
Copyright 2005 by Ken Slonneger Collection Framework 1

COLLECTION FRAMEWORK

Java 1.2 introduced an extensive set of interfaces and classes
that act as containers (of Object).

• Found in package java.util

• Replaces Vector, Hashtable, Stack of Java 1.1.

Limitations of Arrays
• Need to estimate size of array since once it has been

created, it cannot grow or shrink.

• Want containers that can grow dynamically
and that are efficient to use.

The collection or container framework has interfaces that specify
the syntax of operations to be implemented in various classes.

When container objects are created, they will be referred to
through interface variables, which allow the implementation to be
changed without changing the code that uses it.

The interfaces are organized in terms of the intended purposes
of the objects that will be created.

2 Collection Framework Copyright 2006 by Ken Slonneger

Java has no direct implementation of Collection currently.

Copyright 2005 by Ken Slonneger Collection Framework 3

Collection Interface
A Collection is a group of elements of type Object.
Basic operations: add elements, remove elements, and look at
elements with no assumptions about order or duplicates.
All of the methods in the interface are public and abstract.

public interface Collection
{

// Basic Operations
boolean add(Object ob); // return true if a
boolean remove(Object ob); // change is made
boolean contains(Object ob);
int size();
boolean isEmpty();
Iterator iterator(); // an Interator object produces all

// the elements in the collection

// Bulk Operations
void clear();
boolean addAll(Collection c);
boolean removeAll(Collection c);
boolean retainAll(Collection c);
boolean containsAll(Collection c);

// Array Operations
Object [] toArray();
Object [] toArray(Object [] oa); // type of result is

// the type of oa
}

4 Collection Framework Copyright 2006 by Ken Slonneger

List Interface
This subinterface of Collection assumes the elements have
ordered positions, starting at position zero.
It specifies additional behavior.

public interface List extends Collection
{

// Positional access (p is a position)
Object get(int p);
Object set(int p, Object ob); // returns old component
void add(int p, Object ob);
Object remove(int p); // returns old component
boolean addAll(int p, Collection c);

// Searching
int indexOf(Object ob);
int lastIndexOf(Object ob);

// Range view
List subList(int p1, int p2);

// Another iterator
ListIterator listIterator(); // ListIterator allows backward
ListIterator listIterator(int p); // as well as forward iteration

}

The List interface is implemented by two concrete classes:
ArrayList contains a “dynamic” array of Objects
LinkedList contains a linked list of nodes such that

each holds one Object.

Copyright 2005 by Ken Slonneger Collection Framework 5

ArrayList Class
An ArrayList object encapsulates an array of Object
that can be resized (actually, by allocating a new array).

Constructors
ArrayList() // an empty list

ArrayList(Collection c) // a list with c’s elements

ArrayList(int cap) // an empty list with capacity cap

Example
List aList = new ArrayList();
aList.add(“Sun”); aList.add(“Mon”);
aList.add(“Tue”); aList.add(“Wed”);
aList.add(“Thu”); aList.add(“Fri”);
aList.add(“Sat”);

6 Collection Framework Copyright 2006 by Ken Slonneger

Now the array inside the object aList holds seven String objects
(actually references to the Strings).

Retrieving the Elements
1. A for loop with “subscripting”.

for (int k=0; k<aList.size(); k++)
System.out.println(aList.get(k));

2. An Iterator object

The interface Iterator has three methods

boolean hasNext(); // true if more elements to visit

Object next(); // returns “next” element

void remove(); // removes last element visited

An Iterator guarantees that each element will be visited
exactly once, but the order is unspecified.

Iterator elements = aList.iterator();
while (elements.hasNext())
{

Object ob = elements.next();
System.out.println(ob);

}

The Object may need to be downcast to perform
specialized operations on it, say to get the length
of a String.

Copyright 2005 by Ken Slonneger Collection Framework 7

Example
• Read floating-point numbers and place them into an ArrayList.
• Find the mean (average) of the numbers.
• Remove the duplicates from the ArrayList.
• Make an alias of the list and change an element.

The program does its own tokenizing of the numbers in the input
stream using the instance method substring from String.

import java.io.*;
import java.util.*;

public class MakeAL
{

static List readNums()
{

List list = new ArrayList(); // Point 1

BufferedReader brdr =
new BufferedReader(

new InputStreamReader(System.in));
try
{ String str = brdr.readLine();

while (str != null)
{

int pos = 0;
while (pos<str.length())
{

int next = str.indexOf(' ', pos);
if (next==-1) next = str.length();
String word = str.substring(pos, next);

8 Collection Framework Copyright 2006 by Ken Slonneger

if (word.length()>0)
{

Double d = Double.valueOf(word);
list.add(d);

}

pos =next+1;
}
str = brdr.readLine();

}
}
catch (IOException e) { }
return list;

}

Trace

str =

9 8 7 6 5 . 4 3 2

0 1 2 3 4 5 6 7 8 9 10 11

pos next word d
0 3 "987" 987.0
4 8 "65.4" 65.4
9 9 "" none
10 -1

12 "32" 32.0
13

Copyright 2005 by Ken Slonneger Collection Framework 9

MakeAL Continued
static double findMean(List lst)
{

double sum = 0;
Iterator it = lst.iterator();
while (it.hasNext())
{

Double d = (Double)it.next();
sum = sum + d.doubleValue();

}
if (lst.size()>0) return sum/lst.size();
else return 0.0;

}

static void printList(List lst)
{

for (int k=0; k<lst.size(); k++)
System.out.println("Number " + k + ": " +

((Double)lst.get(k)).doubleValue());
}

static List removeDups(List lst)
{

List newList = new ArrayList(); // Point 2
for (Iterator it=lst.iterator(); it.hasNext();)
{

Object ob = it.next();
if (!newList.contains(ob)) newList.add(ob);

}
return newList;

}

10 Collection Framework Copyright 2006 by Ken Slonneger

public static void main(String [] args)
{

System.out.println("Enter real numbers separated "
+ " by spaces, terminated by ctrl-d");

List list1 = readNums();
System.out.println("List 1:");
printList(list1);
double mean = findMean(list1);
System.out.println("Mean = " + mean);
List list2 = removeDups(list1);
System.out.println("List 2:");
printList(list2);
List list3 = list2;
if (list2.size() > 2)

list2.set(2, new Double(-999.99));
System.out.println("List 3:");
printList(list3);

}
}

Using Scanner
static List readNums()
{

List list = new ArrayList(); // Point 1
Scanner scan = new Scanner(System.in);
while (scan.hasNextDouble())
{

Double d = new Double(scan.nextDouble()};
list.add(d);

}
return list;

}

Copyright 2005 by Ken Slonneger Collection Framework 11

Output

Enter real numbers separated by spaces, terminated by ctrl-d
123 45.65 33 88.7 123
987 44.9 33 123

List 1:
Number 0: 123.0
Number 1: 45.65
Number 2: 33.0
Number 3: 88.7
Number 4: 123.0
Number 5: 987.0
Number 6: 44.9
Number 7: 33.0
Number 8: 123.0
Mean = 177.91666666666666
List 2:
Number 0: 123.0
Number 1: 45.65
Number 2: 33.0
Number 3: 88.7
Number 4: 987.0
Number 5: 44.9
List 3:
Number 0: 123.0
Number 1: 45.65
Number 2: -999.99
Number 3: 88.7
Number 4: 987.0
Number 5: 44.9

12 Collection Framework Copyright 2006 by Ken Slonneger

LinkedList Class

LinkedList implements List.

