
Copyright 2004 by Ken Slonneger Software Development 1

Software Development: An Introduction

Fact: Software is hard.

Imagine the difficulty of producing Windows 2000
• 29 million lines of code
• 480,000 pages of listing if printed
• a stack of paper 161 feet high
• Estimates were made that there were 63,000 bugs in the

software when it was released.

Software Life Cycle: Stages that a program goes through.
Conception

Retirement

Release
Defect reports

and
Feature requests

Development Use

Maintenance

Release

Development: Months or a few years
Maintenance: Modify program to enhance it or to fix problems
Use and Maintenance: Possibly many years

Problem
Maintenance will probably be done by programmers who did
not develop the original program.

2 Software Development Copyright 2004 by Ken Slonneger

Goal: Construct programs that are easy to read, understand, and
modify.

Quote: Always code as if the guy who ends up maintaining your
code will be a violent psychopath who knows where you
live. — John F. Woods

Qualities of Good Software
Correctness
• Performs the task defined by the specification.
Robustness
• Reacts appropriately to unusual conditions.
• Degrades gracefully under adverse conditions.
Extendibility
• Allows changes and extensions of the specification easily.
Reusability
• Be usable, at least in part, in the construction of other programs.
Compatibility
• Works well with other, preexisting software that it uses.
Efficiency
• No excessive use of resources (time and memory).
Usability
• Useful to many without special knowledge.
Functionality
• Provides all the behavior required to solve the problem and

many similar ones.
Timeliness
• Completed on time.
Style
• Has aesthetic properties that make it enjoyable to maintain.

Copyright 2004 by Ken Slonneger Software Development 3

Development Process
• Establish requirements clearly.
• Plan design of program carefully.
• Follow design, coding, and documentation guidelines.

Changes made late in the life cycle are much more expensive
than those made early.

Putting an extra effort into program development will likely reduce
the building and maintenance costs significantly.

Build-and-Fix
How we create small programs.

ReleaseWrite
program

Modify
program

Programmer simply reacts to problems.
• Ad-hoc strategy
• Not really a development methodology.
• Program not designed to aid debugging and maintenance.

4 Software Development Copyright 2004 by Ken Slonneger

Methodology I: Waterfall Model
• Popular in the 1970’s.

• Linear sequence of stages.

Release

Specify
requirements

Create
design

Implement
code

Test
system

Analysis

Design

Construction

Verification

• No provision for revisiting earlier stages.

• Each stage must be completed accurately before going
on to the next.

• Problem: What if an error is uncovered in a later stage that
depends on a mistake made in an earlier phase?

Copyright 2004 by Ken Slonneger Software Development 5

Methodology II: Iterative Models
• Cycle through phases, permitting a revisit of earlier ones.

Modified Waterfall

ReleaseImplement
code

Test
system

Analysis Design Construction Verification

Specify
requirements

Create
design

• Each stage should be developed as completely as possible.
• Backtracking should be used to correct errors or problems

uncovered in later phases.
• Repeat the entire process creating a more complete

implementation each time.

Simple Spiral

Release

Analysis Design

Construction
Verification

6 Software Development Copyright 2004 by Ken Slonneger

Spiral process
• Starting at middle, go through successive requirement

analysis, design creation, code implementation, and evaluation
phases.

• Number of iterations is arbitrary: Do as many as you need.

Prototypes
• Programs that implement part of a system to explore

possibilities.
• Ignore efficiency and completeness.
• Help designer avoid misunderstanding requirements.
• Use “stubs” for missing units (classes and methods), that is,

empty code that compiles.
• Prototypes may be disposable or evolutionary (develop into

final program).

Analysis
• Investigate the problem.
• Do not define a solution yet.
• Specify requirements.
• Use “use case” methodology.
• Analyze the domain of the problem.
• Create conceptual model, identifying concepts and relationships.
• Do not define software components.
• Represent concepts in the real-world problem domain.

Copyright 2004 by Ken Slonneger Software Development 7

Design
• Construct a logical solution that satisfies the requirements.

• Assign responsibilities to the various components of the
solution (the most important task).

• Identify suitable classes and objects.

