
Recorp: Receiver-Oriented Policies for Industrial
Wireless Networks

Ryan Brummet, Octav Chipara, and Ted Herman
University of Iowa

{ryan-brummet, octav-chipara, ted-herman}@uiowa.edu

Abstract—The next generation of Industrial Internet-of-Things
(IIoT) systems will require wireless solutions to connect sensors,
actuators, and controllers as part of feedback-control loops
over real-time flows. A key challenge in such networks is to
provide predictable performance and adaptability to variations
in link quality. We address this challenge by developing RECeiver
ORiented Policies (Recorp), which leverages the stability of
IIoT workloads to build a solution that combines offline policy
synthesis and run-time adaptation. Compared to schedules that
service a single flow in a slot, Recorp policies share slots
among multiple flows by assigning a coordinator and a set of
candidate flows in the same slot. At run-time, the coordinator will
dynamically execute one of the flows depending on what flows the
coordinator has already received. The net effect of this strategy
is that a node can dynamically repurpose the retransmissions
remaining after receiving the data of an incoming flow to service
other incoming flows opportunistically. Therefore, the flows that
are executed in a slot can be adapted in response to the variable
link conditions observed at run-time. Furthermore, Recorp also
provides predictable performance: a policy meets the end-to-end
reliability and deadline constraints of flows given probabilistic
link qualities. When Recorp policies and schedules are configured
to meet the same end-to-end reliability target of 99%, larger-scale
multihop simulations show that across typical IIoT workloads,
policies provided a median improvement of 1.63 to 2.44 times in
real-time capacity as well as a median reduction of 1.45 to 2.43
times in worst-case latency.

I. INTRODUCTION

Industrial Internet-of-Things (IIoT) systems are gaining

rapid adoption in process control industries such as oil re-

fineries, chemical plants, and factories. We are particularly

interested in the next generation of smart factories that are

expected to use sophisticated sensors (e.g., cameras, micro-

phones) with higher data rates than current IIoT systems.

Such systems need a versatile wireless alternative to wired

networks to connect sensors, actuators, and controllers as part

of feedback-control loops over multihop real-time flows. Since

communication delays and packet losses may lead to control

degradation or even control instability, wireless solutions must

provide both reliable and real-time performance.

General wireless network protocols are not engineered for

workloads typical of IIoT systems that involve recurrent

combinations of real-time flows for significant time intervals.

Knowing that a workload consisting of a set of flows will

be stable for half an hour, justifies precomputing schedules

to arbitrate media access. However, the challenge is to ensure

schedules provide stable real-time and reliable communication

for these prolonged intervals in harsh industrial environments

such as those with sources of interference (e.g. [1], [2]). To

avoid excessive engineering margins, nodes should be able to

adapt their operation locally in response to the link conditions

they experience at run-time. Finding the balance between what

is precomputed and the degree of local adaptation is an open

research question.

The state-of-the-art for wireless IIoT are standards such as

WirelessHART [3] that use Time Slotted Channel Hopping

(TSCH). TSCH combines Time Division Multiple Access

(TDMA) and channel-hopping in a mesh network. TSCH

networks employ a centralized network manager to collect

topology information, compute routes and transmission sched-

ules, and disseminate schedules to devices. Link dynamics

are handled using a combination of retransmissions and chan-

nel hopping. Accordingly, schedules are built such that the

links of a flow are assigned several retransmissions with

each retransmission using a different channel. The number of

retransmissions allocated is usually determined based on the

worst-case quality of a link to tolerate significant variations in

link quality without having to reconstruct the global schedule

(which is expensive). The only run-time adaptation that nodes

can perform is to cancel the retransmissions of a link if they

have already received an acknowledgment. As a consequence,

a significant number of slots remain unused when a packet

is relayed successfully to the next hop before exhausting the

link’s allocated retransmissions. This limitation is inherent to

scheduling approaches: scheduled retransmissions cannot be

repurposed in response to the successes and failures observed

locally at run-time without reconstructing the global schedule

due to the need for global consensus.

