
Copyright 2004 by Ken Slonneger Threads 1

Multiple Threads

Threads
A thread is a single sequential flow of control within a program.
Every program has at least one thread.

Multithreaded Program

• A program with more than one thread.

• Each thread may execute on its own processor in a
multiprocessor system.

• All threads may share a single processor.

• OS decides when each thread gets processor (called
scheduling).

• Java specifies some properties that the scheduler must
follow, but not all.



2 Threads Copyright 2004 by Ken Slonneger

Two Ways to Create a Thread

1. Instantiate a subclass of the class Thread (in java.lang).
Override the method

public void run()
to specify the code that the thread will execute;
we never call run directly.

Define Sub as a subclass of Thread:
class Sub extends Thread
{

// definition of run() here
}

Instantiate Sub to create a Thread object:
Sub thread = new Sub();

Begin the execution of thread using the instance method start:
thread.start();

One step (provides no reference to the thread):
new Sub().start();

Note: If we do call run directly, it will execute on the current
thread (belonging to the method main), not a new thread.



Copyright 2004 by Ken Slonneger Threads 3

Example
public class SimpleThread extends Thread
{

private int threadNum;
SimpleThread(int k)
{

threadNum = k;
System.out.println("Creating " + threadNum);

}
public void run()
{

for (int count=5; count>=1; count--)
System.out.println("Thread " + threadNum

 + ": Value = " + count);
}
public static void main(String [] a)
{

for (int k=1; k<=5; k++)
{

SimpleThread st = new SimpleThread(k);
st.start();

}
// We now have 6 threads (5 created plus main)
System.out.println("All threads started");

}
}



4 Threads Copyright 2004 by Ken Slonneger

Output

CodeWarrior
Creating 1
Creating 2
Creating 3
Thread 1: Value = 5
Thread 1: Value = 4
Thread 1: Value = 3
Thread 1: Value = 2
Thread 1: Value = 1
Creating 4
Thread 2: Value = 5
Thread 2: Value = 4
Thread 2: Value = 3
Thread 2: Value = 2
Thread 2: Value = 1
Creating 5
Thread 3: Value = 5
Thread 3: Value = 4
Thread 3: Value = 3
Thread 3: Value = 2
Thread 3: Value = 1
All Threads Started
Thread 4: Value = 5
Thread 4: Value = 4
Thread 4: Value = 3
Thread 4: Value = 2
Thread 4: Value = 1
Thread 5: Value = 5
Thread 5: Value = 4
Thread 5: Value = 3
Thread 5: Value = 2
Thread 5: Value = 1

Blue (AIX)
Creating 1
Thread 1: Value = 5
Thread 1: Value = 4
Thread 1: Value = 3
Thread 1: Value = 2
Thread 1: Value = 1
Creating 2
Creating 3
Thread 2: Value = 5
Thread 2: Value = 4
Thread 2: Value = 3
Thread 2: Value = 2
Thread 2: Value = 1
Creating 4
Creating 5
Thread 3: Value = 5
Thread 3: Value = 4
Thread 3: Value = 3
Thread 3: Value = 2
Thread 3: Value = 1
Thread 4: Value = 5
Thread 4: Value = 4
Thread 4: Value = 3
Thread 4: Value = 2
Thread 4: Value = 1
All Threads Started
Thread 5: Value = 5
Thread 5: Value = 4
Thread 5: Value = 3
Thread 5: Value = 2
Thread 5: Value = 1

HP JDK 1.1
Creating 1
Creating 2
Creating 3
Creating 4
Creating 5
All Threads Started
Thread 1: Value = 5
Thread 1: Value = 4
Thread 1: Value = 3
Thread 1: Value = 2
Thread 1: Value = 1
Thread 2: Value = 5
Thread 2: Value = 4
Thread 2: Value = 3
Thread 2: Value = 2
Thread 2: Value = 1
Thread 3: Value = 5
Thread 3: Value = 4
Thread 3: Value = 3
Thread 3: Value = 2
Thread 3: Value = 1
Thread 4: Value = 5
Thread 4: Value = 4
Thread 4: Value = 3
Thread 4: Value = 2
Thread 4: Value = 1
Thread 5: Value = 5
Thread 5: Value = 4
Thread 5: Value = 3
Thread 5: Value = 2
Thread 5: Value = 1