• Use class diagrams (relations among classes) and collaboration
diagrams (objects with flow of messages between them).

Construction
• Implement the design in a programming language.

Requirement Specifications
Requirements must be specified correctly before the problem can
be analyzed.

Main Problem: Understanding the needs of the users.

8 Software Development Copyright 2004 by Ken Slonneger

Example: Gradebook
Overview Statement

The purpose of this project is to provide a record keeping system
that maintains and analyzes the grades for a course.

Customers

Instructors of courses.

Goals

The goal is to provide an accurate and convenient way
to maintain grades for a course.

Specific goals
• Flexible tools to create and alter the roster.
• Classify course grades to allow weighting of course work.
• Persistent storage to hold the grades during a semester.

System Functions
Basic Functions

R1.1 Create a roster of student names and ID numbers.

R1.2 Add a student to the roster.

R1.3 Delete a student from the roster.

R1.4 Print a listing of students with the grades.

R1.5 Provide persistent storage mechanism to save
and retrieve rosters.

Copyright 2004 by Ken Slonneger Software Development 9

Grade Functions

R2.1 Classify and accept one set of grades for the roster
of students.

R2.2 Allow three classifications for grades: Exams, Projects,
and Homework/quizzes.

R2.3 Change a grade.

Analysis Functions

R3.1 Compute total scores for students based on weight
factors given to each category of grades.

R3.2 Sort list of students by their total grades.

R3.3 Print students in the order of their total scores.

R3.4 Print histogram of total scores.

10 Software Development Copyright 2004 by Ken Slonneger

UML: Unified Modeling Language
A standard modeling notation.

Not a development process.

Authors Grady Booch
Jim Rumbaugh
Ivar Jacobson

UML Diagrams
Use case diagrams

Static structure diagrams
• Conceptual model
• Class diagrams
• Object descriptions

Interaction diagrams
• Sequence diagrams
• Collaboration diagrams

State diagrams
• State diagrams
• Activity diagrams

Implementation diagrams
• Package diagrams
• Component diagrams
• Deployment diagrams

Copyright 2004 by Ken Slonneger Software Development 11

Use Cases
Draw a diagram showing the interactions between “actors”
in the system as classified by use cases.

• Show boundary between system and “users”.

• Use cases are shown as ovals.

• Actors are shown as stick figures joined to the use cases
in which they participate.

Point of Sale
Terminal

Customer

Manager

Cashier

Buy Items

Log In

Return Items

Start Up

An actor is a user of the system in a particular role.

A user can be a person, another system, or a hardware device.

Created by Ivar Jacobson.

12 Software Development Copyright 2004 by Ken Slonneger

Narrative Description
Describe the steps in the use case in a structured prose format.

• Identify the initiator of the use case.

• Describe what the actor(s) do and how the system responds
as the use case plays out.

• Specify alternative courses that result from unexpected
occurrences.

Use Cases in Software Development
Iterative development cycles are organized by use case
requirements.

Use cases should be ranked with high-ranking cases tackled in
early development cycles.

Use cases can be developed at different levels of detail working
from high-level use cases to more detailed (expanded) ones as
the development proceeds.

Caveat
Some OO designers feel that a use-case analysis leads to non-
object-oriented analysis.

Copyright 2004 by Ken Slonneger Software Development 13

Example: GradeBook

GradeBook

Instructor

FileSystem

Create Roster

Add Student

Delete Student

Save Roster

Retrieve Roster

Enter Grades

Change Grade

Print Roster

Sort Roster

Compute Totals

Print Histogram

14 Software Development Copyright 2004 by Ken Slonneger

Use case: Create Roster

Actors: Instructor (initiator)

Purpose: Instructor enters the students of a class to form
a new roster.

Overview: Instructor asks to create a new roster. Instructor
enters name and ID for each student in a class to
make the roster.

Typical Course of Events

Actor Action

1. This use case begins when
Instructor signals the need for
a new roster.

3. Instructor provides a name
for the class.

5. Instructor enters each name
and ID in the new roster.

6. On completion of entries,
Instructor indicates the
end of the list.

System Response

2. Requests name of class.

4. Prompts for name and ID for
each student.

7. Acknowledges existence of a
new roster.

Alternative Courses

• Line 1: The current roster has not been saved. Indicate error.

