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Abstract.

In order to study how n to 1 convergence sharpens timing information, we have
used a simple time-window (TW) model in which the target neuron fires the first time
it has received m action potentials in the previous ε milleseconds. Although the TW is
convenient for proving theorems and Monte-Carlo simulations, it is a natural question
whether it represents well the physiological reality. We first present simulations that
show, in the case n = 3, m = 3, that the Hodgkin-Huxley model has a very sharp
time window but the leaky integrate-and-fire model (LIF) does not. Simulations also
show that other non-linear models including quadratic-integrate-and-fire (QIF), the
theta model, and the Fitzhugh-Nagumo model also have sharp time window behavior.
We then give a complete analytical treatment of the LIF and QIF models to explain
why the first does not have a sharp time window but the second does. This suggests
that TW neurons may give a better approximation to physiological reality than LIF
neurons.
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1. Introduction.

A fundamental issue in neurobiology is to understand how the central nervous
system (CNS) can perform accurate and reliable calculations with neurons that are
intrinsically variable and unreliable devices. A particular instance of this general
problem is to understand how network and/or cellular properties can sharpen the
timing of noisy inputs. This question has a long history in the auditory system
([37] [24] [29]) where auditory nerve (AN) fibers of mammals typically show standard
deviations of latency (time to firing) of about 1 msec under repeated trials with the
same sound. Yet, psychophysical experiments ([49][48][36]) have shown that mammals
can detect extremely small binaural timing differences down to the low microsecond
and even nanosecond range. This has been confirmed by physiological experiments
([19][40][41][12][20][16][35]) that show that certain classes of neurons in the brainstem
have very small standard deviations of latency under repeated trials, even though
these neurons are receiving information only from the same auditory nerve fibers
that are such sloppy timers.

All fibers of the AN synapse on cells of the cochlear nucleus (CN) and some of
these cells show “onset” responses, that is, they have low spontaneous rates and
they fire a single spike in response to sounds after a time lag (called the latency).
Often the latency in these cells (for example, octopus cells) has a much smaller stan-
dard deviation under repeated trials than the standard deviations of latency in the
AN. Typically these cells receive many synapses from AN fibers (convergence) and it
has long been thought that they sharpen timing by acting as coincidence detectors
for these converging fibers. Young, Rothman and co-workers [50][43][44][45][46][47]
conducted experiments and used numerical simulations of biophysical models to in-
vestigate how the response properties of CN neurons depend on the details of their
channel kinetics and the convergence of inputs. Cai et al [10][11] used simulations
of biophysical models to investigate the onset response of octopus cells. Burkitt and
Clark [8][9] used numerical simulations of leaky integrate-and-fire models to study
how convergence of inputs effects the onset response. Kalluri and Delgutte [25][26]
have created a computational model using leaky integrate-and-fire models for the CN
target cells and adaptively filtered Poisson processes to model spike trains along each
of the convergent AN fibers. They are interested in determining what properties of
the target cell, the filtered Poisson process in AN fibers, the convergence from AN
fibers to the target, and adaptation in the hair cells cause the target neuron to have
an onset response with low spontaneous rate. Gerstner et al [18] have studied similar
issues in the avian nucleus laminaris. These numerical computations suggest strongly
that there is a connection between the amount of convergence and the sharpening of
timing information. However, the models are so elaborate and have so many parame-
ters that it is difficult to make precise the mechanisms by which convergence sharpens
timing.
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For this reason, we have been studying a simpler model in which convergence and
the sharpening of timing are isolated as the objects of study. There are n identical
input neurons and all receive the same stimulus. Each fires a single action potential
at a time selected independently from a probability density f with standard deviation
1 msec. The axons of the n neurons are of equal length and project to one target
neuron that fires a single action potential the first time that it has received m inputs
in the previous ε msec. Of course, the target neuron may not fire at all in response to
a particular stimulus. We denote the conditional density of the time of firing of the
target neuron, given that it fires, by gn,m,ε,f and its standard deviation by σn,m,ε,f ,
since both will depend on n, m, ε, and f . If σn,m,ε,f < 1 msec, then we say that
timing has been sharpened. A change of variables shows that there is a scaling law
σn,m,ε,f = sσn,m, ε