A LinkedList object is a sequence of nodes with

1. A reference to the first node.

2. A reference to the last node.

3. Each node has

• a reference to its predecessor (null if first node).

• a reference to its successor (null if last node).

• a reference to an Object, the datum stored in the node.

A LinkedList
first last

Advantages of ArrayList over LinkedList
• An element of an ArrayList can be accessed directly (an

address calculation).
• To access an element in a LinkedList, the list must be

traversed to the position of the element.

Copyright 2005 by Ken Slonneger Collection Framework 13

Advantages of LinkedList over ArrayList
• An insertion or deletion in a LinkedList can be made by

changing just a few references.

• An insertion or deletion in an ArrayList requires moving all
following elements up or down in the array.

LinkedList Constructors
LinkedList() // an empty linked list

LinkedList(Collection c) // a linked list with c’s elements

Change MakeAL into MakeLL
Since the variables list and newList are declared of type List,
they can be assigned either an ArrayList or a LinkedList.

Make two changes in the code of MakeAL:

static List readNums()
{

List list = new LinkedList(); // Point 1

static List removeDups(List lst)
{

List newList = new LinkedList(); // Point 2

The behavior of the program is unchanged by this alteration.
Such a change may, however, affect performance (efficiency).

14 Collection Framework Copyright 2006 by Ken Slonneger

Testing

These operations show the best and worst performance
using ArrayList and LinkedList.

List list = new ArrayList(); or List list = new LinkedList();

for (int k=1; k<=50000; k++)
list.add(0, new Integer(k));

ArrayList: 48.576 seconds

LinkedList: 1.115 seconds

int sum = 0;
for (int k=1; k<=50000; k++)

sum = sum + ((Integer)list.get(25000)).intValue();

ArrayList: 0.213 seconds

LinkedList: 184.252 seconds

Copyright 2005 by Ken Slonneger Collection Framework 15

Indexed Lists
array

Integer [] a = new Integer [50];

List
List list = new ArrayList();

String
String s = "to be or not to be";

StringBuffer
StringBuffer sb = new StringBuffer(s);

Comparison of Operations

m = a[k];

a[k] = w;

a.length

if (a.length==0)
{ … }

m = list.get(k);

list.set(k, w);

list.size()

if (list.isEmpty())
{ … }

c = s.charAt(k);

sb.setCharAt(k, w);

s.length()

if (s.length()==0)
{ … }

16 Collection Framework Copyright 2006 by Ken Slonneger

Collections Contain Objects

• When objects are inserted into a collection, they are
automatically upcasted to type Object.

• Since items in a collection are viewed to be of type Object,
they must be downcast (explicitly cast) to their actual types
to be used.

We must be certain of the type of the Objects before
downcasting; otherwise get a ClassCastException

Problem
• Collections are inherently unsafe since objects of many

different types may be entered into them.
• Downcasting can therefore be unpredictable.

Solutions
• Provide a method that allows objects of only one type

to be added to a collection, making it homogeneous.
Type checking done by parameter to method.

For example, static void addDomino(Domino d)
{

lst.add(d);
}

or

• Test every Object from a collection using instanceof.

Copyright 2005 by Ken Slonneger Collection Framework 17

Implement List Using a Linked List

Java implements List with the concrete class LinkedList.
We want to duplicate this effort to illustrate how linked structures
are realized in Java.
Call our implementation MyLinkedList.

Structure of a Linked List Implementation

The four objects in this list are referred to by object structures
that we call nodes. Each node contains three references.

18 Collection Framework Copyright 2006 by Ken Slonneger

Node Class
The node objects are defined using an inner class.

Each node object has three fields.

public class MyLinkedList implements List
{

private class Node
{

Node prev, next;
Object item;

Node(Node p, Object ob, Node n)
{

prev = p; item = ob; next = n;
}

}

A MyLinkedList object contains three instance variables, the
references to the first and last nodes of the list and a variable to
hold the size of the list.

private Node first;
private Node last;
private int size;

Conditions for an Empty List
first == null
last == null
size == 0

Copyright 2005 by Ken Slonneger Collection Framework 19

Constructors for MyLinked List
public MyLinkedList()
{

first = null; last = null; size = 0;
}

public MyLinkedList(Collection c)
{

this(); // redundant
Iterator it = c.iterator();
while (it.hasNext())

add(it.next()); // need to implement add
}

Easy Instance Methods

public int size()
{

return size;
}

 public boolean isEmpty()
{

return size==0;
}

public void clear()
{

first = null;
last = null;
size = 0;

}

20 Collection Framework Copyright 2006 by Ken Slonneger

Method add
Most of the behavior of a Collection can be defined in terms of
the basic methods: add, contains, remove, and iterator.
We require that the add method only accepts non-null objects.
It increments the size variable when an object is added.

Two cases
1. Add the object to an empty list.

2. Add the object at the end of a nonempty list.

public boolean add(Object ob)
{

if (ob == null)
throw new IllegalArgumentException();

size++;

Copyright 2005 by Ken Slonneger Collection Framework 21

if (first == null) // add to an empty list
{

Node nd = new Node(null, ob, null);
first = nd;
last = nd;

}
else // add to a nonempty list
{

Node nd = new Node(last, ob, null);
last.next = nd;
last = nd;

}
return true;

}

Method contains
The contains method requires that we search the linked list for a
particular object.
We search by moving through the nodes looking for a match with
the object.
The variable spot refers to the node currently being tested.
If the search fails, spot will get the value null.
Note the need for a conditional and operation in the loop.

public boolean contains(Object ob)
{

Node spot = first;
while (spot != null && !ob.equals(spot.item)) // search

spot = spot.next;
return (spot != null); // true if spot is not null

}

22 Collection Framework Copyright 2006 by Ken Slonneger

Method remove
We search the list for the object to be removed.
If it is not found, return false.
If the object is found, decrement size, remove the node with the
object, and return true.

Three cases
1. Object ob is the first item in the list.