A common technique to alleviate the limited flexibility of

schedules is to share a slot and a channel (i.e., an entry hence-

forth). In shared entries, multiple transmissions are scheduled,

and contention-based techniques are usually used at run-time

to arbitrate channel access. Unfortunately, nearly all existing

approaches can only improve network performance in a best-

effort manner and, as a consequence, cannot support real-

time traffic. In [4], we proposed a technique to support real-

time communication when entries are shared only between

the links of the same flow. Our experiments show that the

amount of sharing enabled by this technique is limited, and,

for some typical IIoT workloads, it even performs worse than

schedules that do not use sharing. Therefore, the open research

question is whether multiple flows can share slots to improve
network performance and agility without losing predictability

135

2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI)

978-1-7281-6602-5/20/$31.00 ©2020 IEEE
DOI 10.1109/IoTDI49375.2020.00020

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

for typical IIoT workloads.
To answer this question, we propose RECeiver ORiented

Policies (Recorp) – a new paradigm for building agile, reliable,

and real-time wireless networks for IIoT systems. We exploit

the typical characteristics of the industrial setting to obtain

improvements in network capacity and latency while providing

end-to-end reliability. Specifically, our approach has the fol-

lowing salient features: Since IIoT workloads tend to be stable,

we compute offline Recorp policies and disseminate them to

all nodes. Recorp policies assign multiple candidate flows that

may be executed in the same slot and channel. At run-time,

only one of the candidate flows will be executed depending

on what flows a coordinator has already received. The benefit

of this approach is that it allows flows to be dynamically

executed in an entry depending on the successes and failures of

transmissions observed at run-time. As a consequence, Recorp

policies can support significantly higher real-time capacity

than schedules.

II. SYSTEM MODEL

We base our network model on WirelessHART as it is

an open standard developed specifically for IIoT systems

with stringent real-time and reliability requirements [3]. A

network consists of a gateway and tens of field devices. A

centralized network manager is responsible for synthesizing

policies, evaluating their performance, and distributing them

across the network. The field devices form a wireless mesh

network that we model as a graph G(N , E) where N and

E represent the field devices and wireless links, respectively.

WirelessHART may use either single-path source routing or

multi-path graph routing. We will use source routing, assuming

that there is a single shared routing tree. At the physical

layer, WirelessHART adopts the 802.15.4 standard with up

to 16 channels. In this paper, we focus on receiver-initiated

communication, where a node requests data from a neighbor

and receives a response within the same 10 ms slot.

We use real-time flows as a communication primitive. A

real-time flow Fi is characterized by the following parameters:

phase σi, period Pi, deadline Di, end-to-end target reliability

requirement Ti, path Γi, and static priority i where lower

values have higher priority. The kth instance of flow Fi, Ji,k, is

released at time ri,k = φi+k∗Pi and has an absolute deadline

di,k = ri,k + Di. We assume Di ≤ Pi, which implies only

one instance of a flow is released at a time. Consequently, to

simplify the notation, we will use Ji to refer to the instance of

flow Fi that is currently released. We will use F to indicate

the set of flows in the network.

We use a simple probabilistic model where the quality of

a link is a single parameter Ps that indicates the probability

a pull is successful (i.e., including both the pull request and

the response containing the data). Our results may be easily

generalized to the case when each link has a different link

quality probability.

A Recorp policy π is represented as a matrix whose rows

indicate channels and columns indicate slots. We refer to a

slot-channel pair as an entry. A policy is well-formed if it

Policy BuilderPolicy Evaluator
Workload

Current
state

Pull operations

Policy

Offline synthesis

yy

(§3.B.1) (§3.B.2)

Runtime adaptation (§3.A)

Unschedulable

Routes
Min. Link
Quality

Fig. 1: Design of Recorp.

satisfies the following constraints: (1) Each node transmits or

receives at most once in an entry to avoid intra-network in-

terference. (2) The hop-by-hop packet forwarding precedence

constraints are maintained such that senders receive packets

before forwarding them. (3) Nodes do not perform consecutive

transmissions using the same channel. (4) Each flow instance

is delivered to its destination before its absolute deadline and

meets its reliability constraint.