• Line 6: No names entered. Indicate error.

Copyright 2004 by Ken Slonneger Software Development 15

Use case: Enter Grades

Actors: Instructor (initiator)

Purpose: Instructor enters the grades for an exam, project,
or homework/quiz.

Overview: Instructor asks to enter a set of grades. Instructor
enters a grade for each student in the roster.

Typical Course of Events

Actor Action

1. This use case begins when
Instructor signals the need to
enter a set of grades.

3. Instructor provides the nature:
exam, project, or homework/quiz.

5. Instructor enters the maximum
score.

7. Instructor enters the grade for
each student.

System Response

2. Requests the nature of the set
of grades.

4. Requests the maximum score.

6. Prompts with name of each
student in roster.

8. Acknowledges recording of
the set of grades.

Alternative Courses

• Line 1: No current roster. Indicate error.

• Line 7: A grade entered exceeds maximum. Request another.

16 Software Development Copyright 2004 by Ken Slonneger

Use case: Save Roster

Actors: Instructor (initiator), FileSystem

Purpose: Save the roster and grades to the file system.

Overview: Instructor asks to save the current roster.

Typical Course of Events

Actor Action

1. This use case begins when
Instructor signals the need to
save the current roster.

System Response

2. Saves current roster to the file
system.

3. Acknowledges that the current
roster has been saved
successfully.

Alternative Courses

• Line 1: No current roster. Indicate error.

Copyright 2004 by Ken Slonneger Software Development 17

Use case: Sort Roster

Actors: Instructor (initiator)

Purpose: Rearrange roster to be in sorted order.

Overview: Instructor asks that roster be sorted by name,
by ID, or by total score.

Typical Course of Events

Actor Action

1. This use case begins when
Instructor signals the need to
sort roster.

3. Instructor answers by name,
by ID, or by total score.

System Response

2. Requests criterion for sorting.

4. Acknowledges that the current
roster has been sorted.

Alternative Courses

• Line 1: No current roster. Indicate error.

• Line 3: Criterion not specified. Indicate error.

18 Software Development Copyright 2004 by Ken Slonneger

Static structure diagrams
• Conceptual models

• Class diagrams

• Object descriptions.

Conceptual Models
• Central to object-oriented design.

• Focus on domain concepts, not software.

• Decompose problem into individual concepts.

May show: Concepts
Associations between concepts
Attributes of concepts

Concepts in Conceptual Models
Rectangles with one or two sections.

Concept name Concept name

attribute
attribute

Copyright 2004 by Ken Slonneger Software Development 19

Concepts: physical objects, places, transactions, line items,
containers of other things, abstract concepts,
organizations, events, processes, records, financial
instruments, catalogs, manuals, and so on.

Associations Solid line showing semantic relationships
(multiplicity).

Developing a Conceptual Model
Identify the nouns and noun phrases in the requirements
and the use cases that belong to the system.

20 Software Development Copyright 2004 by Ken Slonneger

GradeBook Example
roster, student, grade, name, ID number, position, listing,
exam, project, homework, score, maximum score, weight
factor, histogram, total score, set of grades, category of
grades, sorting criterion.

Discard nouns that are redundant, vague, an event or operation,
outside the system, or an attribute.

Conceptual Model: Version 1

Roster Student

Name

ID number

Grade

Total score

Category

Weight

Max score

1..*

*
Name

Some of these concepts should be attributes.

Copyright 2004 by Ken Slonneger Software Development 21

Conceptual Model: Version 2

1..* *Roster

name

Student

name
id number
total score

Grade

category
weight
max score

Categories of grades are handled differently. Split the concept.

Conceptual Model: Version 3

1..*

*

Roster

name

Student

name
id number
total score

Project set

weight

Exam grade

weight
max score

HW set

weight

*

*

Project grade

max score

HW grade

max score

22 Software Development Copyright 2004 by Ken Slonneger

Class Diagrams
Rectangles of three forms.