2. Object ob is the last item in the list.

3. Object ob is somewhere between the first and last items.

Copyright 2005 by Ken Slonneger Collection Framework 23

public boolean remove(Object ob)
{

Node spot = first;
while (spot != null && !ob.equals(spot.item)) // search

spot = spot.next;

if (spot == null)
return false;

size--;
if (spot == first)
{

first = first.next;
if (first == null)

last = null; // an empty list
else

first.prev = null;
}
else if (spot == last)
{

last = last.prev; // list not empty
last.next = null;

}
else
{ spot.prev.next = spot.next;

spot.next.prev = spot.prev;
}

return true;
}

24 Collection Framework Copyright 2006 by Ken Slonneger

Building an Iterator
The iterator method needs to return an object from a class that
implements the interface Iterator.

public Iterator iterator()
{

return new MyIterator(); // need to define this class
}

MyIterator Class
Implements the Iterator interface.

public interface Iterator
{

boolean hasNext(); // true if more elements to visit
Object next(); // returns “next” element
void remove(); // removes last element visited

}

Make it an inner class.
Use two instance variables that refer to

1. the node of the most recently returned object (lst)
2. the node of the next object to be returned (nxt)

Conditions
nxt == null means no more items to visit
lst == null means no last item visited because

a) we are at beginning of traversal or
b) the last item was removed.

An item must be visited before it can be removed, and it can only
be removed once.

Copyright 2005 by Ken Slonneger Collection Framework 25

private class MyIterator implements Iterator
{

Node lst = null; // position of last item visited
Node nxt = first; // position of next item to be visited

public boolean hasNext()
{

return (nxt != null); // true if nxt is not null
}

public Object next()
{

if (nxt == null)
throw new NoSuchElementException();

lst = nxt; // lst is node being visited
nxt = nxt.next; // nxt is next node to be visited
return lst.item;

}

// Compare the Iterator remove method with the remove
// method in MyLinkedList.

// The variable lst refers to the node being removed.

public void remove()
{

if (lst == null)
throw new IllegalStateException();

26 Collection Framework Copyright 2006 by Ken Slonneger

size--; // lst refers to node to be removed
if (size == 0)

first = last = null;
if (lst == first)
{

first = first.next;
first.prev = null;

}
else if (lst == last)
{

last = last.prev;
last.next = null;

}
else
{ lst.prev.next = lst.next;

lst.next.prev = lst.prev;
}

lst = null; // cannot remove this item again
}

}

Remaining Collection Methods

Most of the remaining Collection methods can be defined in
terms of the basic methods.

Here are two examples.

public boolean addAll(Collection c)
{

boolean change = false;
Iterator it = c.iterator();

Copyright 2005 by Ken Slonneger Collection Framework 27

while (it.hasNext())
if (add(it.next()))

change = true;
return change;

}

public boolean removeAll(Collection c)
{

boolean change = false;
Iterator it = c.iterator();
while (it.hasNext())
{

Object ob = it.next();
while (contains(ob))
{

remove(ob);
change = true;

}
}
return change;

}

Exercise: Implement toArray(), retainAll(Collection c), and
containsAll(Collection c).

The other toArray method is more difficult to implement, requiring
methods from the java.lang.reflect package.

Remaining Methods
Several methods from Object must be implemented if we want
the List objects to have correct behavior.

public boolean equals(Object other)
public int hashCode()
public String toString()

28 Collection Framework Copyright 2006 by Ken Slonneger

public String toString()
{

String result = "[";
Iterator it = iterator();
if (it.hasNext())

result = result + it.next();
while (it.hasNext())

result = result + ", " + it.next();
return result + "]";

}

Exercise: Write the methods equals(Object ob) and hashCode().

That leaves the methods in the List interface, an extension of
Collection.

Most of these methods require that we find an index position in
the list. The simplest one is the get method.

public Object get(int index)
{

if (index<0 || index>=size)
throw new IndexOutOfBoundsException();

Node spot = first;
while (index > 0)
{

spot = spot.next;
index--;

}
return spot.item;

}

Copyright 2005 by Ken Slonneger Collection Framework 29

The add(int index, Object ob) and remove(int index) methods
are similar to the Collection methods once the position of the
index is found.

The addAll(int index, Collection c) method cannot simply use the
existing method add(int index, Object ob) because we would
have to index the list for each element of the Collection, and
indexing in a linked list means a linear search. Therefore, this
addAll must be written from scratch.

Exercise: Implement the List methods set(int index, Object ob),
indexOf(Object ob), lastIndexOf(Object ob), add(int index, Object
ob), and remove(int index).

Method subList
The subList(int from, int to) method is the trickiest.

The following strategy seems to work:
• Write a private constructor for MyLinkedList that takes a

Node (first) and two integers (from and to) as parameters.
• Inside this constructor find the nodes corresponding to the

from position and the spot in front of the to position and
initialize the new MyLinkedList object using these nodes to
set first and last.

• In subList, use the private constructor to return a new
MyLinkedList object that identifies the sublist.

The documentation states that the List returned by this method
becomes “undefined” if the original List is modified structurally in
any way.

30 Collection Framework Copyright 2006 by Ken Slonneger

ListIterator Methods
A ListIterator object will be similar to an Iterator object, but a little
more complicated. I did not implement the two methods that
produce a ListIterator object.

To satisfy the compiler, the missing methods just throw an
exception.

ListIterator listIterator()
{

throw new UnsupportedOperationException();
}

ListIterator listIterator(int index)
{

throw new UnsupportedOperationException();
}

Other LinkedList Methods
LinkedList implements six other methods that occur in no
interface.

public Object getFirst()
public Object getLast()
public Object removeFirst()
public Object removeLast()
public void addFirst(Object ob)
public void addLast(Object ob)

The first four methods throw NoSuchElementException if the list
is empty.

Exercise: Implement these six methods.

Copyright 2005 by Ken Slonneger Collection Framework 31

Set Interface
A Set is a Collection with no duplicate elements.

As with mathematical sets, the elements are not assumed
to be in any particular order.

The Set interface extends Collection but has no additional
methods.

HashSet Class
HashSet implements Set using a hash table.

Every object in Java has a number associated with it.

The class Object contains an instance method
public int hashCode()

for producing the numbers, ideally evenly distributed over the
range of the function.

Most classes override hashCode using properties of the class
to generate hash numbers that are scattered.

Basic Property
If ob1.equals(ob2), then ob1.hashCode() == ob2.hashCode().

A hash table stores objects by computing their hash values and
using those values to index into the table (an array).

If the table has m slots, numbered 0 to m-1, an item with hash
code h is placed at position |h % m|.