III. DESIGN

Recorp is a practical and effective solution for IIoT appli-

cations that require predictable, real-time, and reliable com-

munication in dynamic wireless environments (see Figure 1).

Central to our approach are Recorp policies. The policy

synthesis procedure runs on the network manager and has as

inputs the workload, routing information, and the link quality

of each link. If the synthesis procedure is successful, the

constructed policy guarantees probabilistically that all flows

will meet their real-time and reliability constraints as long as

the likelihood of a successful transmission is Ps. The synthesis

procedure fails when the workload is unschedulable, i.e., when

a policy that meets the real-time and reliability constraints of

all flows cannot be found. In this case, the workload must

be reduced either manually by the developer or automatically

using rate control mechanisms. If the synthesis procedure is

successful, the manager disseminates the generated policy to

all nodes.

The separation between offline synthesis and run-time adap-

tation is essential to building agile networks. The run-time

adaptation is lightweight: when a node is a coordinator, it can

execute one of several candidate flows without requiring global

consensus. In contrast, policy synthesis is computationally

expensive and ensures the global invariant no transmission

conflicts occur due to the local decisions made by coordi-

nators.

A. Recorp Policies and Their Run-time Adaptation

A Recorp policy is represented as a matrix whose rows

indicate channels and columns indicate slots. The execution

of a policy is cyclic, with nodes returning to the beginning

of the policy upon reaching its end. A Recorp operation is

assigned to an entry of the matrix, which specifies the slot

when the operation will be executed and the channel that

will be used. Each entry of the matrix may include at most

136

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

A

B C

(a) Topology

0 1 2 3

Spec TXB (F0) TXB (F0) TXC (F1) TXC (F1)

Trace 1 (BA) (CA)
Trace 2 (BA) x (BA) x (CA)
Trace 3 (BA) (CA) x (CA) x

(b) Schedule

0 1 2 3

Spec PLA(F0) PLA(F0,F1) PLA(F0, F1) PLA(F1)

Trace 1 (BA) (CA)
Trace 2 (BA) (BA) (BA) (CA)
Trace 3 (BA) (CA)

(c) Recorp policy

Fig. 2: A schedule and policy for the topology shown in Figure 2a are constructed. At run-time schedules and policies behave differently depending on
observed successes (green background) or failures (red background). The traces show how schedules and policies adapt run-time behavior in response to
successes and failures. Notably, the schedule drops packets in traces 2 and 3 (indicated by white “x”-es) while the policy drops no packets.

one Recorp operation. An operation has two arguments: a

coordinator and a service list. The coordinator is the node

that executes the operation at run-time, and the service list

includes the instances that may be executed in that slot and

channel. At run-time, only one of the flows in the service list

will be executed. Any node can become a coordinator, and the

coordinators can change from slot to slot.

A coordinator executes a Recorp operation at run-time by

considering the flows in the service list in priority order. For

each such flow, the coordinator checks whether it has received

the flow’s packet. If the coordinator has already received

the packet, it will proceed to consider the next flow in the

service list. Otherwise, it will request the flow’s packet from

the coordinator’s neighbor through which the flow is routed.

Upon receiving the request, the neighbor may or may not have

the packet (the latter case can happen when the packet was

dropped at a previous hop). If the neighbor has the packet,

it includes it in its response to the coordinator. Otherwise,

the neighbor marks the packet as dropped in its response.

The reception of either response will result in the coordinator

marking the flow as successfully executed. If a response is

not received, the flow remains unsuccessful. The invariant

maintained by the execution of an operation is: at most one
instance from the service list is executed in a slot.