HP JDK 1.2
Creating 1
Creating 2
Thread 1: Value = 5
Thread 1: Value = 4
Thread 1: Value = 3
Thread 1: Value = 2
Thread 1: Value = 1
Creating 3
Creating 4
Thread 2: Value = 5
Thread 2: Value = 4
Thread 2: Value = 3
Thread 2: Value = 2
Thread 2: Value = 1
Thread 3: Value = 5
Thread 3: Value = 4
Thread 3: Value = 3
Thread 3: Value = 2
Thread 3: Value = 1
Creating 5
Thread 4: Value = 5
Thread 4: Value = 4
Thread 4: Value = 3
Thread 4: Value = 2
Thread 4: Value = 1
All Threads Started
Thread 5: Value = 5
Thread 5: Value = 4
Thread 5: Value = 3
Thread 5: Value = 2
Thread 5: Value = 1



Copyright 2004 by Ken Slonneger Threads 5

2. Create a class that implements the interface Runnable.
public interface java.lang.Runnable
{

public void run();
}

The class may extend any other class but must override the
method

public void run()

Suppose the class is called Runner:
class Runner extends OtherClass implements Runnable

Now instantiate a Thread object using the Thread constructor
that takes a Runnable object:

Thread th = new Thread(new Runner());

Then start the thread:
th.start();

Combining the steps:
new Thread(new Runner()).start();

Can also name the Runnable object:
Runnable rn = new Runner();
Thread t2 = new Thread(rn);
t2.start();



6 Threads Copyright 2004 by Ken Slonneger

Example

public class Simple implements Runnable
{

private int threadNum;
Simple(int k)
{

threadNum = k;
Thread st = new Thread(this);
System.out.println("Creating " + threadNum);
st.start();

}
public void run()
{

for (int count=5; count>0; count--)
System.out.println("Thread " + threadNum +

": Value = " + count);
}
public static void main(String [] args)
{

for (int k=1; k<=5; k++) new Simple(k);
System.out.println("All Threads Started");

}
}

May create a thread outside of its class:
Thread st = new Thread(new RunnableClass());



Copyright 2004 by Ken Slonneger Threads 7

Producer-Consumer Problem

One or more threads produce values.
One or more threads consume values.
Values are maintained as private data in an object
with store (put) and load (get) operations.
This object can only hold one value at a time.

class MyData
{

private int datum;
void put(int num)
{

datum = num;
}
int get()
{

return datum;
}

}

Notice the possibility of interference between the threads:
• A second value is produced before the first is consumed.
• A value is consumed twice before the producer produces

a new value.



8 Threads Copyright 2004 by Ken Slonneger

Version 1: Interference

class Producer implements Runnable
{

private MyData store;
private int num;

Producer(int k, MyData st)
{

store = st;
num = k;

}

public void run()
{

for (int n=1; n<=10; n++)
{

try // simulate time needed to produce next value
{

Thread.sleep((int)(Math.random()*500));
}
catch (InterruptedException e)
{

return;
}
store.put(n);
System.out.println("Producer" + num + " : " + n);

}
}

}



Copyright 2004 by Ken Slonneger Threads 9

class Consumer implements Runnable
{

private MyData store;
private int num;
Consumer(int k, MyData st)
{

store = st;
num = k;

}

public void run()
{

while (true)
{

int k = store.get();
System.out.println ("     Consumer" + num + ": " + k);
try // simulate time needed to consume value
{

Thread.sleep((int)(Math.random()*500));
}
catch (InterruptedException e)
{ return;   }