s
,fs, where fs(t) ≡ sf(st), so there is no loss in generality in taking

the standard deviation of the input density f to be 1 msec [38][32]. For obvious
reasons we call a neuron with this firing rule a sharp time-window (TW) neuron
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f(t) = density of firing times of input neurons
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target cell fires when it receives m hits in ε msec
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gn,m,ε,f(t) = density of firing time of target neuron
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Figure 1. The time window model. n cells receive the same input and fire
at times that are selected independently from the density f , which has standard
deviation σ = 1. All n cells project to one target cell with equal length axons. The
target cell fires (if and) when it has received m action potentials in the previous ε

milleseconds. gn,m,ε,f is the density for the time of firing of the target cell (conditioned
on success of firing). If its standard deviation, σn,m,ε,f , is less than one, then the
convergence has sharpened timing.

The simplicity of the model has allowed us to use the tools of probability theory
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and mathematical statistics to give examples and to prove theorems that make precise
statements about the relationship between convergence and the sharpening of timing
([38][32][33][34]). It is widely believed in the auditory community that: (1) Raising
n sharpens timing; (2) Raising m sharpens timing; (3) Decreasing ε sharpens timing.
We have given examples that show that none of these statements is true in general
and we have characterized the sharpening of timing under particular hypotheses and
in various asymptotic limits. In [34] we were able to use our theorems to explain how
octopus cells in the cochlear nucleus sharpen timing.

Throughout this previous work we ignored the question of how well this simple
model mimics the behavior of real neurons and real convergence networks, the issue
that we turn to here. Do real neurons have sharp time windows? How well can
the simple two parameter fire rule, “the target neuron fires the first time it receives
m inputs in the previous ε msec,” represent the full biophysical complexity of the
target neuron? For reasons that we discuss below, we have been investigating these
questions in the case n = 3, m = 3, that is, there are three converging fibers and
two simultaneous hits are not enough to fire the target neuron but three nearly
simultaneous hits will cause an action potential. Let ℓ denote the time between the
first arriving hit and the third. Then, in our sharp time-window model the target
neuron fires with probability 1 if ℓ ≤ ε and fires with probability 0 if ℓ > ε; note that
it doesn’t matter when the second hit arrives, just the time between the first and the
third. If we let PTW (ℓ) denote the probability of firing as a function of ℓ, then PTW (ℓ)
is a step function that drops instantaneously from 1 to 0 at ε = ℓ. In Section 2 we
describe the corresponding function, PHH(ℓ), for a Hodgkin-Huxley (HH) squid giant
axon neuron with three afferent fibers computed using numerical simulations. Much
to our surprise, PHH(ℓ) looks very similar to PTW (ℓ), so the HH neuron has a sharp
time window, at least in the case n = 3, m = 3. We have done similar computations
using other standard non-linear models for the target neuron. In each case, the model
neuron has a sharp time window. We also performed the same simulations with leaky
integrate-and-fire (LIF) neurons and they do not have sharp time windows. This
suggests that, for a neuron that is the target of converging fibers, an TW neuron may
give a better approximation to real neuronal behavior than an LIF neuron.

In order to understand this situation, we compute in Section 3 an explicit formula
for PLIF (ℓ), the probability of firing of an LIF neuron as a function of ℓ in the case
n = 3, m = 3. Using the formula, it is easy to see why the LIF neuron does not have a
sharp time window. Then, in Section 4, we compute the analogous function, PQIF (ℓ),
for a quadratic-integrate-and-fire (QIF) neuron. The QIF neuron does have a sharp
time window and the explicit formula for PQIF (ℓ) shows why. The QIF neuron has a
stable equilibrium point at the origin and an unstable equilibrium point at a positive
voltage. We believe that it is this property, shared by the HH neuron and most other
non-linear models of excitable cells that causes these models to behave as though they
have (approximately) sharp time windows.

