
Copyright 2005 by Ken Slonneger Input and Output 1

Input and Output

A stream is an ordered sequence of data in the form of bytes
or characters.

Byte-Oriented Streams

InputStream
• An abstract class.

• An InputStream has a producer at one end placing bytes onto
the stream that are read by the methods in the subclasses of
InputStream

• System.in is an InputStream object.

• Methods
public int read() throws IOException

Reads one byte and stores it as an integer.
End-of-File signaled by -1.
Can be cast as character or byte.

2 Input and Output Copyright 2005 by Ken Slonneger

public int read(byte [] ba) throws IOException
Fills an existing array with bytes read.
Returns the number of bytes read.
Returns -1 at the end of the stream.

public long skip(long n) throws IOException
Skips next n bytes.

public void close() throws IOException
Returns resources to operating system.

OutputStream
• Abstract class.

• An OutputStream has a consumer at one end removing bytes
from the stream that are written by methods in subclasses of
OutputStream

• System.out and System.err are objects from PrintStream,
a subclass of OutputStream.

• Methods
public void write(int b) throws IOException

Writes one byte stored as an integer.

public void write(byte [] ba) throws IOException
Writes an array of bytes.

public void write(byte [] ba, int p, int k) throws IOException
Writes k bytes starting at position p in array of bytes.

public void flush() throws IOException
Flushes output buffer maintained by OS.

public void close() throws IOException
Returns resources to operating system.

Copyright 2005 by Ken Slonneger Input and Output 3

Read Characters and Echo to Display

import java.io.*;

public class ReadChars
{

public static void main (String [] args)
{

System.out.println("Enter text terminated by a # character");
try
{

readChars();
System.out.println();

}
catch (IOException e)
{ System.out.println("Caught an IOException"); }

}

static void readChars() throws IOException
{

int ch = System.in.read();
while (ch != ‘#’)
{

System.out.write(ch);
ch = System.in.read();

}
}

}

4 Input and Output Copyright 2005 by Ken Slonneger

Character Streams

Classes for manipulating streams of characters (char).

The methods in the abstract classes Reader and Writer parallel
the methods in InputStream and OutputStream, respectively.

Reader
public int read() throws IOException
public int read(char [] ca) throws IOException
public long skip(long n) throws IOException
public void close() throws IOException

Writer
public void write(int c) throws IOException
public void write(char [] ca) throws IOException
public void write(char [] ca, int p, int k) throws IOException
public void flush() throws IOException
public void close() throws IOException
public void write(String s) throws IOException

Copyright 2005 by Ken Slonneger Input and Output 5

Classifying Streams
Streams can be distinguished by the roles they play.

Physical Streams

• Tied to some IO device that is producing or consuming
bytes or characters.

System.in and System.out
FileInputStream and FileOutputStream
FileReader and FileWriter

Virtual Streams

• Add functionality to already existing streams by wrapping
them in a new object.

BufferedReader
DataInputStream and DataOutputStream
PrintStream and PrintWriter
InputStreamReader and OutputStreamWriter

Converting Between Byte and Char Streams
A constructor for InputStreamReader takes an InputStream
as a parameter and produces a Reader object.

Since System.in is an InputStream,
new InputStreamReader(System.in)

is a Reader (a stream of characters).

6 Input and Output Copyright 2005 by Ken Slonneger

A constructor for OutputStreamWriter takes an OutputStream
as a parameter and produces a Writer object.
Since System.out is an OutputStream,

new OutputStreamWriter(System.out)
is a Writer (a stream of characters).

BufferedReader
Takes a character stream (a Reader) and creates a new
(filtered) stream with additional functionality:

public final String readLine() throws IOException

This method returns the value null when the end of the stream
is reached.

Perform Input One Line at a Time
import java.io.*;
public class ReadLines
{

public static void main(String [] args)
{

BufferedReader br = new BufferedReader(
new InputStreamReader(System.in));

System.out.println("Enter text (empty line at end)");
try
{ String str = br.readLine();

while (!str.equals(""))
{ System.out.println (str);

str = br.readLine();
}

}

Copyright 2005 by Ken Slonneger Input and Output 7

catch (IOException e)
{ System.out.println("Caught an IOException"); }

}
}

File IO
File streams also come in two varieties,

Character streams: FileReader and FileWriter
Byte streams: FileInputStream and FileOutputStream

The behavior of these streams was created by overriding the
basic methods for Readers and Writers (and InputStreams and
OutputStreams):

read, write, flush, close, etc.

