
Version Control and Git
Lecture 1

Slides created by Josh Ervin and Hunter Schafer.
Based off slides made by Marty Stepp, Jessica Miller, Ruth Anderson, Brett

Wortzman, and Zorah Fung
and Dave Matuszek

VERSION CONTROL - INDIVIDUAL
● Does any of the following sound familiar?

○ Your code was working great! Then you made a few
changes and now everything is broken and you
saved over the previous version?

○ You accidently delete a critical file and can’t get it
back.

○ Your computer broken or was stolen and now all of
your files are gone!

○ While writing a paper for one of your classes you
save each version as final_paper.doc,
final_paper2.doc,
final_paper_actually_this_time.doc, UGH.doc

● There has to be a better way to manage versions...
2

VERSION CONTROL - TEAMS
● Does any of the following sound familiar?

○ My partner and I are paired up for a project for one of our CS classes.
We usually pair program together in the labs but sometimes we have to
work remotely. Who keeps the most up-to-date version of the project?
How do we share changes with each other? What if I want to compare
the changes my partner made?

○ How do we keep backups of important files? Who stores them on their
computer?

3

VERSION CONTROL
● Version Control: Software that keeps track of changes to a set of

files.
● You likely use version control all the time:

○ In Microsoft Word, you might use Ctrl+Z to undo changes and go back
to an earlier version of the document.

○ In Google Docs you can see who made what changes to a file.
● Many people have a use-case for version control

○ We often think of version control as related to managing code bases, but
it’s also used by other industries such as law firms when keeping track
of document changes over time.

4

Version control systems

• Version control (or revision control, or source control) is all about managing
multiple versions of documents, programs, web sites, etc.
• Almost all “real” projects use some kind of version control
• Essential for team projects, but also very useful for individual projects

• Some well-known version control systems are CVS, Subversion, Mercurial, and Git
• CVS and Subversion use a “central” repository; users “check out” files, work on them, and

“check them in”
• Mercurial and Git treat all repositories as equal

• Distributed systems like Mercurial and Git are newer and are gradually replacing
centralized systems like CVS and Subversion (Git has most market share)

VERSION CONTROL Systems

Dave Matuszek
5

REPOSITORY
● A repository, commonly referred to as a repo is a location that

stores a copy of all files.
○ The working directory (or working tree) is different from the repository

(see next slide)
● What should be inside of a repository?

○ Source code files (i.e. .c files, .java files, etc)
○ Build files (Makefiles, build.xml)
○ Images, general resources files

● What should not be inside of a repository (generally)
○ Object files (i.e. .class files, .o files)
○ Executables

6

REPOSITORY
● With git, everyone working on the project has a complete version

of the repository.
○ There is a remote repository, which is the defacto central repository
○ Remote repositories are hosted on services like GitHub or Gitlab
○ Everyone has a local copy of the repository, which is what we use to

commit.

Developer 1 Developer 2

Developer 3

Push/Pull Changes

7

GIT: FOUR PHASES
Working
Directory

Staging
Area/Index

Local Repository Remote
Repository

Working changes
Changes you’re

preparing to
commit

Local copy of the
repository with
your committed

changes

Remote shared
repository

(Usually stored
with a platform

like
GitHub/Gitlab)

git stage git commit git push

NOTE: There are way more git commands than what is listed here - this is a simplified
model to get us started.

8

INSPECTING A REPOSITORY

git status git log

Working
directory

Staging
Area

Commit
History

9

Suppose a run of git status show the following:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: file1.txt
modified: file2.txt

Based on this information, at what location are the changes to file1.txt and file2.txt within the git phases
on the previous slides.

A. Working directory
B. Index (Staged)
C. Local Repository
D. Remote Repository

10

Suppose a run of git status show the following:

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: file1.txt
modified: file2.txt

We want to run a sequence of commands that includes the changes to file1.txt in a single commit
followed by the changes to file2.txt in another commit in the local repository. What commands should
we run?

11

GIT COMMANDS
git clone url [dir] Copy a git repository

git add files Adds file contents to staging area

git stage files Same as git add files

git commit Takes a snapshot of staging area and creates a commit

git status View status of files in working directory and staging area

git diff Show difference between staging area and working directory

git log Show commit history

git pull Fetch from remote repository and try to merge

git push Push local repository to remove repository 12

ADDING AND COMMITTING FILES
● The first time we asked a file to be tracked, and every time before we commit a file we must

add it to the staging area. This can be done with the following command
○ $ git add file1.txt file2.txt

● This takes a snapshot of the files and adds it to the staging area. You can still modify files in
the working directory, but you will need to add again to have these changes saved in the
staging area.