Hash Function
hash(key) = Math.abs(key.hashCode() % m)

32 Collection Framework Copyright 2006 by Ken Slonneger

Collision Resolution
A collision occurs if two different keys, called synonyms,
hash to the same position in the hash table:

hash(key1) = hash(key2) for key1 ≠ key2

Separate Chaining
Collisions are handled by maintaining a linked list, called a bucket,
for each hash value.

Synonyms are linked together on one of these lists.

Example
Consider a collection of elements that are animal names
(Strings).

Suppose that the tableSize is 11 and that the hash value is
calculated using:

hash(key) = |key.hashCode() % 11|

Hash
ant 7
ape 0
auk 4
bass 6

Hash
bat 4
bear 8
bee 5
bull 5

Hash
carp 8
cat 9
cod 5
eel 5

Insert the first 9 animals into a hash table with 11 slots.

Copyright 2005 by Ken Slonneger Collection Framework 33

Note that the number of keys stored in a hash table with
separate chaining is limited only by the dynamic allocation
heap (where objects are stored).

Furthermore, deletions are simply linked list deletions
involving the modification of one reference.

However, searching slows down when the linked lists get
very long.

Load Factor = (number of elements)/(number of slots)
Default load factor = 0.75.

When load factor is greater than 0.75, table is reorganized with a
larger array.

34 Collection Framework Copyright 2006 by Ken Slonneger

Algorithm hashCode for String

A class method since we cannot get inside the String class.

static int hc(String s) // early versions of Java used this code
{

char [] val = s.toCharArray();
int len = val.length;
int h = 0;
if (len<16)

for (int k=0; k<len; k++) // Horner's method for
h = 37*h + val[k]; // evaluating a polynomial

else
{ int skip = len/8;

for (int k=0; k<len; k=k+skip)
h = 39*h + val[k]; // What about overflow?

}
return h;

}

Sample Hash Codes
"herky" ⇒ 200188843
"to be or not to be that is the question" ⇒ -1383044710

Current Java (1.4)
for (int k=0; k<len; k++) // Used for strings of

h = 31*h + val[k]; // any length

Copyright 2005 by Ken Slonneger Collection Framework 35

HashSet Constructors

HashSet() // an empty hash table with default size

HashSet(Collection c) // a hash table with c’s elements

HashSet(int sz) // an empty hash table with sz size

HashSet(int sz, float lf) // size sz and load factor lf

36 Collection Framework Copyright 2006 by Ken Slonneger

Another Version of removeDups
Duplicates can be removed by changing the Collection
into a Set.

static List removeDups(List lst)
{

Collection collect = new HashSet(lst);
return new ArrayList(collect);

}

SortedSet Interface
This subinterface of Set expects to maintain the set in order
according to an instance method found in the interface Comparable.

int compareTo(Object other)
All objects added to a SortedSet must belong to a class that
implements the interface Comparable.
String and all the wrapper classes, except Boolean, implement
Comparable.
Because of the ordering, SortedSet allows additional behavior.

public interface SortedSet extends Set
{

Object first();
Object last();
SortedSet subSet(Object from, Object to); // from ≤ x < to
SortedSet headSet(Object to); // first ≤ x < to
SortedSet tailSet(Object from); // from ≤ x ≤ last
Comparator comparator(); // has a method to compare

} // two objects

Copyright 2005 by Ken Slonneger Collection Framework 37

TreeSet Class

TreeSet implements SortedSet using a red-black tree.

A red-black tree is a binary search tree that has its nodes
colored so that
• The root is black.
• No path from the root to a leaf has consecutive red nodes.
• All paths from the root to leaves have the same number of

black nodes.

These conditions keep the tree balanced so that searching is
efficient.

A Red-Black Tree

38 Collection Framework Copyright 2006 by Ken Slonneger

TreeSet Constructors
TreeSet() // an empty tree

TreeSet(Collection c) // an ordered tree with c’s elements

Ordering Domino
Put an ordering on Domino objects so they can be added
to a SortedSet.

Ordering
• If the low values differ, use them to order the Domino objects.
• If the low values are the same, use the high values to order

the objects.

We need Domino to implement the interface Comparable by
providing code for compareTo().

When compareTo() is overridden, its definition must be
consistent with equals(). Since Domino uses equals() from
Object, it needs to be redefined also.

Possibilities
• Change the header for Domino and insert new methods into

its class. This approach requires recompiling the Domino class.
• Subclass Domino with a class that implements Comparable

and provides the needed code, including equals().
Then Domino does not need to be touched.

We follow the second approach.
We still need access to Domino.class, the compiled code.

Copyright 2005 by Ken Slonneger Collection Framework 39

New Code (Ordering Dominoes)
import java.util.*;

class OrderedDomino extends Domino implements Comparable
{

OrderedDomino() { super(); }

OrderedDomino(boolean b) { super(b); }

OrderedDomino(int v1, int v2, boolean b)
{ super(v1, v2, b); }

public int compareTo(Object ob)
{

OrderedDomino d = (OrderedDomino)ob;
int diff = getLow() - d.getLow();
if (diff != 0)

return diff;
else

return getHigh() - d.getHigh();
}

public boolean equals(Object ob)
{

if (ob instanceof OrderedDomino)
{

OrderedDomino d = (OrderedDomino)ob;
return getLow()==d.getLow()

&& getHigh()==d.getHigh();
}
else return false;

}
}

40 Collection Framework Copyright 2006 by Ken Slonneger

The next class tests OrderedDomino by creating 40 random
dominoes and placing them into a SortedSet.

Note that the resulting set has no duplicates and is ordered.

public class SortDoms
{

public static void main(String [] args)
{

SortedSet sSet = new TreeSet();

for (int m=1; m<=40; m++)
sSet.add(new OrderedDomino(true));

for (Iterator rat = sSet.iterator(); rat.hasNext();)
System.out.println(rat.next());

}
}

Output

<0, 1> UP
<0, 2> UP
<0, 3> UP
<0, 6> UP
<0, 7> UP
<0, 9> UP
<1, 5> UP
<1, 7> UP
<1, 9> UP
<2, 2> UP

<2, 6> UP
<2, 7> UP
<2, 9> UP
<3, 5> UP
<3, 7> UP
<3, 8> UP
<3, 9> UP
<4, 4> UP
<4, 5> UP
<4, 6> UP

<4, 7> UP
<4, 8> UP
<4, 9> UP
<5, 5> UP
<5, 8> UP
<5, 9> UP
<6, 6> UP
<6, 7> UP
<7, 7> UP
<7, 8> UP

Copyright 2005 by Ken Slonneger Collection Framework 41

Just Remove Duplicates
Suppose we do not need the dominoes sorted, but just want to
remove the duplicates.

