Recorp: Receiver-Oriented Policies for Industrial Wireless Networks

Ryan Brummet*, Octav Chipara, Ted Herman

THE UNIVERSITY OF IOWA
Industrial Wireless Networks

• **Applications**
 – process control systems

• **Workload**
 – stable periodic flows
 – known period, deadline, and phase

• **Strict performance requirements**
 – predictability
 – high reliability
 – real-time
Challenges: Network Dynamics

- **Moving machinery**
 - Tesla Automation

- **Outdoor environments**
 - Automation.com

- **Moving workers**
 - Ford Motor Company
• **Time Slotted Channel Hopping**
 – time division multiple access with channel hopping
 – predictable
 – centralized

• **Limited Flexibility**
 – overprovisioned retransmissions to handle link variability

TSCH Schedules

<table>
<thead>
<tr>
<th>Slot</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 0</td>
<td>F₀: AB</td>
<td></td>
<td>F₁: CB</td>
<td></td>
</tr>
<tr>
<td>CH 1</td>
<td>F₀: AB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 2</td>
<td></td>
<td></td>
<td>F₁: CB</td>
<td></td>
</tr>
</tbody>
</table>
TSCH Schedules

- **State of the art**
 - sacrifice predictability for flexibility
 - examples
 - (1) slot stealing
 - (2) hybrid TDMA with CSMA
 - (3) low likelihood transmissions in the same slot

- **Can we do better?**
Allow transmissions to be reallocated conditioned on the local state at runtime
Key Insight

• **Coordinator initiates transmissions**
 – coordinator pulls for packets
 – packet transmitted upon pull reception

• **Transmissions selected via local state**
 – selections prioritized via a priority ordered service list of transmissions

• **Offline synthesis**
 – coordinators and service lists ensure reliable packet delivery
Run-Time Adaptation

• **Schedule**
 – packets dropped in two traces

<table>
<thead>
<tr>
<th>Spec</th>
<th>F_0: AB</th>
<th>F_0: AB</th>
<th>F_1: CB</th>
<th>F_1: CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Trace 1</td>
<td>F_0: AB</td>
<td>--</td>
<td>F_1: CB</td>
<td>--</td>
</tr>
<tr>
<td>Trace 2</td>
<td>F_0: AB</td>
<td>F_0: AB</td>
<td>F_1: CB</td>
<td>--</td>
</tr>
<tr>
<td>Trace 3</td>
<td>F_0: AB</td>
<td>--</td>
<td>F_1: CB</td>
<td>F_1: CB</td>
</tr>
</tbody>
</table>

• **Recorp policy**
 – no packets dropped

<table>
<thead>
<tr>
<th>Spec</th>
<th>F_0: AB</th>
<th>F_0: AB</th>
<th>F_0: AB</th>
<th>F_1: CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Trace 1</td>
<td>F_0: AB</td>
<td>F_1: CB</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Trace 2</td>
<td>F_0: AB</td>
<td>F_0: AB</td>
<td>F_0: AB</td>
<td>F_1: CB</td>
</tr>
<tr>
<td>Trace 3</td>
<td>F_0: AB</td>
<td>F_1: CB</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Recorp Design

Offline synthesis

- Workload
- Routes
- Min. Link Quality

Policy Evaluator

Pull operations

Runtime adaptation (§3.A)

Policy Builder

Pull operations

Current state

Unschedulable

Policy

Workload

(§3.B.1)

(§3.B.2)

Unschedulable

Runtime adaptation (§3.A)
Evaluation

- **Simulation**
 - 41 nodes, 1 base station
 - 50 flows
 - 3 flow periods
 - 3 different workload scenarios
 - 100 runs
 - ensure 99% end-to-end reliability

- **Workload Scenarios**
 - collection (COL)
 - dissemination (DIS)
 - route through the base station (RTB)

- **Comparison**
 - schedules
 - flow centric policies (FCP)

- **Measurement**
 - real-time capacity
 - relative to schedule performance
Conclusion

• **Recorp policies**
 – distribute retransmissions at run-time in response to network dynamics
 – utilize local adaptation to distribute allocated transmissions

• **Significant performance improvement compared to state-of-the-art**
 – 1.63 to 2.44 times median increase in real-time capacity

• **For more details please see our paper**
Worst-Case Response Time

The diagram shows the max flow class response time ratio for different classes and scenarios. The classes are represented by different colors:
- Class 1 (blue)
- Class 2 (green)
- Class 3 (black)

The scenarios include:
- COL
- DIS
- RTB

The graph compares the response times across these classes and scenarios, illustrating the variability and performance characteristics.
State Example

Slot 0
$\text{PL}_A(F_0)$

Slot 1
$\text{PL}_A(F_0,F_1)$

Slot 2
$\text{PL}_A(F_0,F_1)$

Slot 3
$\text{PL}_A(F_1)$

1

1 $2P_sP_f$ $3P_sP_f^2$ $3P_sP_f^3 + P_f^4$

$F_0: F$
$F_1: F$

$F_0: S$
$F_1: F$

$F_0: F$
$F_1: F$

$F_0: S$
$F_1: F$

$F_0: F$
$F_1: F$

$F_0: S$
$F_1: F$

$F_0: F$
$F_1: S$

$F_0: F$
$F_1: S$

Release F_0, F_1

Complete F_0

Complete F_1