To illustrate the differences between Recorp policies and

schedules, consider the case of a star topology (see Figure

2a). In this example, two flows – F0 and F1 – are used to

relay data from B and C to the sink A. Both flows release an

instance in slot 0. WirelessHART requires the construction of

a schedule with two transmissions for each flow (see Figure

2b). Three traces that differ in the pattern of packet losses

observed at run-time are also included in the figure. The only

run-time adaptation mechanism available in schedules is to

cancel scheduled transmissions whose data has already been

delivered. The notation TXB(F0) indicates that B transmits

F0’s packet to A. The synthesized Recorp policy is shown

in Figure 2c and uses the notation PLA(F0, F1) to indicate a

Recorp operation with A as the coordinator and {F0, F1} as

the service list.

To highlight several differences between policies and sched-

ules, consider trace 2, where there are failures in slots 0 and

1. For this trace, the schedule included in Figure 2b cannot

successfully deliver F0’s packet because it is allocated only a

single retransmission. In contrast, the Recorp policy included

in Figure 2c can successfully deliver F0’s packet. The policy

includes F0 in the service list of the operations in slots 0, 1,

and 2. At run-time, F0’s transmission in slots 0 and 1 fail,

but its packet will be delivered in slot 2. In slot 3, the policy

successfully executes F1. A similar scenario is included in

trace 3 where F1’s packets cannot be delivered by schedules

but are successfully delivered using a Recorp policy. Traces 2

and 3 highlight the flexibility of Recorp policies to improve

reliability by dynamically reallocating retransmissions based

on the success and failures observed at run-time.

B. Synthesizing Recorp Policies

At a high-level, the problem of synthesizing Recorp policies

requires the construction of a Markov Chain (MC) to estimate

the state of a network as Recorp operations are performed.

A state encodes whether a node received the packets from

all possible combinations of flows. A back of the envelope

calculation indicates that without additional constraints, the

state space is enormous – the worst-case number of states is

O(|π| · 2|F|·|N |), where |π| is the length of the policy in slots.

The following three insights helped us develop a scalable

approach to synthesizing Recorp policies. First, a key property

of Recorp policies is that nodes operate independently. This

property reduces the size of the state space significantly to

O(|π| · |N | ·2|F|). Second, our synthesis procedure is iterative,

building the policy one slot at a time. As a result, it is sufficient

to track only the states associated with each node in a given

slot, thereby reducing the state size that is maintained by a

factor of |π| to O(|N | · 2|F|). Furthermore, we observe that

given a fixed sequence of Recorp operations, only a small

fraction of the possible states are reachable. Thus, states should

be managed lazily to track only reachable states.

The policy synthesis procedure involves two key compo-

nents – an evaluator and a builder (see Figure 1). The

policy is built incrementally by sequentially determining the

operations that will be executed in each slot as follows:

• The evaluator manages the state of each node by tracking

the likelihood it received a packet for different combina-

tions of flows. At the beginning of each slot, the evaluator
releases new instances based on the phase and period of

each flow. Upon releasing an instance, the first link of its

flow becomes active.

• The builder is invoked with a list of released instances and

their (single) active links as input. The builder identifies

the Recorp operations that will be executed in the current

slot, assigning no more than one operation per channel.

Recorp operations are selected to maximize the number of

flows executed while enforcing static priorities.

• The evaluator updates the likelihood of each network state

to reflect the execution of the Recorp operations selected

137

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

by the builder. The end-to-end reliability requirement is

mapped onto a local reliability requirement that must be

met at each hop. The evaluator identifies the instances and

their associated active links that meet their local reliability

requirement. The states associated with each identified link

are then removed and the next link on the path of the flow

becomes the active link.

1) Recorp Evaluator: The evaluator keeps track of the

system’s states and their likelihood. Since nodes operate

independently when executing Recorp policies, we manage

the state of each node independently and identically. A state

that is managed by a node R is a vector of size |F|. The ith

element of the vector is the state of instance Ji. The state of

an instance Ji may be success or failure, indicating whether

R requested Ji’s data and received a reply successfully. In the

worst-case, a node R may need to store 2|F| states, one state

for each possible combination of flows.

The builder supplies a set of Recorp operations that have

been assigned to the current slot. The evaluator considers each

of them and evaluates their impact on the state of the system.

