func t (Fmls) : T ~ E

A subprogram declaration is elaborated by binding the identifier t to an
abstraction that encapsulates the execution of the procedure body C or
the evaluation of the function body E, respectively. The abstraction
incorporates an environment containing the bindings of the formal
parameters Fmls to the actual parameters provided at procedure or
function call time overlaying the current bindings at time of declaration
including the binding produced by the subprogram declaration.

elaborate (procdec' (t, Fmls, C)) =
recursivelybind t (closureof

(abstractionof
(furthermore (bindparameters Fmls)

hence
execute C)));

elaborate (fundec' (t, Fmls, T, E)) =
recursivelybind t (closureof

34 Semantic Prototyping

(abstractionof
(furthermore (bindparameters Fmls)

hence
evaluate E)));

Recall that “recursivelybind t y” first binds t to an indirection that is
initialized to unknown'. It then evaluates the yielder y. The binding of t
to the indirection will be given to the evaluation of y, in this case,
“closureof (abstractionof (.....))”. All “closureof (abstractionof (.....))” does is to
attached the current bindings to the abstraction. This binding includes
the binding of the subprogram name t to the indirection.

Next “recursivelybind t y” updates the indirection to contain the value
yielded by y, in this case, the subprogram abstraction. The binding
produced by the entire action is the binding of t to the indirection,
which now contains the abstraction of the subprogram. Therefore, it is
possible for the subprogram to call itself when it is enacted.

Remember, “furthermore A” abbreviates “rebind moreover A”.

Formal parameters are bound to identifiers using the function
bindparameters, which calls bindparameter for each of the formal
parameters.

fun bindparameter (valparam' (t, T)) =
bind t (given Value)

| bindparameter (varparam' (t, T)) =
bind t (given Variable)

| bindparameter (procparam' (t, FPS)) =
bind t (given Procedure)

| bindparameter (funparam' (t, FPS, T)) =
bind t (given Function)

• Type Declaration: type t ~ T

The elaboration of a type declaration involves binding the identifier t to
an allocator that will allocate an appropriate variable for the type when
it is enacted.

elaborate (typedec' (t, T)) =
bind t (closureof (abstractionof (allocatevariable T)));

Semantic Prototyping 35

• Sequential Declaration: D1 ; D2

A sequential declaration is processed by elaborating D1 before
elaborating D2.

elaborate (seqdec' (D1, D2)) =
elaborate D1 before' elaborate D2;

The semantics of the action combinator before' specifies that a
declaration may refer to declarations occurring earlier in the block.

4. Running the System

The ML implementation of action semantics has been run and tested
using Standard ML of New Jersey, Version 0.75 on a Sun Sparc
workstation and Version 0.93 on an IBM RS/6000. Standard ML of New
Jersey may be obtained over the Internet using “ftp research.att.com”
followed by a directory change “cd dist/ml”.

The semantic prototyping system uses ML-lex and ML-yacc as a scanner
and parser. Appendix D contains a listing of the lex and yacc files. The
parts of the system are assembled by elaborating a file, called load.sml,
that contains definitions of functions that initialize the system and a
definition of the function go used to run the interpreter.

go : string -> string -> unit

For example, the Triangle program “sums” computes and print the sums of
the positive integers, the squares of the integers, and the cubes of the
integers up to the input value. The program “sums” is listed below
followed by a transcript of its execution by the interpreter.

let
proc sumof (func f (n: Integer) : Integer,

cnt: Integer,
var sum: Integer) ~

let
var i : Integer

 in
begin

i := 0; sum := 0;
while i < cnt do

begin
i := i + 1;
sum := sum + f (i)

36 Semantic Prototyping

end;
put (' '); putint (sum); put (' ')

end;

func g1 (n: Integer) : Integer ~ n;
func g2 (n: Integer) : Integer ~ n * n;
func g3 (n: Integer) : Integer ~ n * n * n;

var count: Integer;
var s1: Integer;
var s2: Integer;
var s3: Integer

 in
begin

getint (var count);
sumof (func g1, count, var s1);
sumof (func g2, count, var s2);
sumof (func g3, count, var s3)

end

- go "sums" "10";

OUTPUT:
 55 385 3025

val it = () : unit

The following steps create the semantic prototyping system for Triangle:

cd tools -- Move to directory “tools” in SML directory
% sml
- use "lexgen/lexgen.sml";
- use "mlyacc/smlyacc.sml";
- use "mlyacc/base.sml";
- exportML "Bimage";

% Bimage -- An sml image with lexgen.sml, smlyacc.sml,
val it = true : bool -- and base.sml loaded.

- use "load.sml"; -- Generates scanner and parser,
-- loads triangle.sml, triangle.grm.sig,

[opening load.sml] -- triangle.lex.sml, and triangle.grm.sml,
1 shift/reduce conflict -- and elaborates several utility
val it = () : unit -- functions including go (see Appendix D).
Number of states = 40
Number of distinct rows = 12
Approx. memory size of trans. table = 1548 bytes
val it = () : unit

Semantic Prototyping 37

[opening triangle.sml]
: -- A very long series of responses
: -- as scanner and parser are generated
: -- and structures are elaborated

open StandardEnvironment
val run = fn : Prog -> Action -- Function for running programs
[closing triangle.sml]
val it = () : unit
[opening triangle.grm.sig]

: -- More responses
[closing triangle.grm.sml]
val it = () : unit

: -- More responses
structure triangleParser : PARSER
val parse = fn : string -> triangleParser.result * …
val convert = fn : string list -> Datum list
val printresult = fn : Datum list -> unit
val cleanStorage = fn : int -> unit
val cleanRedirection = fn : int -> unit
val go = fn : string -> string -> unit -- Function for controlling interpreter
[closing load.sml]
val it = () : unit

The diagram below shows the dependencies among the structures that
make up the ML program for the Triangle interpreter.

val go = fn : string -> string -> unit

val run = fn : Prog -> Action

structure StandardEnvironment

structure DataEquations2

structure TriangleSemantics

structure TriangleSyntax

structure Actions

structure DataEquations1

structure DataAndSorts

38 Semantic Prototyping

5. Conclusion

Generally formal methods of specifying programming language semantics,
such as denotational semantics, structural operational semantics, and
axiomatic semantics, are difficult to use. See [Slonneger94] for
descriptions of these formal methods. The conciseness and notational
density of these methods make accurate specifications hard to create,
read, and modify. In contrast, action semantics reflects the operational
concept of program execution as understood by programmers. Recall how
closely the action semantic definition of a command execution, an
expression evaluation, or a declaration elaboration resembles its informal
description.

Unlike other methods, action semantics uses English-like notation that is
easy to read. Although entirely formal, action notation can be read and
understood at an informal level without a mastery of a large set of cryptic
symbols and notational conventions. Readers can concentrate on the
semantics of the programming language from their first exposure to the
specification.

Action semantics definitions use a modular style in which semantic
equations are reusable in the specifications of any programming
languages that share similar language constructs. In contrast to
denotational semantics where a small change in the programming
language that is being specified can result in major changes in the
specification, action semantics definitions scale up with little
modification as the programming language is extended.

Once one has a complete implementation of one programming language,
as we do here, most of the implementation can be reused when defining
another language. New sorts of data can be easily added to the data
notation without affecting any of the already existing definitions. The
implementation of the action notation provided by action semantics will
not change. The only place where some modifications are needed is in the
syntax and some of the semantic definitions of the new language.

To test these assertions, we assigned a class project of extending Triangle
with a loop…end loop command, an exit command, a repeat command, a
return command and a pointer data type with appropriate operations.
These additions to Triangle proved fairly straightforward to implement.

All these merits make action semantics easier to understand and more
accessible to programmers than other formal methods of specifying the
semantics of programming languages. This report illustrates that the
readability and understandability of action semantics carries over into a
prototype implementation in ML. Transforming a formal specification into
a working implementation furnishes us with an excellent tool for testing

Semantic Prototyping 39

and experimenting with the formal methods of action semantics.
Furthermore, programming action notation can provide insight into the
semantics of primitive actions and action combinators that goes deeper
than informal descriptions without reaching the notational density and
complexity of other formal specifications.

The goals of this report have been to introduce the basics of action
semantics and to show the feasibility of translating a formal specification
of a programming language in action semantics into a prototype
implementation of the language written in ML. The implementation of ∆
shows that such semantic prototyping can be smoothly carried out using
action semantics as the formal specification method and ML as the
implementation language.

Source files for the semantic interpreter may be obtained from the second
author by email (slonnegr@cs.uiowa.edu).