}
}

}

public class Main1
{

public static void main(String [] args)
{

MyData store = new MyData();
new Thread(new Producer(1, store)).start();
new Thread(new Consumer(1, store)).start();

}
}



10 Threads Copyright 2004 by Ken Slonneger

Output

Consumer1: 0
Producer1: 1
Producer1: 2

Consumer1: 2
Consumer1: 2

Producer1: 3
Consumer1: 3

Producer1: 4
Producer1: 5

Consumer1: 5
Consumer1: 5

Producer1: 6
Consumer1: 6

Producer1: 7
Producer1: 8

Consumer1: 8
Producer1: 9

Consumer1: 9
Producer1: 10

Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10
Consumer1: 10

:



Copyright 2004 by Ken Slonneger Threads 11

Version 2: Busy-waiting

Use flags (boolean variables) to convey the state of the data
object.

ready Next value is ready to be read.
taken Previous value has been read.

get only when ready is true.
put only when taken is true.

Use busy-waiting loops to wait until conditions are right.
In put: while (!taken)

// do nothing
;

In get: while (!ready)
// do nothing
;

A thread may hog processor while in a busy-waiting loop,
doing nothing.

Unselfish Threads
When a thread is involved in a long computation, say in a loop,
it is best for the thread to give other threads a chance to
execute.
• It can put itself to sleep, becoming inactive for a fixed amount

of time.
static void sleep(long millis) throws InterruptedException

The exception is raised when another thread interrupts
the sleeping thread.



12 Threads Copyright 2004 by Ken Slonneger

• It can give up control, moving to the end of the queue of
runnable threads.

static void yield()
If any other threads are currently waiting, one of them
is given control to execute.

Basic Principle: If a thread is interacting correctly with other
threads (no interference), inserting sleep or yield callswill not
destroy correctness.
Contrapositive: If a program with multiple threads works
incorrectly with sleep and yield calls, it is incorrect without
them.

class MyData
{

private int datum;
private boolean ready;
private boolean taken;

MyData()
{

ready = false; // Next value ready to be read
taken = true; // Previous value has been read

}

void put(int num)
{

while (!taken)
Thread.yield(); // Note yield

datum = num;
taken = false;
ready = true;
Main2.delay(200); // will not affect correctness

}



Copyright 2004 by Ken Slonneger Threads 13

int get()
{

while (!ready)
Thread.yield(); // Note yield

int num = datum;
Main2.delay(200); // will not affect correctness
ready = false;
taken = true;
return num;

}
}

Producers and Consumers are the same, except we create two
Consumers.

public class Main2
{

public static void main(String [] args)
{

MyData store = new MyData();
new Thread(new Producer(1, store)).start();
new Thread(new Consumer(1, store)).start();
new Thread(new Consumer(2, store)).start();

}

static void delay(int n)
{ // use to force interleaving

try
{ Thread.sleep(n); }
catch (InterruptedException e) { }

}
}



14 Threads Copyright 2004 by Ken Slonneger

Output

Producer1: 1
Consumer1: 1

Producer1: 2
Producer1: 3

Consumer2: 1
Consumer2: 3

Producer1: 4
Consumer1: 4

Producer1: 5
Consumer2: 5

Producer1: 6
Consumer1: 6

Producer1: 7
Consumer2: 7

Producer1: 8
Consumer2: 8

Producer1: 9
Consumer2: 9

Producer1: 10
Consumer1: 10



Copyright 2004 by Ken Slonneger Threads 15

Race Conditions
With more than one consumer, a race condition may occur.
This means that the result depends on the order of interleaving
of the threads.

Producer Consumer1 Consumer2
Thread Thread Thread

while (!ready)
Thread.yield();

while (!ready)
Thread.yield();

datum = num;
taken = false;
ready = true;

num = datum;
num = datum;

ready = false;
taken = true;
return num;

ready = false;
taken = true;
return num;

Same value is consumed by two different threads.