Change the main method in the class SortDoms to read:

public static void main(String [] args)
{

Set set = new HashSet();

for (int m=1; m<=40; m++)
set.add(new OrderedDomino(true));

for (Iterator rat = set.iterator(); rat.hasNext();)
System.out.println(rat.next());

}

Output
<1, 9> UP
<1, 5> UP
<2, 5> UP
<0, 4> UP
<0, 3> UP
<1, 9> UP
<6, 9> UP
<4, 7> UP
<0, 2> UP
<0, 2> UP
<4, 7> UP
<1, 4> UP
<2, 3> UP
<6, 8> UP

<2, 4> UP
<2, 6> UP
<7, 9> UP
<1, 1> UP
<0, 9> UP
<3, 6> UP
<4, 6> UP
<1, 4> UP
<2, 5> UP
<2, 8> UP
<1, 8> UP
<1, 2> UP
<2, 4> UP
<3, 5> UP

<6, 7> UP
<0, 8> UP
<6, 8> UP
<5, 6> UP
<2, 4> UP
<5, 5> UP
<3, 5> UP
<5, 5> UP
<0, 9> UP
<3, 9> UP
<3, 5> UP
<1, 3> UP

42 Collection Framework Copyright 2006 by Ken Slonneger

Oops
Although we placed the forty random dominoes into a set,
duplicates still exist.

 <1, 9>, <2, 5>, <4, 7>, <0, 2>, <6, 8>, <2, 4>, <0, 9>, <3, 5>, and <5, 5>

What went wrong?

The Problem
We did not override the method hashCode from Object, which
uses the address of the object in memory as its hash value.

This means that every domino we create is considered to be
different with respect to the hash table that HashSet creates.

We have violated the Basic Property of hash functions:
If ob1.equals(ob2), then ob1.hashCode() == ob2.hashCode().

Solution
Add an implementation of hashCode that satisfies the Basic
Property to OrderedDomino.

public int hashCode()
{

return 101*getLow() + 103*getHigh();
}

Copyright 2005 by Ken Slonneger Collection Framework 43

Output

<4, 9> UP

<0, 6> UP

<1, 5> UP

<6, 7> UP

<3, 3> UP

<3, 9> UP

<4, 8> UP

<0, 5> UP

<5, 7> UP

<2, 3> UP

<3, 8> UP

<4, 7> UP

<0, 4> UP

<2, 2> UP

<0, 9> UP

<2, 7> UP

<7, 9> UP

<3, 6> UP

<0, 2> UP

<1, 1> UP

<0, 8> UP

<6, 9> UP

<3, 5> UP

<4, 4> UP

<0, 1> UP

<1, 6> UP

<6, 8> UP

<2, 5> UP

<3, 4> UP

Now the duplicates are removed as the dominoes are placed
into the hash table of the HashSet object.

44 Collection Framework Copyright 2006 by Ken Slonneger

Unique Words
Read a text file and create a list of all the words that appear
in the text. No words are to be duplicated in the list.

Reading the Text File

1. Create a FileReader and use the method
int read()

to read the characters in the text, forming them
into tokens by testing for the word delimiters.

2. Create a BufferedReader, read an entire line at a time,
and use a StringTokenizer to get the words.

Both approaches were tried, reading a file containing
Oliver Twist, which has over 160,000 words.

Timings
Approach 1: 157.9 seconds
Approach 2: 7.4 seconds

We use the second approach, writing a class whose objects
encapsulate a Reader and respond to a readWord method.

Copyright 2005 by Ken Slonneger Collection Framework 45

Java Code

import java.io.*;
import java.util.*;

class WordReader
{

private BufferedReader br;
private StringTokenizer sTok; // null by default
private String line;

static final String delimiters = ".,;:-?!()\" \n\t ";

WordReader(Reader r)
{

br = new BufferedReader(r);
line = br.readLine();
if (line == null) line = "";
sTok = new StringTokenizer(line, delimiters);

}

String readWord() throws IOException
{ // returns "" at eof

while (!sTok.hasMoreTokens())
{

line = br.readLine();
if (line == null) // Reader at eof

return "";
sTok = new StringTokenizer(line, delimiters);

}
return sTok.nextToken();

}
}

46 Collection Framework Copyright 2006 by Ken Slonneger

UniqueWords Class
Use a HashSet so that duplicates will be ignored.
Get the file name from the command line (args[0]).
Use the Date class to time the operation.
Put the list of words in another text file with the suffix “.out”.

public class UniqueWords
{

public static void main (String [] args)
{

Set set = new HashSet(101); // Point

String fname="";

if (args.length == 1)
fname = args[0]; // command line argument

else
{ System.out.println("Usage: java UniqueWords filename");

return;
}

int totalWords = 0;

try
{

FileReader fr = new FileReader(fname);
WordReader wr = new WordReader(fr);

Date d1 = new Date();
String wd = wr.readWord();

Copyright 2005 by Ken Slonneger Collection Framework 47

while (!wd.equals(""))
{

totalWords++;
set.add(wd.toLowerCase());
wd = wr.readWord();

}
Date d2 = new Date();
PrintWriter pw =

new PrintWriter(new FileWriter(fname + ".out"), true);
printList(set, pw);
System.out.println("Total number of words = " + totalWords);
System.out.println("Number of unique words = " + set.size());
System.out.println("Elapsed time = "

+ ((d2.getTime() - d1.getTime())/1000.0) + " seconds\n");
fr.close();
pw.close();

}
catch (IOException e)
{

System.out.println(e);
}

}

static void printList(Collection c, PrintWriter pw)
{

for (Iterator it = c.iterator(); it.hasNext();)
{

Object word = it.next();
pw.println(word);

}
}

}

48 Collection Framework Copyright 2006 by Ken Slonneger

Sample Execution
Text File: jeeves

Now, touching this business of old Jeeves--my man,
you know--how do we stand?
Lots of people think I'm much too dependent on him.
My Aunt Agatha, in fact, has even gone so
far as to call him my keeper.
Well, what I say is: Why not? The man's a genius.
From the collar upward he stands alone.
I gave up trying to run my own affairs
within a week of his coming to me.