Each class has three constructors—we use the ones that take
a string as a parameter (the filename).

Copy a Text File
Text files are best handled as character streams.

Copy a source file into a destination file by reading into
an array of characters.

import java.io.*;
public class CopyFile
{

public static void main(String [] args)
{

char [] chars = new char [128];

8 Input and Output Copyright 2005 by Ken Slonneger

BufferedReader br =
new BufferedReader(

new InputStreamReader(System.in));
try
{

System.out.print("Enter a source filename: ");
String sourceName = br.readLine().trim();

System.out.print("Enter a target filename: ");
String targetName = br.readLine().trim();

FileReader istream = new FileReader(sourceName);
FileWriter ostream = new FileWriter(targetName);

int count = istream.read(chars);
while (count != -1) // read returns -1 at end of stream
{

ostream.write(chars, 0, count);
count = istream.read(chars);

}
istream.close();
ostream.close(); // flushed the output stream

}
catch (IOException e)
{ System.out.println(e) }
System.out.println("Done");

}
}

Copyright 2005 by Ken Slonneger Input and Output 9

Copy a Text File by Lines
Using BufferedReader and PrintWriter allows us to program at a
higher level of abstraction.

This solution uses command-line arguments to provide the
names of the two files. Observe how the program reports a
misuse of this syntax.

The BufferedReader method readLine returns the value null at
the end of its stream.

A PrintWriter responds to the same two methods, print and
println, that a PrintStream recognizes.

import java.io.*;

public class CopyLines
{

public static void main(String [] args)
{

if (args.length != 2)
{

System.out.println(
"Usage: java CopyLines source target");

return;
}
String source = args[0];
String target = args[1];

10 Input and Output Copyright 2005 by Ken Slonneger

try
{

BufferedReader br =
new BufferedReader(

new FileReader(source));
PrintWriter pw =

new PrintWriter(new FileWriter(target));

String line = br.readLine();
while (line != null)
{

pw.println(line);
line= br.readLine();

}
br.close();
pw.close(); // flushes output stream

}
catch (IOException e)
{ System.out.println(e); }
System.out.println("Done");

}
}

Important
Whenever doing output to an OutputStream or a Writer,
ensure that the data does not get stuck in an operating-
system buffer by calling flush in one way or another.

The PrintStream System.out automatically flushes its output.

Copyright 2005 by Ken Slonneger Input and Output 11

Two Basic Kinds of Files
1. A text file consists of a sequence of ascii characters.

• Keyboard produces text.
• Monitor display consumes text.

2. A binary file consists of bytes representing various types
of data such as int, double, etc.

Example
Text in a file

S A I L B O A T
53 41 49 4C 42 4F 41 54

As bits
01010011 01000001 01001001 01001100
01000010 01001111 01000001 01010100

Binary (same eight bytes)

Four short: 21313 18764 16975 16724
Two int: 1396787523 1112490324
One long: 599156770513043796
Two float: 8.30158e+11 51.8138
One double: 1.12681e+93

12 Input and Output Copyright 2005 by Ken Slonneger

File of Integers

• Create a (binary) file of integers.

• Read the file.

Use the data stream classes, subclasses of InputStream and
OutputStream, which were designed for binary data.

The classes DataInputStream and DataOutputStream contain
methods for handling all of the basic types in Java.

byte readByte()

short readShort()

int readInt()

long readLong()

float readFloat()

double readDouble()

char readChar()

boolean readBoolean()

String readUTF()

void writeByte(int b)

void writeShort(int s)

void writeInt(int n)

void writeLong(long g)

void writeFloat(float f)

void writeDouble(double d)

void writeChar(int c)

void writeBoolean(boolean b)

void writeUTF(String s)

UTF = Unicode Transformation Format (UTF-8)
Ascii → one byte

Other Unicode → two or three byte sequences

Copyright 2005 by Ken Slonneger Input and Output 13

Create a Binary File of Integers
Name the file “Integers”.