Let P be a mapping from each state to its probability. The

builder construct a new mapping P ′ that includes the updated

probabilities of the states after accounting for execution of

the Recorp operations. Initially, the new probabilities of each

state in P ′ are set to 0. According to its semantics, a Recorp

operation that includes Ji in its service list will be executed

in any current state where the ith entry of the state vector is

a failure and all instances with higher priority than Ji in the

service list have already succeeded. From such a state, there

are two possible outgoing transitions depending on whether

the Recorp operation is successful. First, if the execution of Ji
fails, the system remains in the same state and the probability

of the current state in the next slot is lowered by Pf =
1− Ps. Second, if the Recorp operation succeeds, the system

transitions from the current state to a next state. The entries

of the current and the next states are the same, except for

the entry associated with the Ji element for which next[Ji] =
success. The updated likelihood of next, P ′[next], increases

by the product of the likelihood of the current state P [current]
and Ps.

For each flow Fi, the user supplies the end-to-end target

reliability Ti. To determine when to stop assigning retrans-

missions for an instance at a node, we map the end-to-end

reliability onto a local minimum reliability Li that must be

achieved at each hop:

Li =
(
Ti

) 1
|Γi|

(1)

where, |Γi| is the length of Fi’s path. After updating the

state to reflect the execution of the Recorp operation, the

local reliability at node R of an instance Ji is computed by

summing the probability of all states in which the ith entry is

success. When the local reliability exceeds Li, then node R
has been assigned sufficient retransmissions for Ji to meet its

local reliability and the next link of Ji becomes active.

Let us return to our running example of a star topology

F0: F
F1: F

F0: F
F1: F

F0: S
F1: F

f

F0: F
F1: Ff

F0: S
F1: F

s

s

s

PLA(F0,F1)

F0: S
F1: S

f

F0: F
F1: F

F0: S
F1: F

f

s

f

s

PLA(F0,F1)

F0: S
F1: S

1 F0: F
F1: S

F0: F
F1: F

fs

1

f

s

1

Pf

Pf
2 Pf

3

3PsPf
3 +Pf

4

Ps

Ps
2 Ps

2 +2Ps
2Pf

2PsPf 3PsPf
2

Ps
2 +2Ps

2Pf+3Ps
2Pf

2 +PsPf
3

PLA(F1)

S3

Slot 0 Slot 1 Slot 2 Slot 3
PLA(F0)

S2S2

S1

S0 S0S1S1

S0

S0 S0

Release F0, F1 Complete F0 Complete F1

Fig. 3: State maintained by A while synthesizing the policy in Figure 2c
(reproduced on top). Success and failures are denoted by s and f , respectively.

and consider how node A manages its state when the Recorp

policy is executed. In Figure 3, we show the MC constructed

to compute the end-to-end reliability of flows F0 and F1 by

the evaluator. We remind the reader that the evaluator is

incremental. Thus, it only maintains the likelihood of each

state in a given slot and not the complete MC (which would

limit the scalability). At the beginning of slot 0, F0 and F1

are released and a state S0 = [F0 = failure, F1 = failure]
is created and has a probability of 1. Next, we account for

the execution of PLA(F0) in slot 0. If PLA(F0) is successful,

then the system transitions to the next state S1 = [F0 =
success, F1 = failure]. The probability of reaching S1 at the

end of slot 0 is P [S1] = Ps. Otherwise, the system remains

in S0 and its likelihood decreases to P [S0] = Pf . In the next

slot, PLA(F0, F1) is executed. Consistent with the semantics

of a Recorp operation, F0 will be executed in state S0 since

S0[F0] = failure. If the operation is successful, the system

transitions to state S1; otherwise, the system stays in state

S0. In slot 1 and state S1, F0 is already successful and, as a

consequence, F1 will be executed. Depending on the outcome

of F1’s transmission, the system may transition to either S1

or a new state S2 = [F0 = success, F1 = success]. We

note that there are two possible ways to reach state S1 at the

end of slot 1. Therefore, the probability of reaching S1 by the

end of slot 1 is P ′[S1] = PsP [S0] + PfP [S1] = 2PsPf . The

probability of reaching S2 is P ′[S2] = P 2
s . The execution of

the remaining Recorp operations produces the remainder of

the MC shown in the figure.