% java UniqueWords jeeves
Total number of words = 76
Number of unique words = 65
Elapsed time = 0.014 seconds

Text File: jeeves.out
man
a
within
he
his
as
stand
too
now
trying
not
him
even

gone
business
from
do
how
own
what
collar
to
run
my
the
know

affairs
lots
alone
we
you
well
me
has
fact
people
upward
far
touching

so
why
is
week
think
much
in
this
aunt
genius
old
jeeves
call

dependent
agatha
say
on
i'm
keeper
gave
man's
of
stands
i
coming
up

Copyright 2005 by Ken Slonneger Collection Framework 49

Ordering the Words
Change one line (Point) in UniqueWords:

Set set = new TreeSet();

Sample Execution
% java UniqueWords jeeves
Total number of words = 76
Number of unique words = 65
Elapsed time = 0.029 seconds

Text File: jeeves.out
a
affairs
agatha
alone
as
aunt
business
call
collar
coming
dependent
do
even

fact
far
from
gave
genius
gone
has
he
him
his
how
i
i'm

in
is
jeeves
keeper
know
lots
man
man's
me
much
my
not
now

of
old
on
own
people
run
say
so
stand
stands
the
think
this

to
too
touching
trying
up
upward
we
week
well
what
why
within
you

50 Collection Framework Copyright 2006 by Ken Slonneger

Map Interface

A Map object will be a container holding pairs of objects
of the form (key, value) that represents a finite function.

Consequences
• the container has no duplicate keys
• each key maps to at most one value.

Example
Consider the function that maps a state name to the number
of electoral votes for that state.
Assume the numerals represent Integer objects.

{ (“Iowa”, 7), (“Illinois”, 21), (“Wisconsin”, 10), (“Minnesota”, 10),
(“Michigan”, 17), (“Ohio”, 20), (“Missouri”, 11), (“Indiana”, 11),
(“Pennsylvania”, 21), (“Oregon”, 7), (“Nebraska”, 5) }

The keys in this map are the state names.

The associated values are Integer objects.

The behavior of a Map object should allow for adding and
deleting pairs and searching for keys and their values in the map.

A Map can be iterated in three ways:
By keys
By values
By the pairs, objects of type Map.Entry

Copyright 2005 by Ken Slonneger Collection Framework 51

public interface Map
{

// Basic operations
Object get(Object key); // returns matching value
Object put(Object key, Object val); // returns previous value
Object remove(Object key); // returns old value
boolean containsKey(Object key);
boolean containsValue(Object val);
boolean isEmpty();
int size();

// Bulk operations
void clear();
void putAll(Map m);

// "Iterator" operations
Set keySet(); // no duplicate keys
Collection values(); // values may have duplicates
Set entrySet(); // a Set of Map.Entry objects (pairs)

public static interface Map.Entry // a static inner interface
{

Object getKey();
Object getValue();
Object setValue(Object);

}
}

52 Collection Framework Copyright 2006 by Ken Slonneger

SortedMap Interface

This subinterface of Map expects the keys to be kept in order
according to an ordering supplied by the method compareTo.

The class of the keys must implement Comparable.

Additional Behavior
public interface SortedMap extends Map
{

Object firstKey();
Object lastKey();
SortedMap subMap(Object from, Object to);
SortedMap headMap(Object to);
SortedMap tailMap(Object from);
Comparator comparator();

}

Implementations
• Map is implemented by the class HashMap, which uses

a hash table.

• SortedMap is implemented by the class TreeMap, which
uses a red-black tree.

Copyright 2005 by Ken Slonneger Collection Framework 53

HashMap Constructors
HashMap() HashMap(Map m)
HashMap(int sz) HashMap(int sz, float loadfac)

TreeMap Constructors
TreeMap() TreeMap(Comparator c)
TreeMap(Map m) TreeMap(SortedMap m)

Frequency Class
Alter the class UniqueWords so that it maintains a frequency
count of the words found in the text file.
Use a Map that associates an Integer object with each of the
words found in the text. Call the class Frequency.

54 Collection Framework Copyright 2006 by Ken Slonneger

Changes in main
Map table = new HashMap(); // Point

:

String wd = wr.readWord();

while (!wd.equals(""))
{

totalWords++;
wd = wd.toLowerCase();
if (!table.containsKey(wd))

table.put(wd, new Integer(1));
else
{

Integer m = (Integer)table.get(wd);
int n = m.intValue() + 1;
table.put(wd, new Integer(n));

}
wd = wr.readWord();

}

Changes in printList
static void printList(Map m, PrintWriter pw)
{

Set keys = m.keySet();
for (Iterator it = keys.iterator(); it.hasNext();)
{ Object key = it.next();

pw.println(key + " -- " + m.get(key));
}

}

Copyright 2005 by Ken Slonneger Collection Framework 55

OR
Set pairs = m.entrySet();
for (Iterator it = pairs.iterator(); it.hasNext();)
{ Map.Entry pair = (Map.Entry)it.next();

pw.println(pair.getKey() + " -- " + pair.getValue());
}

Sample Execution

% java Frequency jeeves
Total number of words = 76
Number of unique words = 65
Elapsed time = 0.015 seconds

Text file: jeeves.out
man -- 1
a -- 2
within -- 1
he -- 1
his -- 1
as -- 1
stand -- 1
too -- 1
now -- 1
trying -- 1
not -- 1
him -- 2
even -- 1
gone -- 1
business -- 1
from -- 1
do -- 1

how -- 1
own -- 1
what -- 1
collar -- 1
to -- 3
run -- 1
my -- 4
the -- 2
know -- 1
affairs -- 1
lots -- 1
alone -- 1
we -- 1
you -- 1
well -- 1
me -- 1

has -- 1
fact -- 1
people -- 1
upward -- 1
far -- 1
touching -- 1
so -- 1
why -- 1
is -- 1
week -- 1
think -- 1
much -- 1
in -- 1
this -- 1
aunt -- 1
genius -- 1

old -- 1
jeeves -- 1
call -- 1
dependent -- 1
agatha -- 1
say -- 1
on -- 1
i'm -- 1
keeper -- 1
gave -- 1
man's -- 1
of -- 3
stands -- 1
i -- 2
coming -- 1
up -- 1

56 Collection Framework Copyright 2006 by Ken Slonneger

Ordering the Words
Change one line (Point) in Frequency:

Map table = new TreeMap();

Sample Execution
% java Frequency jeeves
Total number of words = 76
Number of unique words = 65
Elapsed time = 0.038 seconds

Text file: jeeves.out
a -- 2
affairs -- 1
agatha -- 1
alone -- 1
as -- 1
aunt -- 1
business -- 1
call -- 1
collar -- 1
coming -- 1
dependent -- 1
do -- 1
even -- 1
fact -- 1
far -- 1
from -- 1
gave -- 1

genius -- 1
gone -- 1
has -- 1
he -- 1
him -- 2
his -- 1
how -- 1
i -- 2
i'm -- 1
in -- 1
is -- 1
jeeves -- 1
keeper -- 1
know -- 1
lots -- 1
man -- 1

man's -- 1
me -- 1
much -- 1
my -- 4
not -- 1
now -- 1
of -- 3
old -- 1
on -- 1
own -- 1
people -- 1
run -- 1
say -- 1
so -- 1
stand -- 1
stands -- 1

the -- 2
think -- 1
this -- 1
to -- 3
too -- 1
touching -- 1
trying -- 1
up -- 1
upward -- 1
we -- 1
week -- 1
well -- 1
what -- 1
why -- 1
within -- 1
you – 1

Copyright 2005 by Ken Slonneger Collection Framework 57

Autoboxing and Unboxing

Sometimes values of primitive types must be stored as objects.
Java provides eight wrapper classes to do the job.