16 Threads Copyright 2004 by Ken Slonneger

Another Example

Producer Consumer1 Consumer2
Thread Thread Thread

while (!ready)
Thread.yield();

while (!ready)
Thread.yield();

datum = num;
taken = false;
ready = true;

num = datum;
num = datum;

while (!taken)
Thread.yield();

ready = false;
taken = true;

datum = num;
taken = false;
ready = true;

return num;
while (!taken)

Thread.yield();
ready = false;
taken = true;
return num;

datum = num;
taken = false;
ready = true;

A value is missed by the consumers.



Copyright 2004 by Ken Slonneger Threads 17

Monitors

A monitor acts as a wall around an object so that all of the
“synchronized” code from the class is inside the wall.
Only one thread at a time may execute (synchronized) code
inside a monitor for an object.

Monitor code is marked by the keyword synchronized.
• A modifier on a method.
• A modifier with an object parameter on a block.

A class may have several synchronized code segments, but
they all lie inside the wall of the same monitor.

The code inside of a monitor is called a critical section.
With a monitor for the critical section, while one thread is
manipulating the datum, no other thread can access or change
the datum.



18 Threads Copyright 2004 by Ken Slonneger

Version 3: Monitor

Use synchronized to create a monitor for MyData.

class MyData
{

private int datum;
private boolean ready = false;
private boolean taken = true;

synchronized void put(int num)
{

while (!taken)  Thread.yield();
datum = num;
taken = false;
ready = true;

}

synchronized int get()
{

while (!ready)  Thread.yield();
ready = false;
taken = true;
return datum; // No need to save datum since put()

} // cannot change it while a thread
} // is executing get().

Output
None



Copyright 2004 by Ken Slonneger Threads 19

What is the Problem?

Suppose that a thread is in one of these methods,
stuck on the while (!flag).
No other thread can get inside the monitor to change the flag,
and executing the yield method will not release the lock on the
monitor.
The threads are deadlocked or in a deadly embrace.

Solution
Release the monitor when in a busy-waiting loop.
The polling loops that test ready and taken, the busy-waiting
loops, are a problem.
• Processor time is wasted in busy-waiting loops.
• Without timeslicing one thread can get stuck in a busy-waiting

loop forever.
• We want a thread to relinquish control and the monitor lock

when it is not able to continue with “productive” work.

Methods in class Object

final void wait() throws InterruptedException
Causes thread to suspend and wait to be notified before
continuing; in addition, the thread releases the monitor lock
while it is waiting.

final void notify()
Allows one of the currently waiting threads to re-acquire
the monitor.



20 Threads Copyright 2004 by Ken Slonneger

final void notifyAll()
Allows all of the currently waiting threads to be able to
re-acquire the monitor.
Only one will get into the monitor at a time.
These methods may be called only from within synchronized code.

Version 4: wait and notify
class MyData
{

private int datum;
private boolean ready= false; // Use only one flag

// taken = !ready
synchronized void put(int num)
{

while (ready)
try {  wait();  }
catch (InterruptedException e)
{   return;  }

datum = num;
ready = true;
notifyAll();

}
synchronized int get()
{

while (!ready)
try {  wait();  }
catch (InterruptedException e)
{   return Integer.MIN_Value;  }

int num = datum;
ready = false;
notifyAll();
return num; // could be an interleave before return

}
}



Copyright 2004 by Ken Slonneger Threads 21

Two Producers—Two Consumers (only up to 7)
Producer1: 1

Consumer1: 1
Consumer2: -1

Producer2: -1
Producer1: 2

Consumer2: 2
Producer2: -2

Consumer1: -2
Producer1: 3

Consumer2: 3
Producer2: -3

Consumer1: -3
Consumer2: -4

Producer2: -4
Producer1: 4

Consumer1: 4
Producer2: -5

Producer1: 5
Consumer2: -5

Producer2: -6
Consumer2: 5

Consumer1: -6
Producer2: -7

Consumer2: -7
Producer1: 6

Consumer2: 6
Producer1: 7

Consumer2: 7
// Need cntl-c to stop program



22 Threads Copyright 2004 by Ken Slonneger

How to Stop the Consumers
The Producer threads terminate when their run methods exit
after finishing their for loops.
The Consumer threads, however, are stuck in an endless
while loop.
First Step: Change the loop in Consumer
class Consumer extends Thread
{

private MyData store;
private int num;
boolean done = false;
Consumer(int k, MyData st)
{

store = st;
num = k;