● Note: To unstage a change, you can use the following
○ $ git reset HEAD filename

● To move staged changes into the local repository we commit them from the staging area
○ $ git commit -m “Updated filename”

● Note: All of these commands are acting on the local copy of your repository. You will need to
push them to remote to see these changes elsewhere.

13

COMMIT MESSAGES
● Running $ git commit will bring up a text editor by default for you to type your commit

message.
○ Write the subject text (less than 50 characters) on the first line, followed by paragraphs

describing your commit in the rest of the page.
● Running $ git commit -m “Your Message” will allow you to type the message directly in the

command line without opening a text editor.
○ This is useful for simple commits, but avoid using it for more complicated commits.

● Regardless, the subject line should always be written with the following form
○ If applied, this commit will your subject line here

14

GIT: FOUR PHASES WITH REMOTE
Working
Directory

Staging
Area/Index

Local Repository Remote
Repository

git stage ... git commit git push

git pull

15

CS 2820 GITLAB
● For this class we will be using gitlab. To access:
1. Log onto CS 2820 Gitlab (https://research-git.uiowa.edu)

a. Use your Hawk ID: sLastName
2. If you want:

a. Add an ssh key (https://gitlab.cs.washington.edu/help/ssh/README.md)
b. Follow the instructions in README.md which say to type

i. $ ssh-keygen -t rsa -C “yourHawkID@uiowa.edu” -b 4096

ii. Hit return to accept the default file location. You do not need a password, so you
may hit enter twice when prompted for a password

c. Then type $ cat ~/.ssh/id_rsa.pub

d. Copy and paste the key into the SSH-Keys section under Profile Settings in your user
profile on Gitlab.

e. For a brief introduction to SSH keys, see https://jumpcloud.com/blog/what-are-ssh-
keys

16

https://gitlab.cs.washington.edu/help/ssh/README.md
mailto:yourHawkID@uiowa.edu

Get Ready to Use Git
● Set the name and email for Git to use when you commit:

$ git config --global user.name “Bugs Bunny”
$ git config --global user.email bBunny@uiowa.edu
○ Only need to do this once
○ You can call git config --list to verify these are set.
○ These will be set globally for all Git projects you work with.
○ You can set variables on a project-only basis by not using the --global flag.

● If you want to use a different name/email address for a particular project, you can change it
for just that project
○ cd to the project directory
○ Use the above commands, but leave out the --global

● The latest version of Git will also prompt you that push.default is not set, you can make this
warning go away with:
$ git config --global push.default simple

● You can also set the editor used for writing commit messages (default = vim):
$ git config --global core.editor emacs

17

mailto:bBunny@gmail.com

REVIEW: FOUR PHASES
Working
Directory

Staging
Area/Index

Local Repository Remote
Repository

Working changes
Changes you’re

preparing to
commit

Local copy of the
repository with
your committed

changes

Remote shared
repository

(Usually stored
with a platform

like
GitHub/Gitlab)

18

GIT: BRANCHING
● So far, all the operations we’ve done have been on the main

branch.
● However, it’s very rare you’ll be working on master directly.

Instead, you’ll work on a separate branch:
○ Master is the “single source of truth” - the history of the project
○ The code on master should be stable and compile
○ Because of this, it’s difficult to share and collaborate on in progress

work.
○ Working directly on master makes it difficult to work simultaneously on

unrelated features.

19

COMMIT HISTORY

A B C

These are commits. “A” is the first commit, “C” is the most recent

Each commit references it’s parent - the one that came
before it in time.

main

HEAD

20

COMMIT HISTORY

A B C

main

HEAD

● HEAD: This is a pointer, or reference, to the git branch that
you are currently working on.

● Main: This the main branch of your repository, the single
“source of truth”, and the only branch created by default.

● NOTE: The pointer from one commit to another points to the
previous commit, so the arrows go back in time.