Primitive Type Reference Type
byte Byte
short Short

int Integer
long Long
float Float

double Double
char Character

boolean Boolean

Problem: Verbose Code
• Constructors or factory methods must be employed to

convert the primitive values into objects.
Double dob = new Double(17.2);
Integer iob = Integer.valueOf(93);
Boolean bob = new Boolean(true);

• Since artihmetic and testing must be done with primitive
values, instance methods are needed to extract the primitive
values from the objects.

double d = dob.doubleValue() + 5.6;
int n = 8 * iob.intValue();
if (bob.booleanValue()) System.out.println("yes");

58 Collection Framework Copyright 2006 by Ken Slonneger

An Alternative in Java 1.5
Java 1.5 provides a mechanism that performs these
conversions automatically.

Autoboxing
Double dob = 17.2;
Integer iob = 93;
Booolean bob = true;

The compiler inserts the code required to place these primitive
values into newly created objects.

Unboxing
double d = dob + 5.6;
int n = 8 * iob;
if (bob) System.out.println("yes");

The behavior of these two sets of code will be identical to the
two sets on the previous page.

Autoboxing and Unboxing
dob = (iob + 87) / (dob + 309);

Warning: Do not let the simplicity of this code lull you.
It hides several operations that will make this
command much slower than if all of the variables
were of primitive types.

Copyright 2005 by Ken Slonneger Collection Framework 59

Generics in Java 1.5

Basic Principle
Errors recognized by the compiler (static errors) are much easier
to debug than errors detected at runtime (dynamic errors).

Type Errors
A type error occurs when an operation or method is applied to
values whose types are not what the operation or method
expects.

Type Safe
A programming language is type safe if no executing program
has a type error.

Strong Typing
All type errors in programs are guaranteed to be detected so
that executing programs will be type safe. In addition, as much of
the type checking as possible is done statically (by the
compiler).

Java
Java is more strongly typed than C or C++, but its typing
mechanism has a few loopholes.

Arrays: Mostly Strongly Typed
String [] sarray = new String [10];
Integer [] iarray = new Integer [5];

60 Collection Framework Copyright 2006 by Ken Slonneger

The compiler ensures that we put only String objects into sarray
and Integer objects into iarray.

When access these arrays using subscripting, we always know
what we will get.

Loophole: Upcasting

Object [] oarray = new Object [8];
oarray[0] = "hello";
oarray[1] = 55; // autoboxing
oarray[2] = new Domino(2, 5, true);
oarray[3] = 84.62; // autoboxing

An object of a subclass of the component class can be inserted
into the array.

Collection and Map Objects
With Collection objects and Map objects we have no protection
at all.

List list = new ArrayList();

Any kind of object can be added to this List object.

When we extract elements from the list, we may get any kind of
object.

The compiler can do no error checking to verify the correct use
of compatible types.

Errors are reported at runtime as ClassCastExceptions.

Copyright 2005 by Ken Slonneger Collection Framework 61

Generics
Generics, a new feature in Java 1.5, brings the same type safety
of arrays to Collection and Map objects.
Idea

All of the container interfaces and classes have been
defined to allow a type parameter that specifies the type
of the objects allowed in the container.

Furthermore
1. The compiler ensures that only objects of the component

type are allowed into the container.
2. Those objects do not need to be downcast when they

are selected from the container.

Example
List<String> slist = new ArrayList<String>();
slist.add("one");
slist.add("two");
slist.add("three");
slist.add("four");
// slist.add(5); Compiler error

for (Iterator<String> it = slist.iterator(); it.hasNext();)
System.out.println(it.next().length());

Observations
1. The compiler checks that only String objects are entered

into slist.
2. The method call it.next() returns an object of type String.

62 Collection Framework Copyright 2006 by Ken Slonneger

New for Command
Java 1.5 also provides a new version of the for command.

for (ComponentType var : CollectionOrArrayObject)
{

do something with the value of var
}

For the previous example, use:
for (String s : slist)

System.out.println(s.length());

Restriction: The loop variable var is read-only.

Limitations
We can still build a container that accepts Object objects.

Set<Object> oset = new HashSet<Object>();
oset.add("one");
oset.add(5);
oset.add(new Domino(7, 8, true));
for (Object obj : oset)

System.out.println(obj);
But combined with autoboxing, we can develop concise and
reliable code to solve many problems.

Set<Double> dset = new HashSet<Double>();
dset.add(17.2); dset.add(33.8); dset.add(21.5);
dset.add(44.0); dset.add(53.0); dset.add(9.4);
double sum = 0.0;
for (Double d : dset) sum = sum+d;
double mean = sum/dset.size();
System.out.println("mean = " + mean);

Copyright 2005 by Ken Slonneger Collection Framework 63

Type Parameters in Methods
Generic types can be used to type parameters to methods as
well as the return type of a method.
Imagine methods that take List<String>, Set<Domino>,
Map<String, Integer> as parameter types.

Suppose we want to define a method that prints the elements in
a generic Collection object.
How do we specify the type parameter for the Collection so that
any reference type may replace it?
The solution is to use a type specification with a wild card.

Wild Cards
Three kinds of types can be specified with wild cards.

? extends T Stands for any subtype of T
? super T Stands for any supertype of T

? Stands for any type

Printing a Generic Collection
static void printCollection(Collection<?> c, PrintWriter pw)
{

for (Object ob : c) pw.println(ob);
}

These techniques can be applied to the following programs in the
lecture notes: MakeAL, MakeLL, MyLinkedList, SortDoms,
UniqueWords, and Frequency.

64 Collection Framework Copyright 2006 by Ken Slonneger

Autoboxing and the Collection Framework
Autoboxing is particularly useful with the generic containers in
the Collection framework.

The next example illustrates the use of autoboxing with a
Collection object.

Problem
Create a List of ten randomly generated integers between 1 and
100, and then find the product of the ten numbers.