}
void setDone(boolean b)
{   done = b;   }
public void run()
{

while (!done)
{

int k = store.get();
System.out.println ("   Consumer" + num + ": " + k);
try // simulate time needed to consume value
{

Thread.sleep((int)(Math.random()*500));
}
catch (InterruptedException e)
{  return;  }

}
}

}



Copyright 2004 by Ken Slonneger Threads 23

Second Step: Have main wait for Producers to stop
The main method that we have now terminates right after
starting the threads it has created.
We want the main method to keep running and wait for the
Producers to complete their tasks.
Another instance method:

public final void join() throws InterruptedException
If the code in a thread calls thrd.join() where thrd is another
thread, the first thread waits (blocks) until the second thread,
thrd, terminates.
Change the main method as follows:

public static void main(String [] args)
{

MyData store = new MyData();
Thread pt1 = new Thread(new Producer(1, store, 1));
Thread pt2 = new Thread(new Producer(2, store, -1));
pt1.start();
pt2.start();
Consumer c1 = new Consumer(1, store);
Consumer c2 = new Consumer(2, store);
Thread ct1 = new Thread(c1);
Thread ct2 = new Thread(c2);
ct1.start();
ct2.start();
try
{

pt1.join();   pt2.join();
}
catch (InterruptedException e) { }



24 Threads Copyright 2004 by Ken Slonneger

System.out.println("Both Producers are done.");
c1.setDone(true);
c2.setDone(true);

}
After both Producers have terminated, the main method signals
to the two Consumers that they may shut down now.
These alterations in Consumer and main work some of the time.
A Consumer termintes only if it executes its while loop test.
But if one of the Consumers is in a wait state because it
relinquished the monitor lock, at the end of the main method
there are no threads available to signal (notify) the Consumer
that if may continue.

Third Step: Have main interrupt the Consumers
Finally, add the following code at the very end of the main
method.

if (ct1.isAlive())
ct1.interrupt();

if (ct2.isAlive())
ct2.interrupt();

Now the entire program shuts down on it own.

Animation Example
An application with 25 threads each of which is a panel whose
color is chosen arbitrarily on the screen.

Create a 5 by 5 grid and instantiate 25 JPanels using the class
CBox, each with a thread that runs independently, choosing
one of set of colors for its rectangle that is drawn at its position
on the grid.



Copyright 2004 by Ken Slonneger Threads 25

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class BoxesApp extends JFrame
{

static final int GRID = 5;
BoxesApp()
{

Container con = getContentPane();
con.setBackground(Color.black);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
con.setLayout(new GridLayout(GRID, GRID));
for (int k = 1; k <= GRID*GRID; k++)
{

CBox cb = new CBox();
con.add(cb);
new Thread(cb).start();

}
}
public static void main(String [] args)
{

BoxesApp ba = new BoxesApp();
ba.setSize(700,500);
ba.setVisible(true);

}
}

class CBox extends JPanel implements Runnable
{

static final Color [] c olors =
{ Color.gray, Color.lightGray, Color.darkGray, };



26 Threads Copyright 2004 by Ken Slonneger

Color nextColor()
{

return colors[(int)(Math.random()*colors.length)];
}
public void paintComponent(Graphics  g)
{ // redundant method

super.paintComponent(g);
}
public void run()
{

while (true)
{

setBackground(nextColor());
repaint();
try
{ Thread.sleep((int)(1000*Math.random()));  }
catch (InterruptedException e) {  return;  }

}
}

}



Copyright 2004 by Ken Slonneger Threads 27

States and Transitions of a Thread

Summary
A thread can be in one of four states:
1. New: Created but not started.
2. Runnable: Created and started and able to execute;

whether it is actually running depends on
the scheduler.