import java.io.*;

public class IntFile
{

public static void main(String [] args)
{

try // Create a file of integers
{

DataOutputStream ostream =
new DataOutputStream(

new FileOutputStream("Integers"));

for (int k=10; k<=800; k=k+10)
ostream.writeInt(k);

ostream.close();
}
catch (IOException e)
{ System.out.println(e);

return;
}

//--

14 Input and Output Copyright 2005 by Ken Slonneger

DataInputStream istream = null;

try // Read the file of integers
{

istream = new DataInputStream(
new FileInputStream("Integers"));

while (true)
{

int num = istream.readInt();
System.out.print(num + " ");

}
}
catch (EOFException e)
{ System.out.println("\nEOF reached"); }
catch (IOException e)
{ System.out.println(e); }
finally
{ try { istream.close(); }

catch (IOException e) { }
}

}
}

Output

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
160 170 180 190 200 210 220 230 240 250 260 270 280
290 300 310 320 330 340 350 360 370 380 390 400 410
420 430 440 450 460 470 480 490 500 510 520 530 540
550 560 570 580 590 600 610 620 630 640 650 660 670
680 690 700 710 720 730 740 750 760 770 780 790 800
EOF reached

Copyright 2005 by Ken Slonneger Input and Output 15

A File of Strings

Use the DataStream methods
String readUTF()
void writeUTF(String str)

UTF (Unicode Transformation Format) refers to the UTF-8 format,
an ascii-compatible encoding of Unicode characters.

import java.io.*;
public class StringFile
{

public static void main(String [] args)
{

try // Create a file of Strings
{

String s = "Parts of this string are used to "
+ "provide different lengths";

16 Input and Output Copyright 2005 by Ken Slonneger

DataOutputStream ostream =
new DataOutputStream(

new FileOutputStream("Strings"));
for (int k=1; k<=20; k++)

ostream.writeUTF("String " + k + ": "
+ s.substring(0, 2*k+1));

ostream.close();
}
catch (IOException e)
{ System.out.println(e); return; }

//---

try // Read the file of Strings
{

DataInputStream istream =
new DataInputStream(

new FileInputStream("Strings"));
while (istream.available() > 0)
{

String str = istream.readUTF();
System.out.println(str);

}
istream.close();

}
catch (IOException e)
{ System.out.println(e); }

}
}

Output
String 1: Par
String 2: Parts
String 3: Parts o

Copyright 2005 by Ken Slonneger Input and Output 17

String 4: Parts of
: :

String 19: Parts of this string are used to provid
String 20: Parts of this string are used to provide

18 Input and Output Copyright 2005 by Ken Slonneger

Reading Numbers from a Textfile or Keyboard

Three approaches
1. Use a StreamTokenizer object to grab numeric tokens

from a Reader.

Create a StreamTokenizer object:
StreamTokenizer stk =

new StreamTokenizer(new FileReader(fname));

Get the code of the next token:
int code = stk.nextToken();

Compare token code with predefined constants:
code == StreamTokenizer.TT_EOF
code == StreamTokenizer.TT_NUMBER
code == StreamTokenizer.TT_WORD

If the token is a number, get value as a double from the
instance variable stk.nval.

If the token is a word, get value as a String from the instance
variable stk.sval.

If the token is a single character, its integer value is its
ascii code.

If reading integers, cast stk.nval to int.

Copyright 2005 by Ken Slonneger Input and Output 19

Example
Read a text file and isolate the numbers, words, and individual
characters in the file.
Use the default definition of token delimiter in StreamTokenizer.
The specification of the delimiters can be changed if needed.

import java.io.*; // ScanFile.java
public class ScanFile
{

public static void main(String [] args)
{

PrintStream ps = System.out; // an abbreviation
String filename = "";
if (args.length == 1)

filename = args[0];
else
{ ps.println("Usage: java ScanFile filename");

return;
}
try
{ FileReader fr = new FileReader(filename);

StreamTokenizer stk = new StreamTokenizer(fr);
int code = stk.nextToken();
while (code!= StreamTokenizer.TT_EOF)
{

switch (code)
{

case StreamTokenizer.TT_NUMBER:
ps.println("Number: " + stk.nval);
break;

case StreamTokenizer.TT_WORD:
ps.println("String: " + stk.sval);
break;

20 Input and Output Copyright 2005 by Ken Slonneger

default:
ps.println("Character: " + (char)code);
break;

}
token = stk.nextToken();

}
}
catch (FileNotFoundException fnfe)
{

ps.println("File " + filename + " not found");
}
catch (IOException e)
{

ps.println("Some other IO error");
}

}
}

Test File
This file contains numbers as text.
(34, 78, 12, 7.5, 6.8)
(6.3, 75, 22, 3.9, 11)
Done.