References

[Mosses92]
Peter D. Mosses, Action Semantics, Cambridge University Press,
1992.

[Slonneger94]
Ken Slonneger and Barry L. Kurtz, Formal Syntax and Semantics of
Programming Languages: A Laboratory-Based Approach, Addison-
Wesley, 1994.

[Watt86]
David A. Watt, “Executable Semantic Descriptions”, Software -
Practice and Experience, 16.1, 1986.

[Watt91]
David A. Watt, Programming Language Syntax and Semantics, Prentice
Hall International, 1991.

40 Semantic Prototyping

Appendix A: BNF for ∆

<Program> ::= <Command>

<Command> ::= <single-Command> | <Command> ; <single-Command>

<single-Command> ::=
| <V-name> := <Expression>
| <Identifier> (<Actual-Parameter-Sequence>)
| begin <Command> end
| let <Declaration> in <single-Command>
| if <Expression> then <single-Command> else <single-Command>
| while <Expression> do <single-Command>

<Expression> ::= <secondary-Expression>
| let <Declaration> in <Expression>
| if <Expression> then <Expression> else <Expression>

<secondary-Expression> ::= <primary-Expression>
| <secondary-Expression> <Operator> <primary-Expression>

<primary-Expression> ::= <Integer-Literal>
| <Character-Literal> | <V-name>
| <Identifier> (<Actual-Parameter-Sequence>)
| <Operator> <primary-Expression>
| (<Expression>)
| { <Record-Aggregate> }
| [<Array-Aggregate>]

<Record-Aggregate> ::= <Identifier> ~ <Expression>
| <Identifier> ~ <Expression> , <Record-Aggregate>

<Array-Aggregate> ::= <Expression> | <Expression> , <Array-Aggregate>

<V-name> ::= <Identifier> | <V-name> . <Identifier>
| <V-name> [<Expression>]

<Declaration> ::= <single-Declaration>
| <Declaration> ; <single-Declaration>

Semantic Prototyping 41

<single-Declaration> ::= const <Identifier> ~ <Expression>
| var <Identifier> : <Type-denoter>
| proc <Identifier> (<Formal-Parameter-Sequence>) ~

<single-Command>
| func <Identifier> (<Formal-Parameter-Sequence>)

: <Type-denoter> ~ <Expression>
| type <Identifier> ~ <Type-denoter>

<Formal-Parameter-Sequence> ::=
| <proper-Formal-Parameter-Sequence>

<proper-Formal-Parameter-Sequence> ::= <Formal-Parameter>
| <Formal-Parameter> , <proper-Formal-Parameter-Sequence>

<Formal-Parameter> ::= <Identifier> : <Type-denoter>
| var <Identifier> : <Type-denoter>
| proc <Identifier> (<Formal-Parameter-Sequence>)
| func <Identifier> (<Formal-Parameter-Sequence>)

 : <Type-denoter>

<Actual-Parameter-Sequence> ::=
| <proper-Actual-Parameter-Sequence>

<proper-Actual-Parameter-Sequence> ::= <Actual-Parameter>
| <Actual-Parameter> , <proper-Actual-Parameter-Sequence>

<Actual-Parameter> ::= <Expression> | var <V-name> | proc <Identifier>
| func <Identifier>

<Type-denoter> ::= <Identifier>
| array <Integer-Literal> of <Type-denoter>
| record <Record-Type-denoter> end

<Record-Type-denoter> ::= <Identifier> ~ <Type-denoter>
| <Identifier> ~ <Type-denoter> , <Record-Type-denoter>

<Identifier> ::= <Letter> {<Letter-Digit>}

<Operator> ::= <Op-character> {<Op-character>}

42 Semantic Prototyping

<Integer-Literal> ::= <Digit> | <Digit> {<Digit>}

<Character-Literal> ::= ' <Graphic> '

<Letter-Digit> ::= <Letter> | <Digit>

<Graphic> ::= <Letter> | <Digit> | <Op-character>
| space | tab | . | : | ; | ,
| ~ | (|) | [|] | { | } | _ | | | ! | ' | ` | " | # | $

<Letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o |p | q | r | s | t | u |v | w |x | y | z
| A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T |U |V | W | X | Y | Z

<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Op-character> ::= + | - | * | / | = | < | > | \ | & | @ | % | ^ | ?

Semantic Prototyping 43

Appendix B: Abstract Syntax for ∆

* Programs

Prog ::= Cmd

* Commands

Cmd ::= Vname := Expr
| Identifier (Arg*) -- procedure call
| begin Cmd end
| let Dec in Cmd
| if Expr then Cmd else Cmd
| while Expr do Cmd
| Cmd ; Cmd
| -- empty command

* Expressions

Expr ::= let Dec in Expr
| if Expr then Expr else Expr
| Expr Operator Expr -- binary operator
| Integer-Literal
| Character-Literal
| Vname
| Identifier (Arg *) -- function call
| Operator Expr -- unary operator
| (Expr)
| { (Identifier ~ Expr) + } -- record aggregate
| [Expr +] -- array aggregate

* Names

Vname ::= Identifier
| Vname . Identifier -- field in record
| Vname [Expr] -- element of array

* Declarations

44 Semantic Prototyping

Dec ::= Dec ; Dec
| const Identifier ~ Expr
| var Identifier : Typ

| proc Identifier (Param*) ~ Cmd
| func Identifier (Param*) : Typ ~ Expr
| type Identifier ~ Typ

* Parameters

Param ::= Identifier : Typ
| var Identifier : Typ
| proc Identifier (Param*)
| func Identifier (Param*) : Typ

Arg ::= Expr
| var Vname
| proc Identifier
| func Identifier

* Type-denoters

Typ ::= Identifier
| array Integer-Literal of Typ
| record (Identifier ~ Typ) + end

* Lexicon

Identifier, Integer-Literal, Character-Literal, and Operator are
regarded as atomic and not further specified here.

Semantic Prototyping 45

Appendix C: ML Definition of Action Semantics and ∆
(***)
(********* Implementing the Action Semantics for Triangle *****************)

infix 6 \;

structure DataAndSorts =
struct

open Array;

exception Failure;

(***** DATUM *****)

type Token = string;

datatype Datum =
 truthvalue' of bool
| integer' of int
| char' of string
| arrayvalue' of Datum list (* Value list *)
| arrayvariable' of Datum list (* Variable list *)
| recordvalue'of (Token * Datum) list (* (Token * Value) list *)
| recordvariable' of (Token * Datum) list (* (Token * Variable) list *)
| argumentlist' of Datum list (* Argument list *)
| text' of Datum list (* Char list *)
| cell' of int
| indirection' of int
| unknown'

(* | abstraction' of Action * Transients * Bindings; *)
| abstraction' of ((Datum list * (Token * Datum) list) ->

(Datum list * (Token * Datum) list))
 * (Datum list)
 * ((Token * Datum) list);

(* Types Action, Transients, and Bindings have not been defined yet. *)

(***** TRANSIENTS *****)

type Transients = Datum list;

(***** BINDINGS *****)

type Bindings = (Token * Datum) list;

46 Semantic Prototyping

(***** ACTIONS *****)

type Action = Transients * Bindings -> Transients * Bindings;

(***** YIELDERS *****)

type Yielder = Transients * Bindings -> Datum;

(*************** SORTS ***************)

type Sort = Datum -> Datum;

fun (S1:Sort) \ (S2:Sort) = (* sort join *)
fn (d: Datum) => S1 d

handle Failure => S2 d;

(*** TRUTHVALUES ***)

val TruthValue : Sort =
 fn (truthvalue' tr) => truthvalue' tr

| _ => raise Failure;

(*** INTEGERS ***)

val Integer : Sort =
fn (integer' i) => integer' i

| _ => raise Failure;

(*** CHARACTERS ***)

val Char : Sort =
fn (char' ch) => (case size (ch) of

 1 => char' ch
| _ => raise Failure)

 | _ => raise Failure;

(*** CELLS ***)

val Cell : Sort =
fn (cell' c) => cell' c
 | _ => raise Failure;

(*** INDIRECTIONS ***)

val Indirection : Sort =
fn (indirection' i) => indirection' i
 | _ => raise Failure;

Semantic Prototyping 47

(*** ARRAY-VALUES & ARRAY-VARIABLES ***)

val ArrayValue : Sort =
fn (arrayvalue' v) => arrayvalue' v
 | _ => raise Failure;

val ArrayVariable : Sort =
fn (arrayvariable' v) => arrayvariable' v
 | _ => raise Failure;

