
Object Oriented Analysis &
Design (OOAD) Overview

Lecture 11
Based on slides from Ian Sommerville, University of Lancaster, United

Kingdom, University of St Andrews, Scotland
And on slides Aries Muslim’s site (based on slides from Kasseler?)

Object-Oriented Development

•Object-oriented analysis, design and programming
are related but distinct
• OOA is concerned with developing an object model of

the application domain
• OOD is concerned with developing an object-oriented

system model to implement requirements
• OOP is concerned with realising an OOD using an OO

programming language such as Java or C++

©Ian Sommerville 2000
2

OOAD

• Focuses on objects where system is broken down in terms of the
objects that exist within it.

• Functions (behaviour) and data (state) relating to a single object
are self-contained or encapsulated in one place.

3

Advantages of OOD

• Easier maintenance. Objects may be
understood as stand-alone entities
• Objects are appropriate reusable components
• For some systems, there may be an obvious

mapping from real world entities to system
objects

©Ian Sommerville 2000
4

OO Design vs. OO Programming

• Object-Oriented Design
• a method for decomposing software architectures
• based on the objects every system or subsystem manipulates
• relatively independent of the programming language used

• Object-Oriented Programming
• construction of software systems as

• Structured collection of Abstract Data Types (ADT)
• Inheritance
• Polymorphism

• concerned with programming languages and implementation issues

5

Objects and object classes

• Objects are entities in a software system that represent instances of
real-world and system entities
• Object classes are templates for objects. They may be used to create

objects
• Object classes may inherit attributes and services from other object

classes

©Ian Sommerville 2000
6

Objects

• Object is an abstraction of something in a problem domain, reflecting
the capabilities of the system to keep information about it, interact
with it, or both.
• Objects are entities in a software system that represent instances of

real-world and system entities

7

Objects

Object Identity Behaviors State

An employee “Mr. John” Join(),
Retire()

Joined,
Retired.

A book “Book with title
Object Oriented
Analysis Design”

AddExemplar, Rent,
available,
reserved

A sale “Sale no 0015,
15/12/98”

SendInvoice(),
Cancel().

Invoiced,
cancelled.

8

Object Class

• Class is a description of a set of objects that share the same
attributes, operations, methods, relationship and semantics.
• Object classes are templates for objects. They may be used to create

objects.
• An object represents a particular instance of a class.

9

Term of objects

• Attributes: data items that define object.
• Operations: functions in a class that combine to form the behavior of

class.
• Methods: the actual implementation of a procedure (the body of

code that is executed in response to a request from other objects in
the system).

10

The Unified Modeling Language

• Several different notations for describing object-oriented designs
were proposed in the 1980s and 1990s
• The Unified Modeling Language is an integration of these notations
• It describes notations for a number of different models that may be

produced during OO analysis and design
• It is now a de facto standard for OO modelling

©Ian Sommerville 2000
11

Employee object & class

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
department: Dept
manager: Employee
salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Employee16
name: John
address: M Street No.23
dateOfBirth: 02/10/65
employeeNo: 324
socialecurityNo:E342545
department: Sale
manager: Employee1
salary: 2340
stauts:current
taxCode: 3432
….
Eployee16.join(02/05/1997)
Eployee16.retire(03/08/2005)
Eployee16.changeDetail(“X
Street No. 12”)

ObjectClass

12

Encapsulation and Data Hiding

• Packaging related data and operations together is called
encapsulation.
• Data hiding: hides the internal data from external by methods

(interface).
• Important in most design paradigms (not just OOAD)

13

Encapsulation
When classes are defined, programmers can specify that certain

methods or state variables remain hidden inside the class.

u These variables and methods are accessible from within the
class, but not accessible outside it.

u The combination of collecting all the attributes of an object
into a single class definition, combined with the ability to hide
some definitions and type information within the class, is
known as encapsulation.