3. Blocked: Something prevents the thread from being
runnable, so the scheduler ignores it.

4. Dead: Thread has returned from its run method



28 Threads Copyright 2004 by Ken Slonneger

A thread can be blocked for one of five reasons:
1. Asleep because of a call to sleep.
2. Suspended because of a call to join.
3. Suspended because of a call to wait.
4. Waiting for IO to complete.
5. Trying to call a synchronized method on

an object whose lock is unavailable.

A Threaded Domino Server

The Domino Server that we wrote earlier can handle only one
client at a time.
Using threads, the server can be altered to deal with multiple
clients at the same time easily.
The interaction with each client is handled in a thread defined by
the class Handler.
import java.io.*;
import java.net.*;

public class DominoServer
{

public static void main(String [] args)
{

try
{ ServerSocket ss = new ServerSocket(9876);

System.out.println("Domino Server running on " +
InetAddress.getLocalHost().getHostName());

System.out.println("Use control-c to stop server.");
while (true)
{

Socket inSock = ss.accept();
Handler h = new Handler(inSock);



Copyright 2004 by Ken Slonneger Threads 29

h.start();
}

}
catch (IOException e)
{

System.out.println(e);
}

}
}
class Handler extends Thread
{

private Socket sock;
Handler(Socket s)
{  sock = s;  }
public void run()
{

try
{ String client = sock.getInetAddress().getHostName();

System.out.println("Connection from client: " + client);
InputStream in = sock.getInputStream();
OutputStream out = sock.getOutputStream();
ObjectOutputStream outStrm =

new ObjectOutputStream(out);
ObjectInputStream inStrm =

new ObjectInputStream(in);
outStrm.writeUTF("Enter number of dominoes desired");
outStrm.flush();
int cnt = inStrm.readInt();
for (int k=1; k<=cnt; k++)
{

Domino d = new Domino(true);
outStrm.writeObject(d);

}
System.out.println(cnt + " dominoes sent to " + client);



30 Threads Copyright 2004 by Ken Slonneger

sock.close();
}
catch (IOException e)
{

System.out.println(e);
}

}
}

// Do not forget the Domino class

class Domino implements Serializable
{

:
}

Sample Execution: Server Side

% java DominoServer
Domino Server running on desert.divms.uiowa.edu
Use control-c to terminate server.
Connection from client: breeze.cs.uiowa.edu
Connection from client: gorge.divms.uiowa.edu
Connection from client: gust.cs.uiowa.edu
Connection from client: lisbon.divms.uiowa.edu
4 dominoes sent to gorge.divms.uiowa.edu
7 dominoes sent to breeze.cs.uiowa.edu
11 dominoes sent to lisbon.divms.uiowa.edu
18 dominoes sent to gust.cs.uiowa.edu
Connection from client: gust.cs.uiowa.edu
29 dominoes sent to gust.cs.uiowa.edu



Copyright 2004 by Ken Slonneger Threads 31

Bouncing Ball

class Bounce
• Subclass of JFrame that instantiates itself in main.
• Initialization is in its constructor.
• Implement an ActionListener to respond to button presses.
• A JPanel that is passed to the ball class.
• A JPanel for two buttons at the bottom.

class Ball
• Constructor takes a panel, called box to bounce in, and a

color.

• A method called bounce controls the ball using the methods:
 draw to draw the ball in its initial position
 move to advance the ball two pixels in each direction

Erases current ball, and then redraws ball in new spot
Does this 1000 times.



32 Threads Copyright 2004 by Ken Slonneger

• Dimension d = box.getSize();

• Ball is XSIZE=20 by YSIZE=20 pixels.