Class name

Class name

attribute
attribute : type
attribute : type = value

Class name

attributes

operation()
operation() : type
operation(arg : type) : type

Inheritance
Superclass

Subclass1 Subclass2

Composition
One class uses or “has-an” instance of another class.

Auto

Engine Body

Copyright 2004 by Ken Slonneger Software Development 23

Object Diagrams
Rectangles with one or two sections and with the title underlined.

Generic object

: ClassName

Specific object

objectName :

objectName : ClassName

objectName : ClassName

attribute = value

Instantiation of an
object from a class:

Domino

dom1 :

dom2 : Domino

spots1 =3
spots2 = 6
faceUp = false

dependency
relationship

24 Software Development Copyright 2004 by Ken Slonneger

Grady Booch Estimate
Time required for various activities in
OO Development

Copyright 2004 by Ken Slonneger Software Development 25

Pair Programming

Pair programming is a style of programming in which two
programmers work side by side at one computer, continually
collaborating on the same design, algorithm, code, or test.

One of the pair, called the driver, is typing at the computer or
writing down a design. The other partner, called the navigator, has
many jobs, one of which is to observe the work of the driver,
looking for tactical and strategic defects.
• Tactical defects are syntax errors, typos, calling the wrong

method, and so on.
• Strategic defects occur when the driver is headed down the

wrong path—what is implemented just won't accomplish what
needs to be done.

The navigator is the strategic, long-range thinker. Any of us can be
guilty of straying off the path, but a simple, "Can you explain what
you are doing?" from the navigator can bring us back to earth.
The navigator has a much more objective point of view and can
better think strategically about the direction of the work.

The driver and the navigator can brainstorm on-demand at any
time.

An effective pair programming relationship is very active. The
driver and the navigator communicate, if only through guttural
utterances (as in, "Huh?"), at least every 45 to 60 seconds.

It is also very important to switch roles periodically between the
driver and the navigator.

26 Software Development Copyright 2004 by Ken Slonneger

Benefits

1. Quality
Pairs produce code with fewer defects

2. Time
Pairs produce higher-quality code in about half the time as
individual programmers.

3. Morale
Pair programmers are happier programmers.

4. Trust and Teamwork
Pair programmers get to know their teammates much better,
which builds trust and teamwork.

5. Knowledge transfer
Pair programmers know more about the overall system.

6. Enhanced learning
Pairs continuously learn by watching how their partners
approach a task, how they use language features, and how
they develop programs.

Copyright 2004 by Ken Slonneger Software Development 27

Seven Habits of Effective Pair Programmers

Habit 1: Take Breaks
Since pair programmers keep each other focused and
on-task, it can be intense and mentally exhausting.
At a minimum, each hour, stretch, and look at something
more than three feet away.

Habit 2: Practice Humility
Excessive ego can prevent a programmer from considering
other idea and can cause a programmer to become defensive
when criticized.
Remember that the work is a team effort. Be ready to ask
questions and to learn as well as teach.

Habit 3: Be Confident/Be Receptive
Try not to let insecurity or anxiety interfere with your work.
A fear of appearing stupid decreases the number of bold
proposals and ideas that will be suggested.
Do not allow competition within the pair. Blame for problems or
defects should never be placed on either partner.

Habit 4: Communicate
Communication between the pair is essential.
Think aloud so your partner can help you develop ideas.
Vocalize what you are doing as you do it.

28 Software Development Copyright 2004 by Ken Slonneger

Habit 5: Listen
Really listen to what your partner has to say before
responding.
Don't assume you know what he or she is talking about or
that he or she understands what you are trying to do.
Don't assume he or she is trying to insult you or to criticize
your ideas.

Habit 6: Be a Team Player
Remember that your partner's work is your work. You are
completely responsible for every thing your pair does.
Be alert and inquisitive. If you don't understand what's
going on, ask.
If you can think of a better way, suggest it.

Habit 7: Find a Balance between Compromise and
Standing Firm

The primary purpose of pairing is to work toward the best
design possible, regardless of from whom the design
originated.
Be willing to consider your partner's ideas, but don't
always agree with everything your partner suggests.
For favorable idea exchange, there should be some
healthy disagreement and debate.