Since we want to store the numbers in a List, they must be each
wrapped as an object.

import java.util.*;

public class RandInts
{

public static void main(String [] args)
{

List<Integer> numList = new ArrayList<Integer>();
for (int k=1; k<=10; k++)

numList.add((int)(100*Math.random() + 1);
int prod = 1;
for (Integer n : numList)

prod = prod*n;
System.out.println("product = " + prod);

}
}

Copyright 2005 by Ken Slonneger Collection Framework 65

Collections Class

The Collections class in java.util contains a set of class methods
for sorting, searching, and using Collection objects.
Comparator is an interface with an instance method that acts like
a class method for comparing objects:

int compare(Object ob1, Object ob2);
We look at a few of these methods (all are public).

public class Collections
{

static void sort(List ls);
static void sort(List ls, Comparator cmp);
static int binarySearch(List ls, Object ob);
static int binarySearch(List ls, Object ob, Comparator cmp);
static void reverse(List ls);
static void shuffle(List ls);
static void shuffle(List ls, Random r);
static Object max(Collection c);
static Object max(Collection c, Comparator cmp);
static Object min(Collection c);
static Object min(Collection c, Comparator cmp);
static void copy(List des, List src);
static void fill(List ls, Object ob);
static List nCopies(int n, Object ob);

:
}

66 Collection Framework Copyright 2006 by Ken Slonneger

UniqueWords
The sort method can be used to put the unique words in order.

Add this code before creating the second Date object in
UniqueWords:

List list = new ArrayList(set);
Collections.sort(list);

Problem
Suppose we want to sort the words so that the shortest words
come first and the longest words come last.
If we could subclass String, we could override compareTo so that
the calls to

s1.compareTo(s2)
would tell us the relative size of these two strings.

But we cannot subclass String because it is defined to be final.

Alternative Strategy

We define a class that implements the Comparator interface.

This strategy works because the compare method takes both
of its arguments as regular parameters. For this method, this is
the object that implements Comparator.

To define the compare method, we find the difference of the
lengths of the two strings and return that value if it is nonzero.
Otherwise, we simply call compareTo for the two String objects.

Copyright 2005 by Ken Slonneger Collection Framework 67

Here is the class that implements Comparator.

class Order implements Comparator
{

public int compare(Object ob1, Object ob2)
{

String s1 = (String)ob1;
String s2 = (String)ob2;
int diff = s1.length() - s2.length();
if (diff != 0)

return diff;
else

return s1.compareTo(s2);
}

}

Now change the code for sorting the list to read as follows:
List list = new ArrayList(set);
Comparator comp = new Order();
Collections.sort(list, comp);

Text File: jeeves.out
a
i
as
do
he
in
is
me
my
of
on
so
to

up
we
far
has
him
his
how
i'm
man
not
now
old
own

run
say
the
too
why
you
aunt
call
even
fact
from
gave
gone

know
lots
much
this
week
well
what
alone
man's
stand
think
agatha
collar

coming
genius
jeeves
keeper
people
stands
trying
upward
within
affairs
business
touching
dependent

68 Collection Framework Copyright 2006 by Ken Slonneger

Frequency
The sort method can be used to put the pairs in order.

Add this code before creating the second Date object in
Frequency:

List list = new ArrayList(table.entrySet());

Collections.sort(list, new Comparator()
{

public int compare(Object ob1, Object ob2)
{

Map.Entry me1 = (Map.Entry)ob1;
String key1 = (String)me1.getKey();
Map.Entry me2 = (Map.Entry)ob2;
String key2 = (String)me2.getKey();
return key1.compareTo(key2);

}
}); // an anonymous class

Replace the call to printList with:
printList(list, pw);

Copyright 2005 by Ken Slonneger Collection Framework 69

Replace the definition of printList with:

static void printList(List mapList, PrintWriter pw)
{

for (Iterator it = mapList.iterator(); it.hasNext();)
{

Map.Entry pair = (Map.Entry)it.next();
pw.println(pair.getKey() + " -- " + pair.getValue());

}
}

Frequency Using Collections.sort, Generics, and
Autoboxing

import java.io.*;
import java.util.*;

public class GFrequency
{

public static void main (String [] args)
{

Map<String,Integer> table =
new HashMap<String,Integer>();

String fname="";
if (args.length == 1) fname = args[0];
else
{ System.out.println(

 "Usage: java GFrequencey filename");
return;

}
int totalWords = 0;

70 Collection Framework Copyright 2006 by Ken Slonneger

try
{ WordReader wr =

new WordReader(new FileReader(fname));
String wd = wr.readWord();
while (!wd.equals(""))
{

totalWords++;
wd = wd.toLowerCase();
if (!table.containsKey(wd))

table.put(wd, 1);
else

 {
Integer m = table.get(wd);
table.put(wd, m+1);

}
wd = wr.readWord();

}
List<Map.Entry> list =

new ArrayList<Map.Entry>(table.entrySet());
Collections.sort(list,

new Comparator<Map.Entry>()
{ public int compare(Map.Entry e1, Map.Entry e2)

{ String key1 = (String)e1.getKey();
String key2 = (String)e2.getKey();
return key1.compareTo(key2);

}
});

Copyright 2005 by Ken Slonneger Collection Framework 71

PrintWriter pw =
new PrintWriter(new FileWriter(fname + ".out"),

true);
printList(list, pw);
pw.close();
System.out.println("Total words = " + totalWords);
System.out.println("Unique words = " + table.size());

}
catch (IOException e)
{ System.out.println(e); }

}

static void printList(List<Map.Entry> mapLt, PrintWriter pw)
{

for (Map.Entry pair : mapLt)
pw.println(pair.getKey() + " -- " + pair.getValue());

}
}

72 Collection Framework Copyright 2006 by Ken Slonneger

Another Level of Generics
The Map.Entry objects can be typed as <String,Integer> to
reduce the number of downcasts in the code.

List<Map.Entry<String,Integer>> list =
new ArrayList<Map.Entry<String,Integer>>(

table.entrySet());
Collections.sort(list,

new Comparator<Map.Entry<String,Integer>>()
{ public int compare(Map.Entry<String,Integer> e1,

Map.Entry<String,Integer> e2)
{ String key1 = e1.getKey();

String key2 = e2.getKey();
return key1.compareTo(key2);

}
});

PrintWriter pw =
new PrintWriter(new FileWriter(fname + ".out"),

true);
printList(list, pw);

:
}
static void printList(List<Map.Entry<String,Integer>> mapLt,

PrintWriter pw)
{

for (Map.Entry<String,Integer> pair : mapLt)
pw.println(pair.getKey() + " -- " + pair.getValue());

}
}

Copyright 2005 by Ken Slonneger Collection Framework 73

Timings with Oliver Twist

UniqueWords

Total number of words = 163188

Number of unique words = 10981

HashSet: 7.432 seconds

TreeSet: 10.965 seconds

HashSet with Collections.sort: 9.349 seconds

Frequency

Total number of words = 163188

Number of unique words = 10981

HashMap: 10.319 seconds

TreeMap: 14.192 seconds

HashMap with Collections.sort: 11.381 seconds

74 Collection Framework Copyright 2006 by Ken Slonneger

Container Hierarchy