21

COMMIT HISTORY

A B C

main

HEAD
To view this same information on the command line:
$ git log

Or, to make it more similar to what we see here:
$ git log --graph --oneline

22

BRANCHING

A B C

main

HEAD

Commands that have been run:

$ git branch feature
$ git checkout feature

feature

23

BRANCHING

A B C

main

HEAD

Commands that have been run:

$ git branch feature
$ git checkout feature
$ echo “D” >> file.txt
$ git add file.txt
$ git commit -m “D”

feature

D

24

BRANCHING

A B C

main
Commands that have been run:

$ git branch feature
$ git checkout feature
$ echo “D” >> file.txt
$ git add file.txt
$ git commit -m “D”
$ git checkout main
$ echo “E” >> file.txt
$ git add file.txt
$ git commit -m “E”

feature

D

E

HEAD

25

BRANCHING

A B C

main
Commands that have been run:

$ git branch feature
$ git checkout feature
$ echo “D” >> file.txt
$ git add file.txt
$ git commit -m “D”
$ git checkout main
$ echo “E” >> file.txt
$ git add file.txt
$ git commit -m “E”
$ git merge feature

feature

D

E M

HEAD

26

WORKING WITH REMOTE

A B

main

Local

Remote

A B

origin/main

main

HEAD

27

WORKING WITH REMOTE

A B

main

Local

Remote

A B

origin/main

C

main

HEAD

28

WORKING WITH REMOTE

A B

main

Local

Remote D

A B

origin/main

C

main

HEAD

29

WORKING WITH REMOTE

A B

main

Local

Remote D

git push

A B

origin/main

C

main

HEAD

30

WORKING WITH REMOTE

A B

main

Local

Remote D

git push

A B

origin/main

C

main

HEAD

31

WORKING WITH REMOTE

A B

A B

main

Local

Remote

origin/main

C

main

HEAD

D

git fetch
D

32

WORKING WITH REMOTE

A B

A B

main

Local

Remote

origin/main

C

main

HEAD

D

D
git merge

M

Note: It’s more common to do git pull which is an alias for git fetch + get merge 33

WORKING WITH REMOTE

A BLocal

Remote

origin/main

C

main

HEAD

D

M

git push

A B C

main

D

M

34

PULL REQUESTS
● In practice, it’s very rare that we would merge branches locally and push

them to remote.
● Instead, we use a service like GitHub or GitLab to help us:

○ Step 1: Create a local branch and make some commits
○ Step 2: Push those commits to remote
○ Step 3: Open a pull/merge request on GitLab
○ Step 4: Collaborate with others, leave comments, and fix conflicts
○ Step 5: Merge into main (or other branch)

● BUT, it’s important to know what’s going on when you branch and merge,
because that’s what’s going on under the hood on GitHub/GitLab

● The main goal here is to be very deliberate about what we put on main.
35

WORKING WITH REMOTE

Local A B

origin/master

C

main

HEAD

D

M

Remote A BA B C

D

M

main

36

WORKING WITH REMOTE

Local A B

origin/main

C

main

D

M

X

feature

HEAD

Remote A BA B C

D

M

main

37

WORKING WITH REMOTE

Local

Remote A B

A B

origin/main

C

main

D

M

A B C

D

M

X

feature

HEAD

main

Y

Commit
happens on
origin

38

WORKING WITH REMOTE

Local

Remote A B

A B

origin/main

C

main

D

M

A B C

D

M

X

feature

HEAD

main

Y

X

feature

git push feature

39

WORKING WITH REMOTE

Local

Remote A B

A B

origin/main

C

main

D

M

A B C

D

M

X

feature

HEAD

main

Y

X

feature

Do this on GitLab

M1 40

WORKING WITH REMOTE

Local

Remote A B

A B

origin/main

C

main

D

M

A B C

D

M

X

feature

HEAD

Y

X M1

main

feature

M2

PULL REQUEST!!!

41

● Many nice Git tutorials on YouTube (and other places)

● Here is a nice 30 minute Git & GitHub Crash Course For Beginners:

https://www.youtube.com/watch?v=SWYqp7iY_Tc

By Traversy Media

Description: In this Git tutorial we will talk about what exactly Git is and we
will look at and work with all of the basic and most important commands such
as add, commit, status, push and more. This tutorial is very beginner friendly.

WORKING WITH GIT

42

https://www.youtube.com/watch?v=SWYqp7iY_Tc