Execution Results

% java ScanFile test
String: This
String: file
String: contains
String: numbers
String: as
String: text.
Character: (
Number: 34.0
Character: ,
Number: 78.0

Character: ,
Number: 12.0
Character: ,
Number: 7.5
Character: ,
Number: 6.8
Character:)
Character: (
Number: 6.3
Character: ,

Number: 75.0
Character: ,
Number: 22.0
Character: ,
Number: 3.9
Character: ,
Number: 11.0
Character:)
String: Done.

Copyright 2005 by Ken Slonneger Input and Output 21

2. Have only one number per line.
Use readLine with a BufferedReader object to get a String
of digits with possibly a decimal point and/or minus sign

Trim the String to remove extra spaces.
String s = br.readLine().trim();

Convert to int using one of these expressions:
int k = Integer.parseInt(s);
int m = new Integer(s).intValue();
int n = Integer.valueOf(s).intValue();

Convert to double using one of these expressions:
double d = Double.parseDouble(s);
double e = new Double(s).doubleValue();
double f = Double.valueOf(s).doubleValue();

3. Allow more than one number per line.

• Use readLine with a BufferedReader object to get a String
str containing multiple numbers.

• Use a StringTokenizer object strTok to grab tokens,
which are always strings, from the String str in a manner
similar to StreamTokenizer.

• StringTokenizer is found in the package java.util.
StringTokenizer strTok = new StringTokenizer(str);
String token = strTok.nextToken();
strTok.hasMoreTokens() returns a boolean value

22 Input and Output Copyright 2005 by Ken Slonneger

Example: Isolate Tokens from Input Stream

BufferedReader br = new BufferedReader(
 new InputStreamReader(System.in);

try
{ str = br.readLine(); // priming read

while (!str.equals(""))
{

StringTokenizer strTok = new StringTokenizer(str);
while (strTok.hasMoreTokens())
{

String token = strTok.nextToken();
// Convert to numeric
System.out.println(token);

}
str = br.readLine();

}
}
catch (IOException e) { }

Sample Execution
Enter numbers terminated by empty line
123 456
123
456
22.33 55.66 88.999
22.33
55.66
88.999
19 92 38.47
19
92
38.47

Copyright 2005 by Ken Slonneger Input and Output 23

Scanner Class

Java 1.5 has added a very useful class for input.

The Scanner class can be found in the java.util package.

Constructors
Of the many constructors provided for Scanner, three will be of
the most use.

Scanner(Reader r)

Scanner(InputStream is)

Scanner(File f)

A File object can be created using the code
File f = new File("fileName");

Using Scanner
A Scanner object recognizes instance methods that return the
next token in the input stream.

A token is a chunk of characters with some meaning defined by
the characters that make up the token and the characters that
delimit the token.

24 Input and Output Copyright 2005 by Ken Slonneger

"Word" Tokens
The default delimiters for a Scanner object are the white space
characters.

To isolate the "words" in a text file named "textfile", use the
following code.

Scanner sc = new Scanner(new FileReader("textfile"));
while (sc.hasNext())
{

String word = sc.next();
System.out.println(word);

}

The Scanner methods do not throw any checked exceptions.

The Scanner class has ways to change the definition of the
delimiters for a particular Scanner object.

Reading Primitive Values
The Scanner class has instance methods for reading each of the
Java primitive types except char.

We consider several examples.

To read a text stream of int values:
while (sc.hasNextInt())
{

int m = sc.nextInt();
System.out.println(m);

}

Copyright 2005 by Ken Slonneger Input and Output 25

To read a text stream of double values:
while (sc.hasNextDouble())
{

double d = sc.nextDouble();
System.out.println(d);

}

To read a text stream of boolean values:
while (sc.hasNextBoolean())
{

boolean b = sc.nextBoolean();
System.out.println(b);

}

Reading Lines
The Scanner class has methods that provide the behavior of the
readLine method from BufferedReader.