(*** RECORD-VALUES & RECORD_VARIABLES ***)

val RecordValue : Sort =
fn (recordvalue' v => recordvalue' v
 | _ => raise Failure;

val RecordVariable : Sort =
fn (recordvariable' v) => recordvariable' v
 | _ => raise Failure;

(************* KINDS OF VALUES *************)

(*** VALUES ***)

val Value : Sort = TruthValue \ Integer \ Char \ ArrayValue \ RecordValue;

(*** VARIABLES ***)

val Variable : Sort = Cell \ ArrayVariable \ RecordVariable;

(*** ABSTRACTIONS ***)

val Abstraction : Sort =
fn (abstraction' (A, ts, bs)) => abstraction' (A, ts, bs)
 | _ => raise Failure;

(*** PROCEDURES ***)

val Procedure : Sort = Abstraction;

(*** FUNCTIONS ***)

val Function : Sort = Abstraction;

(*** ALLOCATOR ***)

val Allocator : Sort = Abstraction;

(*** ARGUMENTS ***)

val Argument : Sort = Value \ Variable \ Procedure \ Function;

(*** ARGUMENT LISTS ***)

48 Semantic Prototyping

val ArgumentList : Sort =
fn (argumentlist' lis) => argumentlist' lis
 | _ => raise Failure;

(*** TEXT ***)

val Text : Sort =
fn (text' lis) => text' lis
 | _ => raise Failure;

(*** BINDABLES ***)

val Bindable : Sort = Value \ Variable \ Procedure \ Function \ Allocator \ Indirection;

(*** STORABLES ***)

val Storable : Sort = TruthValue \ Integer \ Char \ Text;

(*************** STORAGE ***************)

datatype State = unused' | undefined' | stored' of Datum;
val StorageSize = 1000;
val Storage = array (StorageSize, unused');

(*************** REDIRECTIONS ***************)

datatype RedirectionState = unknown' | redirection' of Datum;
val RedirectionSize = 1000;
val Redirections = array (RedirectionSize, notused');

end; (* structure DataAndSorts *)

 (**)

infix 4 is;
infix 7 modulo;
infix 4 isLessThan;
infix 4 isGreaterThan;
infix 6 abuttedto;
infix 6 joinedto;
infix 6 catto;

structure DataEquations1 =
struct

open DataAndSorts;

Semantic Prototyping 49

(*************** Transients = Datum list ***************)

fun take (ts:Transients, n:int) : Datum = (* the nth datum in *)
case ts of (* transient ts *)

 nil => raise Failure
| h::t => if n = 1 then h

 else if n > 1 then take (t, n-1)
 else raise Failure;

(*************** Bindings = (Token * Datum) list ***************)

val empty : Bindings = []; (* empty set of bindings *)

fun assoc (t:Token) (d:Datum) : Bindings =
[(t d)]; (* singleton binding of t to d *)

fun find (bs:Bindings) (t: Token) : Datum = (* Datum bound to t in *)
case bs of (* bindings bs, raising *)

 nil => raise Failure (* Failure if no such *)
| (t', dat)::rest => if t' = t then dat (* binding exists *)

 else find rest t;

exception IdeClash;

fun merge (bs1:Bindings) (bs2:Bindings) : Bindings = (* Combine bindings *)
let fun disjoint (b1, b2) = (* bs1 and bs2, *)

case b1 of (* raising Failure if *)
 nil => true (* identifiers clash *)
| (t, _)::rest => let val dat = find b2 t

 in
raise IdeClash

end
handle Failure => disjoint (rest, b2)

 | IdeClash => false
 in

if disjoint (bs1, bs2) then (bs1 @ bs2)
else raise Failure

end;

fun overlay (bs1:Bindings) (bs2:Bindings) : Bindings =
(bs1 @ bs2); (* Combine bs1 and bs2 *)

(* with bs1 overriding bs2 *)

50 Semantic Prototyping

(*************** Yielder = Transients * Bindings -> Datum ***************)

fun yield (d:Datum) : Yielder = fn (ts, bs) => d;

fun (y1:Yielder) is (y2:Yielder) : Yielder =
fn (ts, bs) =>

case (y1 (ts, bs), y2 (ts, bs)) of
 (truthvalue' tr1, truthvalue' tr2) => truthvalue' (tr1 = tr2)
| (integer' n1, integer' n2) => truthvalue' (n1 = n2)
| (char' c1, char' c2) => truthvalue' (ord (c1) = ord (c2))
| (arrayvalue' a1, arrayvalue' a2) =>

let fun eqlis nil nil = truthvalue' true
| eqlis (h1::t1) (h2::t2) =

(case ((yield h1) is (yield h2)) (ts, bs) of
 truthvalue' true => eqlis t1 t2
| _ => truthvalue' false)

| eqlis _ _ = truthvalue' false
 in

eqlis a1 a2
end

| (recordvalue' r1, recordvalue' r2) =>
let fun eqlis nil nil = truthvalue' true

| eqlis ((I1, dat1)::t1) ((I2, dat2)::t2) =
(if I1 = I2 then

(case ((yield dat1) is (yield dat2)) (ts, bs) of
 truthvalue' true => eqlis t1 t2
| _ => truthvalue' false)

 else truthvalue' false)
| eqlis _ _ = truthvalue' false)

 in
eqlis r1 r2

end
| (cell' loc1, cell' loc2) => truthvalue' (loc1 = loc2)
| (_, _) => raise Failure;

(*** TRUTHVALUES ***)

val FALSE : Yielder =
fn (ts, bs) => truthvalue' false;

Semantic Prototyping 51

val TRUE : Yielder =
fn (ts, bs) => truthvalue' true;

fun not' (y:Yielder) : Yielder =
fn (ts, bs) =>

let val truthvalue' tr = TruthValue (y (ts, bs))
 in

truthvalue' (not tr)
end;

fun both (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val truthvalue' tr1 = TruthValue (y1 (ts, bs))
 and truthvalue' tr2 = TruthValue (y2 (ts, bs))
 in

truthvalue' (tr1 andalso tr2)
end;

fun either (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val truthvalue' tr1 = TruthValue (y1 (ts, bs))
 and truthvalue' tr2 = TruthValue (y2 (ts, bs))
 in

truthvalue' (tr1 orelse tr2)
end;

(*** INTEGERS ***)

fun successor (y:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' i = Integer (y (ts, bs))
 in

integer' (i + 1)
end;

fun predecessor (y:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' i = Integer (y (ts, bs))
 in

integer' (i - 1)
end;

fun negation (y:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' i = Integer (y (ts, bs))
 in

integer' (~i)
end;

fun sum (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))

52 Semantic Prototyping

 in
integer' (n1 + n2)

end;

fun difference (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

integer' (n1 - n2)
end;

fun product (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

integer' (n1 * n2)
end;

fun quotient (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

integer' (n1 div n2)
end;

fun (y1:Yielder) modulo (y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

integer' (n1 mod n2)
end;

fun (y1:Yielder) isLessThan (y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

truthvalue' (n1 < n2)
end;

fun (y1:Yielder) isGreaterThan (y2:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' n1 = Integer (y1 (ts, bs))
 and integer' n2 = Integer (y2 (ts, bs))
 in

truthvalue' (n1 > n2)
end;

Semantic Prototyping 53

(*** CHARACTERS ***)

val eolnchar : Yielder = fn (ts, bs) => char' "\n";

fun decodeof (y:Yielder) : Yielder =
fn (ts, bs) =>

let val integer' i = Integer (y (ts, bs))
 in

char' (chr (i))
end
handle Chr => raise Failure;

fun codeof (y:Yielder) : Yielder =
fn (ts, bs) =>

let val char' ch = Char (y (ts, bs))
 in

integer' (ord (ch))
end
handle Ord => raise Failure;

fun blank (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 char' " " => truthvalue' true
| char' "\t" => truthvalue' true
| char' ch => truthvalue' false
| _ => raise Failure;

fun decimal (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 char' "0" => truthvalue' true
| char' "1" => truthvalue' true
| char' "2" => truthvalue' true
| char' "3" => truthvalue' true
| char' "4" => truthvalue' true
| char' "5" => truthvalue' true
| char' "6" => truthvalue' true
| char' "7" => truthvalue' true
| char' "8" => truthvalue' true
| char' "9" => truthvalue' true
| char' ch => truthvalue' false
| _ => raise Failure;

fun decimaldigit (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 integer' 0 => char' "0"
| integer' 1 => char' "1"
| integer' 2 => char' "2"
| integer' 3 => char' "3"
| integer' 4 => char' "4"
| integer' 5 => char' "5"