These numerical and analytical calculations suggest that (at least some) real neu-
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rons may have sharp time windows, an assertion that should be tested experimentally.

2. Computational Results.

In order to evaluate the degree to which various neural models exhibit time win-
dows, we first present some computational results. We wish to compare the patterns
of input times which will cause each type of model cell to fire. It is clear that if there
are only two inputs, any model will respond as a time window neuron. That is, either
the two inputs are sufficiently close together in time and the target cell fires or they
are not and it doesn’t. We therefore focus on the case with three inputs, the simplest
case in which the models may differ. The strength of each input is identical and is
chosen so that two inputs will not make the cell fire but all three will be sufficient if
they are close enough together in time. Thus each input contributes s mv and s is
between 1

3
and 1

2
of the threshold stimulus. In the terminology of the time window

model, we call this case n=3, m=3. If the model neuron is a perfect time window
neuron, it will fire with probability 1 if all three inputs are within ε of each other and
with probability zero if they are not. That is, if the time between the first input and
the third input, which we call ℓ, is at most ε, then the cell fires, and if ℓ > ε the cell
does not fire. The probability of firing PTW as a function of ℓ is shown in Figure 2.
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Figure 2. Probability of firing as a function of ℓ for a Time Window target

neuron. The first action potential arrives at the target neuron at t = 0 and the third

action potential arrives at t = ℓ. The size of the time window is ε = ℓ1 = ℓ0, so if ℓ ≤ ℓ1

the target neuron fires with probability one, and if ℓ > ℓ0 the target neuron does not fire.

ℓ1 was chosen to match the computed ℓ1 for the Hodgkin-Huxley neuron (Figure 3).

Next we conduct the same experiment numerically with the Hodgkin-Huxley equa-
tions. We use the HH model with the original giant squid axon parameters [23]. We
first determined the threshold stimulus that will elicit an action potential, then use
three brief input stimuli, each 40% of this threshold. In this way, we guarantee that
all three stimuli are required to trigger an action potential. For each value of ℓ we
run the simulation with many different values for the time of the second input, which
we call x. We assume that the second input is uniformly distributed between the
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first and third inputs and again plot (Figure 3) the probability of firing PHH as a
function of ℓ. It is clear that the behavior of the HH neuron is similar to that of the
Time Window neuron, if ℓ is less than some threshold value ℓ1, the HH model cell
will fire, with probability one. If ℓ is between ℓ0 and ℓ1 the target cell will fire with
some probability which does depend on x and thus on the distribution of x. If ℓ is
above ℓ0 the target cell will never fire, regardless of the value of x. Suprisingly, as in
our time window model, the timing of the second hit x makes very little difference
and only effects the shape of the curve in the very narrow region of ℓ1 < ℓ < ℓ0. To
make the figures easy to compare we chose a value for ε in Figure 2 that is close to
the the observed threshold for ℓ in the HH model.
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Figure 3. Probability of firing as a function of ℓ for a Hodgkin-Huxley target

neuron. The first action potential arrives at the target neuron at t = 0 and the third

action potential arrives at t = ℓ. If ℓ ≤ ℓ1 the target neuron fires with probability one, and

if ℓ > ℓ0 the target neuron does not fire. ℓ1 and ℓ0 are quite close, so the Hodgkin-Huxley

neuron behaves similarly to the time window neuron. The stimuli are short square pulses

and each stimulus has an amplitude which is 40% of the amplitude required to elicit an

action potential from a single stimulus.

Our computational tests found similar results in a large class of neural models
including some simplified models such as the Theta model [15] and the FitzHugh-
Nagumo model [17] as well as some more biophysically detailed models such as the
Rothman-Manis model ([43][44][45]), a model of bushy cells in the cochlear nucleus.
In all cases the interval ℓ1 < ℓ < ℓ0 was very narrow indicating that the time of the
intermediate hit had very little to do with the probability of firing and that all of these
models have inherent time–window–like behavior. These models have in common that
the target neuron fires when the voltage passes an unstable fixed point or unstable
manifold.