To read lines from a text stream.
while (sc.hasNextLine())
{

String str = sc.nextLine();
System.out.println(str);

}

Closing a Scanner
We can release the resources provided to Scanner with the
command:

sc.close();

26 Input and Output Copyright 2005 by Ken Slonneger

Problem
Read a set of numbers from the keyboard and find their sum.
Use zero as a sentinel at the end of the input.
Since the numbers are not specified in more detail, we will read
double values.

Code: Sum.java
import java.util.Scanner;
public class Sum
{

public static void main(String [] args)
{

System.out.println("Enter numbers terminated by a zero.");
Scanner sc = new Scanner(System.in);
double sum = 0.0;
while (true)
{

double d = sc.nextDouble();
if (d==0.0) break;
sum = sum + d;

}
System.out.println("sum = " + sum);

}
}

Sample Execution

% java Sum
Enter numbers terminated by a zero.
45.6 23.8 -44.22 12 67.88
20.08 -66.84 586
0
sum = 644.3

Copyright 2005 by Ken Slonneger Input and Output 27

HexDump

Program displays the bytes in a file as 16 unsigned hex bytes
per line. One byte = two hex digits.

Use a FileInputStream (byte-oriented).

Bytes are coerced to int and converted to hex using a class
method in Integer.

As formatting, print a zero before each single digit hex byte,
since leading zeros are not provided.

import java.io.*;
public class HexDump
{

public static void main(String [] args)
{

try
{

BufferedReader br =
new BufferedReader(

new InputStreamReader(System.in));
System.out.print("Enter a file name: ");
String fName = br.readLine().trim();
FileInputStream istream =

new FileInputStream(fName);

28 Input and Output Copyright 2005 by Ken Slonneger

byte [] bytes = new byte[16];
int count = istream.read(bytes);
while (count != -1) // returns -1 at end of file
{

for (int k=0; k<count; k++)
{

int n = bytes[k]; // Alternative: Replace by
if (n<0) n = n + 256; // int n = bytes[k] & 0xFF;

String hs = Integer.toHexString(n);
if (n<16) System.out.print("0");
System.out.print(hs + " ");

}

System.out.println();
count = istream.read(bytes);

}
istream.close();

}
catch (IOException e)
{ System.out.println(e); }

}
}

Notes
• Method toHexString takes an int as its parameter.

• If the int is negative, toHexString returns 8 hex digits.

Solution: Convert negative byte (-128≤b≤-1) into a positive
integer (128≤n≤255) by adding 256.

Copyright 2005 by Ken Slonneger Input and Output 29

Enter a source file name: Integers
00 00 00 0a 00 00 00 14 00 00 00 1e 00 00 00 28
00 00 00 32 00 00 00 3c 00 00 00 46 00 00 00 50
00 00 00 5a 00 00 00 64 00 00 00 6e 00 00 00 78
00 00 00 82 00 00 00 8c 00 00 00 96 00 00 00 a0
00 00 00 aa 00 00 00 b4 00 00 00 be 00 00 00 c8
00 00 00 d2 00 00 00 dc 00 00 00 e6 00 00 00 f0
00 00 00 fa 00 00 01 04 00 00 01 0e 00 00 01 18
00 00 01 22 00 00 01 2c 00 00 01 36 00 00 01 40
00 00 01 4a 00 00 01 54 00 00 01 5e 00 00 01 68
00 00 01 72 00 00 01 7c 00 00 01 86 00 00 01 90
00 00 01 9a 00 00 01 a4 00 00 01 ae 00 00 01 b8
00 00 01 c2 00 00 01 cc 00 00 01 d6 00 00 01 e0
00 00 01 ea 00 00 01 f4 00 00 01 fe 00 00 02 08
00 00 02 12 00 00 02 1c 00 00 02 26 00 00 02 30
00 00 02 3a 00 00 02 44 00 00 02 4e 00 00 02 58
00 00 02 62 00 00 02 6c 00 00 02 76 00 00 02 80
00 00 02 8a 00 00 02 94 00 00 02 9e 00 00 02 a8
00 00 02 b2 00 00 02 bc 00 00 02 c6 00 00 02 d0
00 00 02 da 00 00 02 e4 00 00 02 ee 00 00 02 f8
00 00 03 02 00 00 03 0c 00 00 03 16 00 00 03 20

A Linux/Unix tool
% xxd Integers

30 Input and Output Copyright 2005 by Ken Slonneger

Serialization

A Java object normally expires when the program that created
it terminates. Since no variable refers to it, the garbage collector
reclaims its storage.