54 Semantic Prototyping

| integer' 6 => char' "6"
| integer' 7 => char' "7"
| integer' 8 => char' "8"
| integer' 9 => char' "9"
| _ => raise Failure;

fun decimalvalueof (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 char' "0" => integer' 0
| char' "1" => integer' 1
| char' "2" => integer' 2
| char' "3" => integer' 3
| char' "4" => integer' 4
| char' "5" => integer' 5
| char' "6" => integer' 6
| char' "7" => integer' 7
| char' "8" => integer' 8
| char' "9" => integer' 9
| _ => raise Failure;

(*** CELLS ***)

val inputcell : Yielder = fn (ts, bs) => cell' 0;

val outputcell : Yielder = fn (ts, bs) => cell' 1;

(*** ARRAY-VALUES & ARRAY-VARIABLES ***)

fun unitarray (y:Yielder) : Yielder =
fn (ts, bs) =>

let val v = Value (y (ts, bs))
 in arrayvalue' [v]

end
handle Failure => let val var = Variable (y (ts, bs))

 in arrayvariable' [var]
end;

fun (y1:Yielder) abuttedto (y2:Yielder) : Yielder =
fn (ts, bs) =>
case (y1 (ts, bs), y2 (ts, bs)) of

 (arrayvalue' aval1, arrayvalue' aval2)
=> arrayvalue' (aval1 @ aval2)

| (arrayvariable' avar1, arrayvariable' avar2)
=> arrayvariable' (avar1 @ avar2)

| (_, _) => raise Failure;

fun componentof (y1:Yielder, y2:Yielder) : Yielder =
fn (ts, bs) =>

let fun get (i:int) (lst:Datum list) =
case lst of

 nil => raise Failure
| h::t => if i > 0 then get (i - 1) t

else if i = 0 then h

Semantic Prototyping 55

else raise Failure
 in

case (y1 (ts, bs), y2 (ts, bs)) of
 (integer' i, arrayvalue' aval) => get i aval
| (integer' i, arrayvariable' avar) => get i avar
| (_, _) => raise Failure

end;

fun sizeof (y:Yielder) : Yielder =
fn (ts, bs) =>
let fun length nil = 0
 | length (h::t) = 1 + length t
 in

case (y (ts, bs)) of
 arrayvalue' aval => integer' (length aval)
| arrayvariable' avar => integer' (length avar)
| _ => raise Failure

end;

(*** RECORD-VALUES & RECORD_VARIABLES ***)

fun unitrecord (t:Token, y:Yielder) : Yielder =
fn (ts, bs) =>

let val v = Value (y (ts, bs))
 in

recordvalue' [(t, v)]
end
handle Failure => let val var = Variable (y (ts, bs))

 in
recordvariable' [(t, var)]

end;

fun (y1:Yielder) joinedto (y2:Yielder) : Yielder =
fn (ts, bs) =>

case (y1 (ts, bs), y2 (ts, bs)) of
 (recordvalue' rval1, recordvalue' rval2)

=> recordvalue' (rval1 @ rval2)
| (recordvariable' rvar1, recordvariable' rvar2)

=> recordvariable' (rvar1 @ rvar2)
| (_, _) => raise Failure;

fun fieldof (t:Token, y:Yielder) : Yielder =
fn (ts, bs) =>
let fun get (Id:Token) (b:(Token * Datum) list) =

(case b of
 nil => raise Failure
| (t, dat)::rest => (if t = Id then dat

 else get Id rest))
 in

case (y (ts, bs)) of
 recordvalue' rval => get t rval
| recordvariable' rvar => get t rvar
| _ => raise Failure

end;

56 Semantic Prototyping

(*** ARGUMENT LISTS & TEXT ***)

val argemptylist : Yielder = fn (ts, bs) => argumentlist' nil;

val textemptylist : Yielder = fn (ts, bs) => text' nil;

fun argunitlist (y:Yielder) : Yielder =
fn (ts, bs) =>

let val dat = Argument (y (ts, bs))
 in

argumentlist' [dat]
end;

fun textunitlist (y:Yielder) : Yielder =
fn (ts, bs) =>

let val dat = Char (y (ts, bs))
 in

text' [dat]
end;

fun (y1:Yielder) catto(y2:Yielder) : Yielder =
fn (ts, bs) =>

case (y1 (ts, bs), y2 (ts, bs)) of
 (argumentlist' l1, argumentlist' l2) => argumentlist' (l1 @ l2)
| (text' t1, text' t2) => text' (t1 @ t2)
| (_, _) => raise Failure;

fun isempty (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 argumentlist' nil => truthvalue' true
| argumentlist' (h::t) => truthvalue' false
| text' nil => truthvalue' true
| text' (ch::st) => truthvalue' false
| _ => raise Failure;

fun headof (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 argumentlist' (h::t) => h
| text' (ch::st) => ch
| _ => raise Failure;

fun tailof (y:Yielder) : Yielder =
fn (ts, bs) =>

case y (ts, bs) of
 argumentlist' (h::t) => argumentlist' t
| text' (ch::st) => text' st
| _ => raise Failure;

end; (* structure DataEquations1 *)

(**)

Semantic Prototyping 57

(**)

infix 1 then';
infix 2 boundto;
infix 1 moreover;
infix 1 hence;
infix 1 before';
infix 2 storedin;
infix 1 or
infix 1 andthen;
infix 1 and';
infix 1 trap;

structure Actions =
struct

open DataEquations1;

(************* The Functional Facet *************)

fun check (t:Yielder) : Action =
fn (ts, bs) =>

case t (ts, bs) of
 truthvalue' true => (nil, empty)
| truthvalue' false => raise Failure
| _ => raise Failure;

val regive : Action =
fn (ts, bs) => (ts, empty);

fun give (y: Yielder) : Action =
fn (ts, bs) =>

let val dat = y (ts, bs)
 in

([dat], empty)
end;

fun (A1:Action) then' (A2:Action) : Action = (* A1 then A2 *)
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts1, bs)
 in

(ts2, merge bs1 bs2)
end;

58 Semantic Prototyping

fun given (S:Sort) : Yielder = (* the given S *)
fn (ts, bs) =>

case ts of
 [d] => S d
| _ => raise Failure;

fun GIVEN (S:Sort) (n:int) : Yielder = (* the given S#n *)
fn (ts, bs) =>

 S (take (ts, n));

(************* The Declarative Facet *************)

fun bind (t:Token) (y:Yielder) : Action = (* bind t to y *)
fn (ts, bs) =>

let val dat = Bindable (y (ts, bs))
 in

(nil, assoc t dat)
end;

val rebind : Action =
fn (ts, bs) => (nil, bs);

fun (S:Sort) boundto (t:Token) : Yielder = (* the S bound to t *)
fn (ts, bs) =>
let val d = find bs t
 in

S d
handle Failure => let val indirection' i = Indirection d

 in
case sub (Redirections, i) of

 redirection' r => S r
| notused' => raise Failure

end
handle Subscript => raise Failure

end;

fun (A1: Action) moreover (A2:Action) : Action = (* A1 moreover A2 *)
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs)
 and (ts2, bs2) = A2 (ts, bs)
 in

(ts1 @ ts2, overlay bs2 bs1)
end;

Semantic Prototyping 59

fun (A1: Action) hence (A2:Action) : Action = (* A1 hence A2 *)
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, bs1)
 in

(ts1 @ ts2, bs2)
end;

fun (A1:Action) before' (A2:Action) : Action = (* A1 before A2 *)
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, overlay bs1 bs)
 in

(ts1 @ ts2, overlay bs2 b1)
end;

fun furthermore (A:Action) : Action = (* furthermore A *)
rebind moreover A;

(************* The Imperative Facet *************)

fun store (y:Yielder) (c:Yielder) : Action = (* store y in c *)
fn (ts, bs) =>

let val stble = Storable (y (ts, bs))
and cell' loc = Cell (c (ts, bs))
 in

update (Storage, loc, stored' stble);
(nil, empty)

end
handle Subscript => raise Failure;

fun (S:Sort) storedin (c:Yielder) : Yielder = (* the S stored in c *)
fn (ts, bs) =>

let val cell' loc = Cell (c (ts, bs))
 in

case sub (Storage, loc) of
 stored' stble => S (stble)
| undefined' => raise Failure
| unused' => raise Failure

end
handle Subscript => raise Failure;

fun deallocate (c:Yielder) : Action = (* deallocate c *)
fn (ts, bs) =>

let val cell' loc = Cell (c (ts, bs))
 in

update (Storage, loc, unused');
(nil, empty)

end;

val allocateacell : Action = (* allocate a cell *)
fn (ts, bs) =>

let fun loop loc =

60 Semantic Prototyping

(case sub (Storage, loc) of
 unused' => (update (Storage, loc, undefined');