2) Recorp Builder: The builder determines the Recorp

operations that will be assigned in a slot. In each slot, the

evaluator supplies the builder with a list of released flows

and their associated active links. The builder then determines

a set of Recorp operations that maximizes the number of flows

that are executed in the slot while enforcing the priorities of

flows. It is important to note that the builder does not use

the state probabilities maintained by the evaluator since this

information is not necessary given the optimization objective.

The optimization problem can be formulated as an In-

teger Linear Program (ILP). The ILP includes three types

of variables. For each node R (R ∈ N), the variable NR

(NR ∈ {0, 1}) indicates whether R is the coordinator of a

138

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

Recorp operation. For each released instance Ji, the variable Ii
(Ii ∈ {0, 1}) indicates whether its associated active link will be

added to a service list. Finally, variable CR,ch (CR,ch ∈ {0, 1})

indicates whether R will use channel ch to communicate. The

ILP solution is converted into a set of Recorp operations as

follows: for each node R such that NR = 1, we add a Recorp

operation that has R as the coordinator and a service list with

all instances Ji where Ii = 1 and R is the receiver of the active

link of Ji. The Recorp operation is assigned to the entry in

the matrix for the current slot and the channel ch for which

CR,ch = 1.

A well-formed policy must ensure that no transmission

conflicts will be introduced at run-time. Consider a Recorp

operation that has R as a coordinator and services instance

Ji. Let (SR) be the active link of Ji, where S = src(Ji) and

R = dst(Ji). If Ji will be assigned in the current slot (i.e.,

Ii = 1), then S cannot be a coordinator for any other instance

since this would require S to transmit and receive in the same

slot. We enforce this using the following constraint:

NS ≤ (1− Ii) ∀Ii ∈ A : S = src(Ji) (2)

A similar constraint must also be included for the receiver R.

If node R is not a coordinator (i.e., NR = 0), then Ji cannot

be assigned and Ii = 0. Conversely, if R is selected as a

coordinator, instance Ji may (or may not) be assigned (i.e.,

Ii ≤ NR = 1) depending on the objective of the optimization,

which we will discuss later in this section. These aspects are

captured by the following constraint:

Ii ≤ NR ∀Ii ∈ A : R = dst(Ji) (3)

The above constraints avoid all transmission conflicts with

one exception. Consider the case when two instances Ji
and Jj share the same sender but have different receivers.

An assignment that respects constraints 2 and 3 is for both

instances to be assigned in the current slot (i.e., Ii = Ij = 1).

However, this would result in a conflict, since the common

sender can only transmit one packet in a slot. To avoid this

situation, we introduce the following constraint:

Ii + Ij − 1 ≤ NS (4)

∀Ii, Ij ∈ A : S = src(Ji) = src(Jj) & dst(Ji) �= dst(Jj)

The next set of constraints ensures that each Recorp opera-

tion is assigned a unique channel. We accomplish this by intro-

ducing CR,ch to indicate whether coordinator R uses channel

ch (ch = 1 . . .K), where K is the number of channels. The

selection of channels is subject to the constraints:∑
R∈V

CR,ch ≤ 1 ∀ch ∈ 1 . . .K (5)

K∑
ch=1

CR,ch = NR (6)

We require that coordinators switch channels between

Recorp operations to ensure independence between transmis-

sions. We enforce this property by introducing additional

constraints to prevent coordinators from using the same chan-

nel. To enforce the prioritization of instances, we set the

optimization objective to be:

i<|A|∑
i=0

2|A|−i ∗ Ii (7)

The objective function ensures that a flow Fi will be assigned

over lower priority flows unless there is a higher priority flow

with a conflict with Fi.