Problem: Want to make an object be persistant so that
it can be saved between program executions.

Possible Solution
If all of the instance variables (fields) in the object are
of primitive types or Strings, use

• Methods from DataOutputStream (writeInt, writeDouble,
writeUTF, etc.) to store the object.

• Methods from DataInputStream (readInt, readDouble,
readUTF, etc.) to restore the object.

Difficulties
1. What if objects contain arrays of varying sizes?

2. What if instance variables are references to other objects,
which have references to still other objects, and so on?
Imagine a graph of objects that lead from the object to be
saved. The entire graph must be saved and restored.

We need a byte-coded representation of objects that can be
stored in a file external to Java programs, so that the file can
be read later and the objects can be reconstructed.

Copyright 2005 by Ken Slonneger Input and Output 31

Serialization

Serializing an object means to code it as an ordered series of
bytes in such a way that it can be rebuilt (really a copy) from the
byte stream.

Serialization needs to store enough information so that the
original object can be rebuilt, including all objects to which it refers
(the object graph).
Java has classes (in the java.io package) that allow the creation
of streams for object serialization and methods that write to and
read from these streams.
Only an object of a class that implements the empty interface
java.io.Serializable or a subclass of such a class can be
serialized. Such an interface is called a marker interface.

What is Saved
• Class of the object.
• Class signature of the object (types of instance variables and

signatures of instance methods).
• All instance variables not declared transient.

• Obects referred to by non-transient instance variables.

Uses of Serialization
• Make objects persistant.
• Communicate objects over a network.
• Make a copy of an object.

32 Input and Output Copyright 2005 by Ken Slonneger

Saving an Object (an array of String)
1. Open a file and create an ObjectOutputStream object.

ObjectOutputStream oos =
new ObjectOutputStream(

new FileOutputStream("datafile"));

2. Write an object to the stream using writeObject().

String [] sa = new String [150];
// Fill array with 150 strings, say names of students

oos.writeObject(sa); // Save object (the array)
oos.flush(); // Empty output buffer

Restoring the Object
1. Open the file and create an ObjectInputStream object.

ObjectInputStream ois =
new ObjectInputStream(

new FileInputStream("datafile"));

2. Read the object from the stream using readObject() and then
cast it to its appropriate type.

String [] newSa;
// Restore the object (readObject returns an Object)

newSa = (String [])ois.readObject();

// May throw checked ClassNotFoundException.

When an object is retrieved from a stream, it is validated to
ensure that it can be rebuilt as the intended object.

Constructors and operations may throw various IOExceptions.

Copyright 2005 by Ken Slonneger Input and Output 33

Conditions
• A class whose objects are to be saved must implement the

interface Serializable, a marker interface.
• The class must be visible at the point of serialization.

The implements Serializable clause acts as a tag indicating the
possibility of serializing the objects of the class.

Primitive Data
ObjectOutputStream and ObjectInputStream also implement
methods for writing and reading primitive data and Strings from
the interfaces DataOutput and DataInput:

writeChar readChar
writeInt readInt
writeDouble readDouble
writeUTF readUTF and so on.

Some Classes that Implement Serializable
String StringBuffer Calendar Date
ArrayList Character Boolean Number
LinkedList Component Color Font
Point Throwable InetAddress URL

Note: No methods or class variables are saved when an object
is serialized. A class knows which methods and static
data are defined in it.