([cell' loc], empty))
| _ => loop (loc + 1))

handle Subscript => raise Failure
 in

loop 2
end;

(************* Reflective Facet *************)

fun enact (a: Yielder) : Action = (* enact a *)
fn (ts, bs) =>

let val abstraction' (A0, ts0, bs0) = Abstraction (a (ts, bs))
 in

A0 (ts0, bs0)
end;

fun abstractionof (A:Action) : Yielder = (* abstraction of A *)
fn (ts, bs) =>

abstraction' (A, nil, empty)

fun closureof (a: Yielder) : Yielder = (* closure of a *)
fn (ts, bs) =>

case a (ts, bs) of
 abstraction' (A, ts1, empty) => abstraction' (A, ts1, bs)
| abstraction' (A, ts1, bs1) => abstraction' (A, ts1, bs1)
| _ => raise Failure;

fun applicationof (a:Yielder) (y:Yielder) : Yielder = (* application of a to y *)
fn (ts, bs) =>

let val arglist = ArgumentList (y (ts, bs))
 in
 case a (ts, bs) of

 abstraction' (A, nil, bs1) => abstraction' (A, [arglist], bs1)
| abstraction' (A, ts1, bs1) => abstraction' (A, ts1, bs1)
| _ => raise Failure

end;

Semantic Prototyping 61

(************* The Basic Facet *************)

val complete : Action = fn (ts, bs) => (nil, empty);

val fail : Action = fn (ts, bs) => raise Failure;

exception Escape;

val escape : Action = fn (ts, bs) => raise Escape;

fun (A1:Action) or (A2:Action) : Action = (* A1 or A2 *)
fn (ts, bs) => A1 (ts, bs)

handle Failure => A2 (ts, bs);

fun (A1:Action) andthen (A2:Action) : Action = (* A1 and then A2 *)
fn (ts, bs) =>

let val (ts1, bs1) = A1 (ts, bs);
 val (ts2, bs2) = A2 (ts, bs)
 in

(ts1 @ ts2, merge bs1 bs2)
end;

fun (A1:Action) and' (A2:Action) : Action = (* A1 and A2 *)
 A1 andthen A2;

fun (A1:Action) trap (A2:Action) : Action = (* A1 trap A2 *)
fn (ts, bs) => A1 (ts, bs)

handle Escape => A2 (ts, bs);

fun unfolding (A: Action) : Action = (* unfolding A *)
furthermore (bind "unfold'" (abstractionof A)) hence A;

val unfold : Action = (* unfold *)
fn (ts, bs) =>

case (Abstraction boundto "unfold'") (ts, bs) of
 abstraction' (A, _, _) => A (ts, bs)
| _ => raise Failure;

62 Semantic Prototyping

(************* Hybrid Actions *************)

fun indirectlybind (t:Token) (y:Yielder) : Action = (* indirectly bind t to y *)
fn (ts, bs) =>

let fun loop n =
(case sub (Redirections, n) of

 notused' => n
| _ => loop (n + 1))

handle Subscript => raise Failure
 in

let val dat = y (ts, bs)
 and i = loop 0
 in case dat of

 unknown' =>(update (Redirections, i, redirection' unknown');
 (nil, assoc t (indirection' i)))

| _ => let val dat' = Bindable dat
 in

update (Redirections, i, redirection' dat');
(nil, assoc t (indirection' i))

end
end

end;

fun redirect (t:Token) (y:Yielder) : Action = (* redirect t to y *)
fn (ts, bs) =>

let val indirection' i = (Indirection boundto t) (ts, bs)
 and dat = y (ts, bs)
 in case dat of

 unknown' => (update (Redirections, i, redirection' unknown');
 (nil, empty))

| _ => let val dat' = Bindable dat
 in

update (Redirections, i, redirection' dat');
(nil, empty)

 end
end;

fun recursivelybind (t:Token) (y:Yielder) : Action = (* recursively *)
 furthermore (indirectlybind t (yield unknown')) (* bind t to y *)
hence
 (redirect t y and' bind t (Indirection boundto t));

end; (* structure Actions *)

(**)

Semantic Prototyping 63

(**)

structure DataEquations2 =
struct

open Actions;

(*** ALLOCATOR ***)

val primitiveallocator : Yielder =
closureof (abstractionof (allocateacell));

(************* STORAGE *************)

fun valueassignedto (y:Yielder) : Yielder = (* the value assigned to y *)
fn (ts, bs) =>

case y (ts, bs) of
 arrayvariable' av => let fun get nil aval = aval

| get (h::t) aval =
let val hval =

valueassignedto (yield (h)) (ts, bs)
 in

get t (aval @ [hval])
end

 in
arrayvalue' (get av nil)

 end
| recordvariable' rv => let fun get nil rval = rval

 | get ((t, v)::rest) rval =
let val hval =

valueassignedto (yield (v)) (ts, bs)
 in

get rest (rval @ [(t, hval)])
 end

in
recordvalue' (get rv nil)

 end
| cell' c => (Storable storedin yield (cell' c)) (ts, bs)
| _ => raise Failure;

64 Semantic Prototyping

fun assignto (y1:Yielder, y2:Yielder) : Action = (* assign y1 to y2 *)
fn (ts, bs) =>

case (y1 (ts, bs), y2 (ts, bs)) of
 (arrayvalue' aval, arrayvariable' avar) =>

let fun put nil nil = (nil, empty)
 | put (h1::t1) (h2::t2) =

(assignto (yield (h1), yield (h2)) (ts, bs);
put t1 t2)

 | put _ _ = raise Failure
 in

put aval avar
end

| (recordvalue' rval, recordvariable' rvar) =>
let fun put nil nil = (nil, empty)
 | put ((I1, val')::t1) ((I2, var)::t2) =

(if I1 = I2 then
(assignto (yield(val'), yield (var)) (ts, bs);
put t1 t2)

 else raise Failure)
 | put _ _ = raise Failure
 in

put rval rvar
end

| (_, _) => store y1 y2 (ts, bs);

(************* INPUT-OUTPUT *************)

val allocateinputcell : Action =
fn (ts, bs) =>

let val cell' inloc = inputcell (ts, bs)
 in

update (Storage, inloc, undefined');
(nil, empty)

end;

val allocateoutputcell : Action =
fn (ts, bs) =>

let val cell' outloc = outputcell (ts, bs)
 in

update (Storage, outloc, undefined');
(nil, empty)

end;

val endofinput : Yielder =
isempty (Text storedin inputcell);

val nextcharacter : Yielder =
headof (Text storedin inputcell);

val skipacharacter : Action =
store (tailof (Text storedin inputcell)) inputcell;

Semantic Prototyping 65

val skipaline : Action =
unfolding ((check (endofinput) andthen complete)

or
 (check (nextcharacter is eolnchar)) andthen skipacharacter)

or
 (check (not' (nextcharacter is eolnchar))) andthen

skipacharacter andthen unfold));

val skipblanks : Action =
unfolding ((check endofinput) andthen complete)

or
(check (blank nextcharacter) andthen

skipacharacter andthen unfold)
or

(check (not' (blank nextcharacter)) andthen complete));

val readanunsignedinteger : Action =
(give (decimalvalueof nextcharacter) andthen skipacharacter)

then'
unfolding

((check (decimal nextcharacter) andthen
((give (sum (decimalvalueof (nextcharacter),

 product (yield (integer' 10), given Integer)))
andthen skipacharacter)

then' unfold))
or

(check (not' (decimal nextcharacter)) andthen
 give (given Integer))

or
(check endofinput andthen give (given Integer)));

val readasignedinteger : Action =
(check (nextcharacter is yield (char' "-")) andthen

skipacharacter andthen
(readanunsignedinteger then' give (negation (given Integer))))

or
(check (not' (nextcharacter is yield (char' "-"))) andthen

readanunsignedinteger);

val rewrite : Action =
store textemptylist outputcell;