Hidden
State

Variables
and

Methods

Visible Methods

Visible Variables

Class
Definition

14

Graphical Model of an Object

State variables make up the nucleus of the object.
Methods surround and hide (encapsulate) the state
variables from the rest of the program.

theBalance
acctNumber

accountNumber()

balance()Instance
variables

Methods

deposit()withdraw()

15

Encapsulation
l private attributes and methods are encapsulated within the

class, they cannot be seen by clients of the class

l publicmethods define the interface that the class provides
to its clients

- numCustomers = 0
- MIN_BUDGET = 200

- name: String
- address: String

- budget: int

+ placeOrder(): void

Customer

public methods + printNumCustomer(): void

private attributes

Customer class
16

Object communication

• Conceptually, objects communicate by message passing.
• Messages

• The name of the service requested by the calling object.
• Copies of the information required to execute the service

and the name of a holder for the result of the service.

• In practice, messages are often implemented
by procedure calls
• Name = procedure name.
• Information = parameter list.

©Ian Sommerville 2000
17

Object communication

• Objects communicate with each other by sending
messages
• a message is a method call from a message-sending object to

a message-receiving object
• a message consists of

• an object reference which indicates the message receiver
• a method name (corresponding to a method of the receiver), and
• parameters (corresponding to the arguments of the calling method)

• a message-receiving object is a server to a message-sending
object, and the message-sending object is a client of the
server

18

Message Passing

name = “Alex”
address =

“1 Robinson Rd”
budget = 2000

placeOrder(): void

name = “Lawrence”
employeeNo =15
commission = 200

takeOrder(): int

takeOrder(“sofa”, name,
address, “120799”)

199

message

return valuealex lawrence

lawrence.takeOrder(“sofa”, “1 Robinson Rd”, “120799”)

parametersmethod nameobject reference

message

19

Message Passing

- numCustomers = 0
- MIN_BUDGET = 200

- name: String
- address: String

- budget: int

+ placeOrder(): void

Customer

+ printNumCustomer(): void

- MAX_ PRICE = 200
- name: String

- employeeNo: String
- commission: int

+ takeOrder(): void

SalesPerson

alex lawrence
takeOrder

client server
20

Generalisation and inheritance

• Objects are members of classes that define attribute types and
operations
• Classes may be arranged in a class hierarchy where one class (a super-

class) is a generalisation of one or more other classes (sub-classes)
• A sub-class inherits the attributes and operations from its super class

and may add new methods or attributes of its own
• Generalisation in UML is implemented as inheritance in OO

programming languages

©Ian Sommerville 2000
21

A generalisation hierarchy

Employee

Programmer

project
progLanguage

Manager

Project
Manager

budgetsControlled
dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

22

Library class
hierarchy

Acquire ()
Catalogue ()
Dispose ()
Issue ()
Return ()

Author
Edition
Publicationdate
ISBN

Book

Year
Issue

Magazine
Director
Date of release
Distrib

Film

Version
Platform

Computer
program

Title
Publisher

Published item
Title
Medium

Recorded item

Library Item
Catalogue Number
Acquisition date
Cost
Type
Status
Number of copies

23

User class hierarchy
Name
Address
Phone
Registration #

Library user

Register ()
De-register ()

Affiliation

Reader

Items on loan
Max. loans

Borrower

Department
Department phone

Staff
Major subject
Home address

Student

24

Multiple inheritance

• Rather than inheriting the attributes and services from a single parent
class, a system which supports multiple inheritance allows object
classes to inherit from several super-classes
• Can lead to semantic conflicts where attributes/services with the

same name in different super-classes have different semantics
• Makes class hierarchy reorganisation more complex

25

Multiple inheritance

Tapes

Talking book

Author
Edition
Publication date
ISBN

Book

Speaker
Duration
Recording date

Voice recording

26

Advantages of inheritance

• It is an abstraction mechanism which may be used to classify
entities
• It is a reuse mechanism at both the design and the

programming level
• The inheritance graph is a source of organisational

knowledge about domains and systems

27

Problems with inheritance

• Object classes are not self-contained. They cannot be
understood without reference to their super-classes
• Designers have a tendency to reuse the inheritance graph

created during analysis. Can lead to significant inefficiency
• The inheritance graphs of analysis, design and

implementation have different functions and should be
separately maintained

28

Inheritance and OOD

• There are differing views as to whether inheritance is
fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or network is a

fundamental part of object-oriented design. Obviously this can only
be implemented using an OOPL.