Changing Direction of Ball

if (x <= 0)  { x = 0;  dx = -dx;  }

if (x+XSIZE >= d.width)
{  x = d.width-XSIZE;   dx = -dx;  }

if (y <= 0)  { y = 0;  dy = -dy;  }

if (y+YSIZE >= d.height)
{  y = d.height-YSIZE;   dy = -dy;  }



Copyright 2004 by Ken Slonneger Threads 33

Code
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Bounce extends JFrame
{

private JPanel surface;

public static void main(String [] a)
{

JFrame jf = new Bounce();
jf.setSize(600, 500);
jf.setVisible(true);

}

Bounce()
{

setTitle("Bounce");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container cp = getContentPane();
cp.setBackground(new Color(255, 204, 153));
surface = new JPanel();
surface.setBackground(new Color(255, 204, 153));
cp.add(surface, "Center");
JPanel south = new JPanel();
south.setBackground(new Color(153, 204, 153));
JButton start = new JButton("Start");
start.addActionListener(new ButtonHandler());
south.add(start);



34 Threads Copyright 2004 by Ken Slonneger

JButton close = new JButton("Close");
close.addActionListener(new ButtonHandler());
south.add(close);
cp.add(south, "South");

}

class ButtonHandler implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

String arg = e.getActionCommand();
if (arg.equals("Start"))
{

Ball b = new Ball(surface, Color.blue);
b.bounce();

}
else if (arg.equals("Close"))
{

System.exit(0);
}

}
}

} // end of class Bounce



Copyright 2004 by Ken Slonneger Threads 35

class Ball
{

Ball(JPanel c, Color clr)
{

box = c;
color = clr;

}

void bounce()
{

draw(); // draw ball for first time
for (int k=1; k<=1000; k++)
{

try
{ Thread.sleep(20);
}
catch (InterruptedException e)
{  return;  }
move();

}
}

void draw()
{

Graphics g = box.getGraphics();
g.setColor(color);
g.fillOval(x, y, XSIZE, YSIZE);

}

void move()
{

Graphics g = box.getGraphics();
g.setColor(box.getBackground());
g.fillOval(x, y, XSIZE, YSIZE); // draw over old ball



36 Threads Copyright 2004 by Ken Slonneger

x = x + dx;
y = y + dy;

Dimension d = box.getSize();

if (x <= 0)
{ x = 0;  dx = -dx;  }

if (x+XSIZE >= d.width)
{  x = d.width-XSIZE;   dx = -dx;  }

if (y <= 0)
{ y = 0;  dy = -dy;  }

if (y+YSIZE >= d.height)
{  y = d.height-YSIZE;   dy = -dy;  }

g.setColor(color);
g.fillOval(x, y, XSIZE, YSIZE);

}

private JPanel box;
private Color color;
private static final int XSIZE=20, YSIZE=20;
private int x=50, y=0, dx=2, dy=2;

}

Problem
While ball is moving, no other method can be executing.
• Button presses are ignored until ball is done moving.
• Window close is ignored until ball is done moving.
• Ball is executing its code using the event handling thread.



Copyright 2004 by Ken Slonneger Threads 37

The execution of the program involves two threads:

1. A thread that executed the three lines of the main method
and then terminates.

2. A thread that listens for the occurrence of events and calls
the appropriate methods in the Listener objects. The method
bounce executes on this thread. Drawing is done on this
thread.

Solution
Make Ball a thread.
• Then other processes may execute while Ball thread is

sleeping or not scheduled to execute.
• Also, may have multiple balls.
• Every time "Start" is pressed, a new ball thread is started.

In class Bounce
if (arg.equals("Start")
{

Ball b = new Ball(surface, Color.blue):
b.start(); // Note: calls start, not bounce

}

In class Ball
class Ball extends Thread
{

// Instead of method bounce()

public void run()
{

draw(); // draw ball for first time



38 Threads Copyright 2004 by Ken Slonneger

while (true) //  run until Close button is pressed
{

try {  Thread.sleep(20);  }
catch (InterruptedException e)
{  return;  }
move();

}
}

Other methods are identical.

Variation: Add the buttons to speed up and slow down the
moving balls.