66 Semantic Prototyping

fun writechar (ch:Yielder) : Action =
store ((Text storedin outputcell) catto textunitlist ch) outputcell;

fun writeunsignedint (i:Yielder) : Action =
fn (ts,bs) =>

((check (i isLessThan yield (integer' 10)) andthen
 writechar (decimaldigit i))

or
 (check (not' (i isLessThan yield (integer' 10))) andthen
 writeunsignedint (quotient (i, yield (integer' 10))) andthen
 writechar (decimaldigit (i modulo yield (integer' 10))))) (ts,bs);

fun writesignedint (i:Yielder) : Action =
(check (i isLessThan yield (integer' 0))) andthen

writechar (yield (char' "-")) andthen
writeunsignedint (negation i))

or
(check (not' (i isLessThan yield (integer' 0)))) andthen

writeunsignedint i);

end; (* structure DataEquations2 *)

(**)

Semantic Prototyping 67

(**)

structure TriangleSyntax =
struct

open DataAndSorts;
datatype

Prog = prog' of Cmd
and Cmd = assign' of Vname * Expr

| proccall' of Token * Arg list
| block' of Cmd
| letcmd' of Dec * Cmd
| ifcmd' of Expr * Cmd * Cmd

 | while' of Expr * Cmd
| seqcmd' of Cmd * Cmd
| emptycmd'

and Expr = letexp' of Dec * Expr
| ifexp' of Expr * Expr * Expr
| binaryop' of Token * Expr * Expr
| intval' of int
| charval' of string
| name' of Vname
| funcall' of Token * Arg list
| unaryop' of Token * Expr
| paren' of Expr
| recaggr' of (Token * Expr) list
| arraggr' of Expr list

and Vname = id' of Token
| recid' of Vname * Token
| arrid' of Vname * Expr

and Dec = seqdec' of Dec * Dec
| constdec' of Token * Expr
| vardec' of Token * Typ
| procdec' of Token * Param list * Cmd
| fundec' of Token * Param list * Typ * Expr

 | typedec' of Token * Typ
and Param = valparam' of Token * Typ

| varparam' of Token * Typ
| procparam' of Token * Param list
| funparam' of Token * Param list * Typ

and Arg = valarg' of Expr
| vararg' of Vname
| procarg' of Token
| funarg' of Token

and Typ = type' of Token
| arrtype' of int * Typ
| rectype' of (Token * Typ) list

end; (* structure TriangleSyntax *)
(**)

68 Semantic Prototyping

(**)

structure TriangleSemantics =
struct

open DataEquations2;
open TriangleSyntax;

fun
 execute (emptycmd') =

complete

| execute (assign' (V, E)) =
(identify V and' evaluate E)

then'
assignto (GIVEN Value 2, GIVEN Variable 1)

| execute (proccall' (t, Args)) =
givearguments Args

then'
enact (applicationof (Procedure boundto t) (given ArgumentList))

| execute (seqcmd' (C1, C2)) =
execute C1

andthen
execute C2

| execute (block' C) =
execute C

| execute (letcmd' (D, C)) =
furthermore (elaborate D)

hence
execute C

| execute (ifcmd' (E, C1, C2)) =
evaluate E

then'
((check (given TruthValue is TRUE) andthen execute C1)

or
 (check (given TruthValue is FALSE) andthen execute C2))

| execute (while' (E, C)) =
unfolding

(evaluate E
then'

((check (given TruthValue is TRUE) andthen
execute C andthen unfold)

or
 (check (given TruthValue is FALSE) andthen complete)))

and
 evaluate (intval' N) =

give (yield (integer' N))

| evaluate (charval' C) =

Semantic Prototyping 69

give (yield (char' C))

| evaluate (name' V) =
identify V

then'
(give given Value) or give (valueassignedto (given Variable)))

| evaluate (funcall' (t, Args)) =
givearguments Args

then'
enact (applicationof (Function boundto t) (given ArgumentList))

| evaluate (unaryop' (O, E)) =
evaluate E

then'
enact (applicationof (Function boundto id(O)) (argunitlist (given Value)))

| evaluate (binaryop' (O, E1, E2)) =
(evaluate E1 and' evaluate E2)

then'
enact (applicationof (Function boundto id(O))

((argunitlist (GIVEN Value 1)) catto (argunitlist (GIVEN Value 2))))

| evaluate (paren' E) =
evaluate E

| evaluate (letexp' (D, E)) =
furthermore (elaborate D)

hence
evaluate E

| evaluate (ifexp' (E, E1, E2)) =
evaluate E

then'
((check (given TruthValue is TRUE) andthen evaluate E1)

or
 (check (given TruthValue is FALSE) andthen evaluate E2))

| evaluate (recaggr' RA) =
evaluateRecord RA

| evaluate (arraggr' AA) =
evaluateArray AA

and
 evaluateRecord (nil) =

give (yield (recordvalue' nil))

| evaluateRecord ((t, E)::RA) =
(evaluate E and' evaluateRecord RA)

then'
give (unitrecord (t, GIVEN Value 1) joinedto GIVEN RecordValue 2)

and
 evaluateArray (nil) =

give (yield (arrayvalue' nil))

70 Semantic Prototyping

| evaluateArray (E::AA) =
(evaluate E and' evaluateArray AA)

then'
give (unitarray (GIVEN Value 1) abuttedto GIVEN ArrayValue 2)

and
 identify (id' t) =

give (Value boundto t)
or

give (Variable boundto t)

| identify (recid' (V, t)) =
identify V

then'
(give (fieldof (t, given RecordValue))

or
 give (fieldof (t, given RecordVariable)))

| identify (arrid' (V, E)) =
(identify V and' evaluate E)

then'
(give (componentof (GIVEN Integer 2, GIVEN ArrayValue 1))

or
 give (componentof (GIVEN Integer 2, GIVEN ArrayVariable 1)))

and
 elaborate (constdec' (t, E)) =

evaluate E
then'

bind t (given Value)

| elaborate (vardec' (t, T)) =
allocatevariable T

then'
bind t (given Variable)

| elaborate (procdec' (t, Fmls, C)) =
recursivelybind t (closureof

(abstractionof
(furthermore (bindparameters Fmls)

hence
execute C)))

| elaborate (fundec' (t, Fmls, T, E)) =
recursivelybind t (closureof

(abstractionof
(furthermore (bindparameters Fmls)

hence
evaluate E)))

| elaborate (typedec' (t, T)) =
bind t (closureof (abstractionof (allocatevariable T)))

| elaborate (seqdec' (D1, D2)) =

Semantic Prototyping 71

elaborate D1
before'

elaborate D2
and

 bindparameters (nil) =
complete

| bindparameters (h::t) =
(give (headof (given ArgumentList)) then' bindparameter h)

and'
(give (tailof (given ArgumentList)) then' bindparameters t)

and
 bindparameter (valparam' (t, T)) =

bind t (given Value)

| bindparameter (varparam' (t, T)) =
bind t (given Variable)

| bindparameter (procparam' (t, FPS)) =
bind t (given Procedure)

| bindparameter (funparam' (t, FPS, T)) =
bind t (given Function)

and
 givearguments (nil) =

give argemptylist

| givearguments (h::t) =
(giveargument h and' givearguments t)

then'
(give ((argunitlist (GIVEN Argument 1)) catto (GIVEN ArgumentList 2)))

and
 giveargument (valarg' E) =

evaluate E

| giveargument (vararg' V) =
identify V

then'
give (given Variable)

| giveargument (procarg' t) =
give (Procedure boundto t)

| giveargument (funarg' t) =
give (Function boundto t)

and
 allocatevariable (type' t) =

enact (Allocator boundto t)

| allocatevariable (arrtype' (n, T)) = (* Assumes n>0 *)
(allocatevariable T then' give (unitarray (given Variable)))

then'
unfolding
((check (sizeof (given ArrayVariable) isLessThan yield (integer' n))

72 Semantic Prototyping

andthen
((give (given ArrayVariable) and' allocatevariable T)

then'
(give (GIVEN ArrayVariable 1 abuttedto

unitarray (GIVEN Variable 2)))
then' unfold))

or
(check (sizeof (given ArrayVariable) is yield (integer' n))

andthen give (given ArrayVariable)))

| allocatevariable (rectype' RT) =
allocaterecordvariable RT

and
 allocaterecordvariable (nil) =

give (yield (recordvariable' nil))

| allocaterecordvariable ((t, T)::rest) =
(allocatevariable T and' allocaterecordvariable rest)

then'
give (unitrecord (t, GIVEN Variable 1) joinedto

GIVEN RecordVariable 2)
and

 id ("\\") = "not#" (* Indentifiers (Tokens) for operation symbols *)
| id ("/\\") = "and#"
| id ("\\/") = "or#"
| id ("+") = "sum#"
| id ("-") = "difference#"
| id ("*") = "product#"
| id ("/") = "div#"
| id ("//") = "mod#"
| id ("<") = "less#"
| id ("<=") = "lesseq#"
| id (">") = "greater#"
| id (">=") = "greatereq#"
| id ("=") = "eq#"
| id ("\\=") = "noteq#"

end; (* structure TriangleSemantics *)