34 Input and Output Copyright 2005 by Ken Slonneger

Save a Domino set

Create a complete set of dominoes in an array
and store it in a file named “doms”.

import java.io.*;
class Domino implements Serializable
{
// Instance Variables

private int spots1, spots2;
private boolean faceUp;

// Class Variables
static final int MAXSPOTS = 9;
static int numDominoes=0;

// Constructors
Domino(int val1, int val2, boolean up)
{

if (0<=val1 && val1<=MAXSPOTS) // validation
spots1 = val1;

else spots1 = 0;
if (0<=val2 && val2<=MAXSPOTS) spots2 = val2;
else spots2 = 0;
faceUp = up;
numDominoes++;

}

Domino(boolean up) // a random domino
{

spots1 = (int)((MAXSPOTS + 1) * Math.random());
spots2 = (int)((MAXSPOTS + 1) * Math.random());
faceUp = up;
numDominoes++;

}

Copyright 2005 by Ken Slonneger Input and Output 35

Domino() // a default domino
{ this(0, 0, false); }

// Instance Methods
int getHigh() // an accessor
{

if (spots1>= spots2) return spots1;
else return spots2;

}

int getLow() // an accessor
{

if (spots1<= spots2) return spots1;
else return spots2;

}

public String toString()
{

String orientation = "DOWN";
if (faceUp) orientation = "UP";
return "<" + getLow() + ", " + getHigh() + "> " + orientation;

}

boolean matches(Domino otherDomino)
{

int a = otherDomino.getHigh();
int b = otherDomino.getLow();
int x = getHigh();
int y = getLow();
return a==x || a==y || b==x || b==y;

}

// Class Methods
static int getNumber()
{ return numDominoes; }

}

36 Input and Output Copyright 2005 by Ken Slonneger

public class SaveDoms
{

static int size =
(Domino.MAXSPOTS+1)*(Domino.MAXSPOTS+2) / 2;

public static void main(String [] args)
{

Domino [] dominoSet = new Domino [size];
int index = 0;
for (int m=0; m<=Domino.MAXSPOTS; m++)

for (int n=m; n<=Domino.MAXSPOTS; n++)
{

dominoSet[index] = new Domino(m, n, false);
index++;

}

try
{

ObjectOutputStream save =
new ObjectOutputStream(

new FileOutputStream("doms"));

save.writeObject(dominoSet);

save.flush();
save.close();

}
catch (IOException e)
{ System.out.println(e); }

}
}

Copyright 2005 by Ken Slonneger Input and Output 37

Restore Domino Set

import java.io.*;
public class RestoreDoms
{

public static void main(String [] args)
{

Domino [] dominoSet = null;
try
{

ObjectInputStream restore =
new ObjectInputStream(

new FileInputStream("doms"));

dominoSet = (Domino [])restore.readObject();

restore.close();
}
catch (IOException e)
{ System.out.println(e); }
catch (ClassNotFoundException e)
{ System.out.println(e); }

for (int k=0; k<dominoSet.length; k++)
System.out.println(dominoSet[k]);

}
}

class Domino implements Serializable
{

private int spots1, spots2;
:

}

38 Input and Output Copyright 2005 by Ken Slonneger

Output

<0, 0> DOWN
<0, 1> DOWN
<0, 2> DOWN
<0, 3> DOWN
<0, 4> DOWN
<0, 5> DOWN
<0, 6> DOWN
<0, 7> DOWN
<0, 8> DOWN
<0, 9> DOWN
<1, 1> DOWN
<1, 2> DOWN
<1, 3> DOWN
<1, 4> DOWN
<1, 5> DOWN
<1, 6> DOWN
<1, 7> DOWN
<1, 8> DOWN
<1, 9> DOWN

<2, 2> DOWN
<2, 3> DOWN
<2, 4> DOWN
<2, 5> DOWN
<2, 6> DOWN
<2, 7> DOWN
<2, 8> DOWN
<2, 9> DOWN
<3, 3> DOWN
<3, 4> DOWN
<3, 5> DOWN
<3, 6> DOWN
<3, 7> DOWN
<3, 8> DOWN
<3, 9> DOWN
<4, 4> DOWN
<4, 5> DOWN
<4, 6> DOWN

<4, 7> DOWN
<4, 8> DOWN
<4, 9> DOWN
<5, 5> DOWN
<5, 6> DOWN
<5, 7> DOWN
<5, 8> DOWN
<5, 9> DOWN
<6, 6> DOWN
<6, 7> DOWN
<6, 8> DOWN
<6, 9> DOWN
<7, 7> DOWN
<7, 8> DOWN
<7, 9> DOWN
<8, 8> DOWN
<8, 9> DOWN
<9, 9> DOWN