IV. EXPERIMENTS

Our experiments demonstrate the efficacy of Recorp to sup-

port higher performance and agility than traditional scheduling

approaches. We focus on the next generation of smart facto-

ries that are expected to use sophisticated sensors requiring

higher data rates than current IIoT systems. Specifically, we

are interested in answering the question of whether Recorp

improves the real-time capacity of IIoT workloads.

We compare Recorp policies against two baselines. First, we

compare against scheduling (Sched) approaches that allocate

a fixed number of transmissions per link. To provide a fair

comparison between schedules and policies, we construct

schedules using the same ILP formulation as Recorp policies

with the additional constraint that the size of the service list is

one. In this way, we ensure that Recorp and Sched differ only

in one aspect: Recorp can share an entry among multiple flows

and dynamically adapt which flow is executed at run-time.

In contrast, under Sched, only one transmission is assigned

in an entry. Second, we compare against the Flow Centric

Policy (FCP) [4], which allows entry sharing only among the

links of a single flow, whereas Recorp can share entries across
multiple flows. Both Sched and FCP utilize sender-initiated

transmissions while Recorp utilizes receiver-initiated pulls.

All simulations are performed on a 41-node, 6-hop diameter

topology obtained from a testbed deployed at Washington

University in St. Louis. We use Ps = 70% and used all sixteen

802.15.4 channels. The number of retransmissions used by

Recorp, Sched, and FCP is configured to achieve a 99% end-

to-end reliability for all flows. The period and deadline are

equal, and the phases are 0 in all workloads. Flow priorities

are assigned such that flows with shorter deadlines have higher

priority. To break ties, flows with longer routes are assigned

higher priority. Remaining ties are broken arbitrarily.

To provide compare Recorp, Sched, and FCP, we consider

data collection workloads (COL), data dissemination work-

loads, and route through the base station workloads (RTB)

where the base must be a node in each flow’s route. The results

presented in this section are obtained from 100 simulation

runs per workload type. In all runs, the node closest to the

center of the topology is selected as the base station. In each

run, we generate 50 flows randomly generated according to

the workload type. Each flow is assigned at random to one

of three flow classes whose periods and deadlines maintain a

1:2:5 ratio. For example, if Class 1 has a period of 100 ms,

then Class 2 has a period of 200 ms, and Class 3 has a

period of 500 ms. We refer to the period of Class 1 as the

base period. In a run, the base period of the flows is decreased

139

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

(a) Real-time capacity improvement ratio

(b) Max response time per flow class

Fig. 4: Simulations in a 41-node multi-hop network.

until the workload is unschedulable. The results of a run are

obtained for the smallest base period for which the workload

is schedulable.
We compute the real-time capacity ratio provided by Recorp

and FCP over that of Sched. Ratios above one show im-

provements in capacity; conversely, ratios below one show

reductions. Figure 4a plots the distribution of these ratios for

each workload. FCP provides a median improvement of 1.15

times over Sched only for RTB. For the other workloads

where the base station is the source/destination, FCP has

worse performance since sharing within a flow reduces only

the utilization of the intermediary nodes on a flow’s path, but

not on the source and destination nodes. In contrast, Recorp

outperforms both Sched and FCP by providing a median

improvement in the real-time capacity of 2.44, 1.93, and 1.63

times over Sched for the data collection, dissemination, and

route through the base station scenarios, respectively.
Figure 4b shows the distribution of the max response time

of each flow class over Sched. Ratios above one show

increases in max response time; conversely, ratios below one

show reductions. Consistent with the above experiments, FCP
performs better than Sched only for the RTB scenario. Recorp

significantly reduces the response time for all classes under all

workloads. Recorp provides a median reduction in maximum

response time in the range of 0.41 – 0.69 times, depending

on the flow class and workload type. These results indicate

Recorp policies can significantly improve real-time capacity
and max response times for common IIoT workloads.