(**)

Semantic Prototyping 73

(**)

structure StandardEnvironment =
struct

open TriangleSemantics;

fun unaryoperator (A:Action) : Yielder =
closureof (abstractionof

(give (headof (given ArgumentList)) then' A));

fun binaryoperator (A:Action) : Yielder =
closureof (abstractionof

((give (headof (given ArgumentList)) and'
 give (headof (tailof (given ArgumentList)))) then' A));

val eoffunction : Yielder =
closureof (abstractionof (give (endofinput)));

val eolfunction : Yielder =
closureof (abstractionof

((check endofinput andthen (give TRUE) or
 (check (not' endofinput) andthen
 give (nextcharacter is eolnchar))));

val getprocedure : Yielder =
closureof (abstractionof

((give (headof (given ArgumentList)) and'
 (give nextcharacter andthen skipacharacter)) then'
 store (GIVEN Char 2) (GIVEN Cell 1)));

val putprocedure : Yielder =
closureof (abstractionof

(give (headof (given ArgumentList)) then'
 writechar (given Char)));

val getintegerprocedure : Yielder =
closureof (abstractionof

((give (headof (given ArgumentList)) and'
 skipblanks andthen readasignedinteger) then'
 store (GIVEN Integer 2) (GIVEN Cell 1)));

val putintegerprocedure : Yielder =
closureof (abstractionof

(give (headof (given ArgumentList)) then'
 writesignedint (given Integer)));

val geteolprocedure : Yielder =
closureof (abstractionof (skipaline));

val puteolprocedure : Yielder =
closureof (abstractionof (writechar eolnchar));

val elaborateStandardEnvironment : Action =

74 Semantic Prototyping

(bind "Boolean" primitiveallocator) and'
(bind "false" FALSE) and'
(bind "true" TRUE) and'
(bind (id "\\") (unaryoperator (give (not' (given TruthValue))))) and'
(bind (id "/\\") (binaryoperator

(give (both ((GIVEN TruthValue 1), (GIVEN TruthValue 2)))))) and'
(bind (id "\\/") (binaryoperator

(give (either ((GIVEN TruthValue 1), (GIVEN TruthValue 2)))))) and'
(bind "Integer" primitiveallocator) and'
(bind (id "+") (binaryoperator

(give (sum ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "-") (binaryoperator

(give (difference ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "*") (binaryoperator

(give (product ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "/") (binaryoperator

(give (quotient ((GIVEN Integer 1), (GIVEN Integer 2)))))) and'
(bind (id "//") (binaryoperator

(give ((GIVEN Integer 1) modulo (GIVEN Integer 2))))) and'
(bind (id "<") (binaryoperator

 (give ((GIVEN Integer 1) isLessThan (GIVEN Integer 2))))) and'
(bind (id "<=") (binaryoperator

(give (not' ((GIVEN Integer 1) isGreaterThan (GIVEN Integer 2)))))) and'
(bind (id ">") (binaryoperator

(give ((GIVEN Integer 1) isGreaterThan (GIVEN Integer 2))))) and'
(bind (id ">=") (binaryoperator

(give (not' ((GIVEN Integer 1) isLessThan (GIVEN Integer 2)))))) and'
(bind "Char" primitiveallocator) and'
(bind "chr" (unaryoperator (give (decodeof (given Integer))))) and'
(bind "ord" (unaryoperator (give (codeof (given Char))))) and'
(bind "eof" eoffunction) and'
(bind "eol" eolfunction) and'
(bind "get" getprocedure) and'
(bind "put" putprocedure) and'
(bind "getint" getintegerprocedure) and'
(bind "putint" putintegerprocedure) and' (**)
(bind "geteol" geteolprocedure) and'
(bind "puteol" puteolprocedure) and'
(bind (id "=") (binaryoperator

(give ((GIVEN Integer 1) is (GIVEN Integer 2))))) and'
(bind (id "\\=") (binaryoperator

(give (not' ((GIVEN Integer 1) is (GIVEN Integer 2))))));

end; (* structure StandardEnvironment *)
(**)

Semantic Prototyping 75

(**)

open StandardEnvironment;

fun run (prog' C) =
(allocateinputcell and' allocateoutputcell)

andthen
(store (given Text) inputcell and' rewrite)

andthen
(elaborateStandardEnvironment hence execute C)

andthen
(give (Text storedin outputcell));

(**)

76 Semantic Prototyping

Appendix D: Utility Files for ML Implementation

(**)
(*** load.sml -- elaborates files and functions needed to ***)
(*** -- define parser and action semantics interpreter ***)

ParseGen.parseGen "triangle.grm"; (* Run yacc on grammar specification *)
(* creating "triangle.grm.sig" *)
(* and "triangle.grm.sml" *)

LexGen.lexGen "triangle.lex"; (* Run lex on scanner specification *)
(* creating "triangle.lex.sml" *)

use "triangle.sml";
use "triangle.grm.sig";
use "triangle.lex.sml";
use "triangle.grm.sml";

structure triangleLrVals =
triangleLrValsFun(structure Token = LrParser.Token);

structure triangleLex =
triangleLexFun(structure Tokens = triangleLrVals.Tokens);

structure triangleParser =
Join(structure Lex= triangleLex

structure LrParser = LrParser
structure ParserData = triangleLrVals.ParserData);

val parse = fn filename =>
let val instrm = open_in filename

val lexer = triangleParser.makeLexer(fn i => input(instrm,i))
val _ = triangleLex.UserDeclarations.pos := 1
val error = fn (e,i:int,_) => output(std_out,filename ^ "," ^

 " line " ^ (makestring i) ^ ", Error: " ^ e ^ "\n")
 in triangleParser.parse(30,lexer,error,()) before close_in instrm
end;

fun convert (strlist:string list) =
case strlist of
 nil => nil
 | h::t => (char' h) :: (convert t);

fun printresult (datumlist:Datum list) =
case datumlist of
 nil => output (std_out, "\n\n")
 | (char' ch) :: t => (output (std_out, ch);

 printresult (t));

Semantic Prototyping 77

fun cleanStorage n =
let val i = ref 0
 in

while !i < n do
(update (Storage, !i, unused'); i := !i + 1)

end;

fun cleanRedirection n =
let val i = ref 0
 in

while !i < n do
(update (Redirections, !i, notused'); i := !i + 1)

end;

fun go filename instring =
let val (abs_syn, _) = parse filename
 in (cleanStorage StorageSize; cleanRedirection RedirectionSize;

run abs_syn ([text' (convert (explode instring))], empty);
output (std_out, "\nOUTPUT:\n");
let val stored' (text' ls) = sub (Storage, 1)
 in printresult (ls)
end)

end;

(*** end load.sml **)
(**)

78 Semantic Prototyping

(***)
(******* triangle.lex -- lexer specification for the language Triangle ***********)

type pos = int
type svalue = Tokens.svalue
type ('a, 'b) token = ('a, 'b) Tokens.token
type lexresult = (svalue, pos) token

val pos = ref 1
val error = fn x => output(std_out, x ^ "\n")
val eof = fn () => Tokens.yEOF(!pos, !pos)

%%

%header (functor triangleLexFun(structure Tokens : triangle_TOKENS));

alpha=[A-Za-z];
digit=[0-9];
alphanumeric=[A-Za-z0-9];
graphic=[A-Za-z0-9\ \t+*/=<>&@%^?.:;,~(){}_|!'`"#$-];
ws=[\ \t];
%%

\n => (pos := (!pos) + 1; lex());
{ws}+ => (lex());
'{graphic}' => (Tokens.yQUOTED(explode yytext, !pos, !pos));
"+" => (Tokens.yOP(yytext, !pos, !pos));
"*" => (Tokens.yOP(yytext, !pos, !pos));
"-" => (Tokens.yOP(yytext, !pos, !pos));
"/" => (Tokens.yOP(yytext, !pos, !pos));
"//" => (Tokens.yOP(yytext, !pos, !pos));
"\\" => (Tokens.yOP(yytext, !pos, !pos));
"/\\" => (Tokens.yOP(yytext, !pos, !pos));
"\\/" => (Tokens.yOP(yytext, !pos, !pos));
{digit}+ => (Tokens.yNUM(revfold (fn (a,r) => ord(a) - ord("0") + 10*r)