• View 2. Inheritance is a useful implementation concept that allows
reuse of attribute and operation definitions. Identifying an
inheritance hierarchy at the design stage places unnecessary
restrictions on the implementation

• Inheritance introduces complexity and this is undesirable,
especially in critical systems

29

Objects Association

•Modeling an association between two classes
means that there is some sort of relationship
between objects of each class that may be
connected.

Student Course0..* 1..*

studies

30

An association model

Employee Department

Manager

is-member-of

is-managed-by

manages

©Ian Sommerville 2000
31

Object aggregation

• Aggregation model shows how classes that are collections are
composed of other classes

• Similar to the part-of relationship in semantic data models

32

Object aggregation

Videotape

Tape ids.

Lectur e
notes

Text

OHP slides

Slides

Assignment

Credits

Solutions

Text
Diagrams

Exercises

#Problems
Description

Course title
Number
Year
Instructor

Study pack

1 ..*

1 1 1 1

0 ..*1 ..*1 ..*

1 1

1 ..* 1 ..*

33

Object Cohesion & Coupling

• Cohesion describes the relationships within modules.
• Cohesion of a component is a measure of how well it fits together. Each

operation provides functionality that allows the attributes of the object to be
modified, inspected or used as a basis for service provision.

• Coupling describes the relationships between modules
• Coupling is an indication of the strength of interconnections between

program units. Highly coupled systems have strong interconnections, with
program units dependent on each other (shared variables, interchange
control function). Loosely coupled system have program units that are
independent.

34

Polymorphism

• the ability of different objects to perform the
appropriate method in response to the same
message is known as polymorphism.
• the selection of the appropriate method depends

on the class used to create the object

Shape

SquareCircle

name
getName()
calculateArea()

side
calculateArea()

radius
calculateArea()

35

Example Polymorphism
class Shape {

private String name;

public Shape(String aName) { name=aName; }
public String getName() { return name; }
public float calculateArea() { return 0.0f; }

} // End Shape class
a generic action

class Circle extends Shape {
private float radius;
public Circle(String aName) { super(aName); radius = 1.0f; }
public Circle(String aName, float radius) {
super(aName); this.radius = radius;

}
public float calculateArea() { return (float)3.14f*radius*radius; }

} // End Circle class

inheritance

overloading

overriding

36

class Square extends Shape {
private float side;

public Square(String aName) {
super(aName);
side = 1.0f;

}

public Square(String aName, float side) {
super(aName);
this.side = side;

}

public float calculateArea() {
return (float) side*side;

}
} // End Square class

37

Polymorphism Example
public class ShapeDemoClient {

public static void main(String argv[]) {

Shape c1 = new Circle("Circle C1");
Shape c2 = new Circle("Circle C2", 3.0f);
Shape s1 = new Square("Square S1");
Shape s2 = new Square("Square S2", 3.0f);
Shape shapeArray[] = {c1, s1, c2, s2};

for (int i = 0; i < shapeArray.length; i++) {
System.out.println("The area of " + shapeArray[i].getName()

+ " is " + shapeArray[i].calculateArea()
+ " sq. cm.");

}

} // End main

} // End ShapeDemoClient1 class

rule of subtype

dynamic binding

38

OO Analysis and Design

OO Analysis - examines requirements from the perspective of the classes and
objects found in the vocabulary of the problem domain. In other words, the
world (of the system) is modelled in terms of objects and classes.

OO Design - OO decomposition and a notation for depicting models of the system
under development. Structures are developed whereby sets of objects
collaborate to provide the behaviours that satisfy the requirements of the
problem.

39

40

Continuous cycles
Small, high-functioning, collaborative teams
Flexible/continuous evolution
Customer involvement

Sequential/linear stages
Upfront planning and in-depth documentation
Works best with well-defined deliverables
Close project manager involvement