V. RELATED WORK

Researchers have considered various approaches to combin-

ing CSMA and TDMA into hybrid protocols, ultimately sacri-

ficing either flexibility or predictability. A common approach

to combine CSMA and TDMA is to have each protocol run in

different slots. This approach is adopted in industrial standards

such as WirelessHART [3] and ISA100.11a [5]. However,

predictable performance cannot be provided for the traffic

carried in CSMA slots. Another alternative is to dynamically

reuse slots (e.g., [6]) or transmit high-priority traffic (e.g.,

[7]) by selecting primary and secondary slot owners. In this

approach, slot owners are given preference to transmit and

send data using a short initial back-off. If a slot owner does

not have any data to transmit, other nodes may contend for

its use after some additional delay. A generalization of this

scheme is prioritized MACs that divide a slot into sub-slots to

provide different levels of priority [8]. However, none of these

protocols provide analytical bounds on their performance. In

contrast to the above approaches that involve carrier sensing,

our policies rely on receiver-initiated polling and the local state

of the nodes to adapt. We expect policies to be less brittle in

practice than solutions that use carrier sense as they do not

require tight time synchronization for adaptation.

VI. CONCLUSIONS

Recorp is a practical and effective solution for IIoT appli-

cations that require predictable, real-time, and reliable com-

munication in dynamic wireless environments. We leverage

the stability of IIoT workloads and the increased resources

of wireless nodes to build a solution that combines offline

policy construction and run-time adaptation. A Recorp policy

assigns a Recorp operation to each slot and channel, which

specifies a coordinator that will arbitrate channel access and a

list of flows that may be serviced. At run-time, the coordinator

dynamically executes the flows in the service list from which

it has not received a packet. The advantage of Recorp is that

nodes can locally reallocate the retransmissions of flows in

response to transmission failures, as a result, provide higher

performance than scheduling approaches.

The synthesis of policies required us to address two key

challenges: handling the state explosion problem and providing

predictable performance as the quality of links varies. We de-

veloped a practical approach to synthesize policies iteratively.

In each slot, the builder employs an ILP program to determine

the Recorp operations that will be performed in the current

slot. Based on the selected operations, the evaluator updates

the network state using each link’s quality to determine which

flows have met their reliability constraints. We guarantee that a

constructed Recorp policy will meet a user-specified reliability

and deadline constraint for each flow given that each link

has a constant success likelihood. Our results indicate that

due to their increased agility, Recorp policies can significantly

improve real-time capacity (median 1.63 – 2.44) and reduce

worst-case response time (median 1.45 – 2.43) while meeting

a specified end-to-end reliability.

ACKNOWLEDGEMENTS

This work is funded in part by NSF under CNS-1750155.

140

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Candell, C. A. Remley, J. T. Quimby, D. R. Novotny, A. E. Curtin, P. B.
Papazian, G. H. Koepke, J. E. Diener, and M. T. Hany, “Industrial wireless
systems: Radio propagation measurements,” Technical Note (NIST TN)-
1951, 2017.

[2] K. Ferens, L. Woo, and W. Kinsner, “Performance of ZigBee networks
in the presence of broadband electromagnetic noise,” in CCECE, 2009.

[3] “Wirelesshart.” [Online]. Available: https://fieldcommgroup.org/
[4] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu, “A flexible

retransmission policy for industrial wireless sensor actuator networks,” in
ICII, 2018.

[5] Isa100.11a. [Online]. Available: https://www.isa.org/isa100/
[6] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-mac: a

hybrid mac for wireless sensor networks,” IEEE/ACM Transactions on
Networking (TON), vol. 16, 2008.

[7] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu, “Incorporating emergency
alarms in reliable wireless process control,” in ICCPS, 2015.

[8] W. Shen, T. Zhang, F. Barac, and M. Gidlund, “Prioritymac: A priority-
enhanced mac protocol for critical traffic in industrial wireless sensor and
actuator networks,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 1, pp. 824–835, 2013.

141

Authorized licensed use limited to: The University of Iowa. Downloaded on June 12,2020 at 21:10:55 UTC from IEEE Xplore. Restrictions apply.