(explode yytext) 0, !pos, !pos));
{alpha}{alphanumeric}* => (case yytext of

 "begin" => Tokens.yBEGIN(!pos, !pos)
| "end" => Tokens.yEND(!pos, !pos)
| "if" => Tokens.yIF(!pos, !pos)
| "then" => Tokens.yTHEN(!pos, !pos)
| "else" => Tokens.yELSE(!pos, !pos)
| "while" => Tokens.yWHILE(!pos, !pos)
| "do" => Tokens.yDO(!pos, !pos)
| "let" => Tokens.yLET(!pos, !pos)
| "in" => Tokens.yIN(!pos, !pos)
| "const" => Tokens.yCONST(!pos, !pos)
| "var" => Tokens.yVAR(!pos, !pos)
| "proc" => Tokens.yPROC(!pos, !pos)
| "func" => Tokens.yFUNC(!pos, !pos)
| "type" => Tokens.yTYPE(!pos, !pos)
| "array" => Tokens.yARRAY(!pos, !pos)

Semantic Prototyping 79

| "of" => Tokens.yOF(!pos, !pos)
| "record" => Tokens.yRECORD(!pos, !pos)
| _ => Tokens.yID(yytext, !pos, !pos));

":=" => (Tokens.yASSIGN(!pos, !pos));
";" => (Tokens.ySEMI(!pos, !pos));
":" => (Tokens.yCOLON(!pos, !pos));
"," => (Tokens.yCOMMA(!pos, !pos));
"." => (Tokens.yDOT(!pos, !pos));
"~" => (Tokens.yTILDE(!pos, !pos));
"(" => (Tokens.yLPAREN(!pos, !pos));
")" => (Tokens.yRPAREN(!pos, !pos));
"[" => (Tokens.yLSQUAR(!pos, !pos));
"]" => (Tokens.yRSQUAR(!pos, !pos));
"{" => (Tokens.yLCURLY(!pos, !pos));
"}" => (Tokens.yRCURLY(!pos, !pos));
"=" => (Tokens.yOP(yytext, !pos, !pos));
"<=" => (Tokens.yOP(yytext, !pos, !pos));
"<" => (Tokens.yOP(yytext, !pos, !pos));
">" => (Tokens.yOP(yytext, !pos, !pos));
">=" => (Tokens.yOP(yytext, !pos, !pos));
"\\=" => (Tokens.yOP(yytext, !pos, !pos));
. => (error ("error: bad identifier "^yytext); lex());

(*** end triangle.lex **)
(***)

80 Semantic Prototyping

(***)
(******** triangle.grm -- parser specification for the language Triangle *********)

exception rmQuotesFail;
fun rmquotes (ls) =
 case ls of
 ["'", ch, "'"] => ch
 | _ => raise rmQuotesFail

%%
%name triangle (* "triangle" becomes a prefix in functions *)
%verbose
%eop yEOF ySEMI
%pos int

%term yID of string | yNUM of int | yQUOTED of string list
| yBEGIN | yEND | yIF | yTHEN | yELSE
| yWHILE | yDO | yLET | yIN | yCONST
| yVAR | yFUNC | yPROC | yTYPE | yARRAY
| yOF | yRECORD | yASSIGN | ySEMI | yCOLON
| yCOMMA | yDOT | yEOF | yLPAREN | yRPAREN
| yLSQUAR | yRSQUAR | yLCURLY | yRCURLY
| yTILDE | yOP of string

%nonterm yProgram of Prog
| yCmds of Cmd | yCmd of Cmd
| yExp of Expr | ySecondary of Expr | yPrimary of Expr
| yRecAggr of (string * Expr) list
| yArrAggr of Expr list
| yVName of Vname
| yDecs of Dec | yDec of Dec
| yParams of Param list | yParam of Param
| yArguments of Arg list | yArgument of Arg
| yType of Typ
| yRecType of (string * Typ) list

%%

yProgram : yCmds (prog'(yCmds))

yCmds : yCmd (yCmd)
| yCmd ySEMI yCmds (seqcmd'(yCmd, yCmds))

yCmd : yVName yASSIGN yExp (assign'(yVName, yExp))
| yID yLPAREN yArguments yRPAREN (proccall'(yID, yArguments))
| yID yLPAREN yRPAREN (proccall'(yID, nil))
| yBEGIN yCmds yEND (block'(yCmds))
| yLET yDecs yIN yCmd (letcmd'(yDecs, yCmd))
| yIF yExp yTHEN yCmd yELSE yCmd (ifcmd'(yExp, yCmd1, yCmd2))
| yWHILE yExp yDO yCmd (while'(yExp,yCmd))
| (emptycmd')

Semantic Prototyping 81

yExp : ySecondary (ySecondary)
| yLET yDecs yIN yExp (letexp'(yDecs, yExp))
| yIF yExp yTHEN yExp yELSE yExp (ifexp'(yExp1, yExp2, yExp3))

ySecondary : yPrimary (yPrimary)
| ySecondary yOP yPrimary (binaryop'(yOP, ySecondary, yPrimary))

yPrimary : yNUM (intval'(yNUM))
| yQUOTED (charval'(rmquotes(yQUOTED)))
| yVName (name' yVName)
| yID yLPAREN yArguments yRPAREN (funcall'(yID, yArguments))
| yID yLPAREN yRPAREN (funcall'(yID, nil))
| yOP yPrimary (unaryop'(yOP, yPrimary))
| yLPAREN yExp yRPAREN (paren'(yExp))
| yLCURLY yRecAggr yRCURLY (recaggr'(yRecAggr))
| yLSQUAR yArrAggr yRSQUAR (arraggr'(yArrAggr))

yRecAggr : yID yTILDE yExp ([(yID, yExp)])
| yID yTILDE yExp yCOMMA yRecAggr ((yID, yExp)::yRecAggr)

yArrAggr : yExp ([yExp])
| yExp yCOMMA yArrAggr (yExp::yArrAggr)

yVName : yID (id'(yID))
| yVName yDOT yID (recid'(yVName, yID))
| yVName yLSQUAR yExp yRSQUAR (arrid'(yVName, yExp))

yDecs : yDec (yDec)
| yDec ySEMI yDecs (seqdec'(yDec, yDecs))

yDec : yCONST yID yTILDE yExp (constdec'(yID, yExp))
| yVAR yID yCOLON yType (vardec'(yID, yType))
| yPROC yID yLPAREN yParams yRPAREN yTILDE yCmd

(procdec'(yID, yParams, yCmd))
| yPROC yID yLPAREN yRPAREN yTILDE yCmd

(procdec'(yID, nil, yCmd))
| yFUNC yID yLPAREN yParams yRPAREN yCOLON yType yTILDE yExp

(fundec'(yID, yParams, yType, yExp))
| yFUNC yID yLPAREN yRPAREN yCOLON yType yTILDE yExp

(fundec'(yID, nil, yType, yExp))
| yTYPE yID yTILDE yType (typedec'(yID, yType))

yParams : yParam ([yParam])
| yParam yCOMMA yParams ([yParam] @ yParams)

yParam : yID yCOLON yType (valparam'(yID, yType))
| yVAR yID yCOLON yType (varparam'(yID, yType))
| yPROC yID yLPAREN yParams yRPAREN

(procparam'(yID, yParams))
| yPROC yID yLPAREN yRPAREN (procparam'(yID, nil))
| yFUNC yID yLPAREN yParams yRPAREN yCOLON yType

(funparam'(yID, yParams, yType))

82 Semantic Prototyping

| yFUNC yID yLPAREN yRPAREN yCOLON yType
(funparam'(yID, nil, yType))

yArguments : yArgument ([yArgument])
| yArgument yCOMMA yArguments ([yArgument] @ yArguments)

yArgument : yExp (valarg'(yExp))
| yVAR yVName (vararg'(yVName))
| yPROC yID (procarg'(yID))
| yFUNC yID (funarg'(yID))

yType : yID (type'(yID))
| yARRAY yNUM yOF yType (arrtype'(yNUM, yType))
| yRECORD yRecType yEND (rectype'(yRecType))

yRecType : yID yCOLON yType ([(yID, yType)])
| yID yCOLON yType yCOMMA yRecType

([(yID, yType)] @ yRecType)

(*** end triangle.grm ***)
(***)