We also conducted the same experiment using a Leaky-Integrate-and-Fire (LIF)
model for the target neuron. Thus, an incoming action potential immediately in-
creases the voltage, which then decays exponentially, and the model cell fires if a
threshold is reached. Again, we chose a stimulus that is 40% of the threshold and
for each value of ℓ varied the time of the second input uniformly between the time
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of the first and third inputs. The behavior of the LIF is qualitatively very different;
see Figure 4. There is not a steep drop from probability one to probability zero but
rather a large range ℓ1 < ℓ < ℓ0 in which there is a gradual decrease in the probabil-
ity of firing. Note that this model has one additional parameter, the time constant
τ . This parameter can be thought of as scaling time and so different values of this
parameter will simply rescale the ℓ axis in Figure 4. We therefore chose the value
of τ so that ℓ1, the largest value of ℓ below which the LIF model cell always fires,
approximately matches the observed threshold for ℓ in the HH model. Again, this is
to make a reasonable comparison with the results from the HH model.
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Figure 4. Probability of firing as a function of ℓ for a Leaky-Integrate-and-Fire

target neuron. The first action potential arrives at the target neuron at t = 0 and the

third action potential arrives at t = ℓ. If ℓ ≤ ℓ1 the target neuron fires with probability

one, and if ℓ > ℓ0 the target neuron does not fire. ℓ1 and ℓ0 are quite far apart, so the

LIF neuron does not have a sharp time window. For ease of comparison, we use a stimulus

strength of s = .4 and the parameter τ for the LIF neuron was chosen so that ℓ1 matches

the computed ℓ1 for the Hodgkin-Huxley neuron (Figure 3).

3. Leaky (Linear) Integrate-and-Fire Neurons.

We scale the voltage, v, of the LIF model so that v = 0 at rest and v = 1 is
the threshhold at which the LIF neuron fires. We assume that each incoming action
potential increases the voltage by s and that 1

3
≤ s < 1

2
since we want to study the

n = 3, m = 3 case where three simultaneous hits would fire the LIF neuron but two
simultaneous hits can not. We denote by τ the time constant of the LIF neuron, so
v(t) satisfies the differential equation v′(t) = −

1
τ
v(t).

We denote the arrival times of the the three incoming action potentials by 0, x, ℓ

respectively, so ℓ is the time between the first and third hits. Given ℓ, we assume
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that x is uniformly distributed between 0 and ℓ. We want to calculate PLIF (ℓ), the
probability that the target LIF neuron fires as a function of ℓ. Since the stimuli are
at 0, x, and ℓ, v(t) is given by the the following formulas:

v(t) = se−t/τ , for 0 ≤ t < x (1)

v(t) = (se−x/τ + s)e−(t−x)/τ , for x ≤ t < ℓ (2)

v(ℓ) = (se−x/τ + s)e−(ℓ−x)/τ + s for t = ℓ. (3)

We will denote the voltage at time t = ℓ by H(x, ℓ), so

H(x, ℓ) = s(e−ℓ/τ + e−(ℓ−x)/τ + 1).

The LIF neuron will fire if and only if H(x, ℓ) ≥ 1.

Let ℓ1 denote that value of ℓ so that PLIF (ℓ) = 1 for all ℓ ≤ ℓ1, i.e. the neuron fires
with probability 1 independent of x. For fixed ℓ, H achieves its minimum at x = 0,
so if ℓ ≤ ℓ1, then H(0, ℓ) ≥ 1. Since ℓ1 is the largest ℓ that satisfies this inequality, ℓ1

satisfies H(0, ℓ1) = 1. Solving for ℓ1 yields:

ℓ1 = τ log

(

2s

1 − s

)

. (4)

Let ℓ0 denote that value of ℓ so that PLIF (ℓ) = 0 for all ℓ ≥ ℓ0, i.e. the neuron
fires with probability 0 independent of x. For fixed ℓ, H achieves its maximum at
x = ℓ, so if ℓ > ℓ0, then H(ℓ, ℓ) < 1. Since H(ℓ, ℓ) is strictly monotone decreasing in
ℓ, we see that ℓ0 satisfies H(ℓ0, ℓ0) = 1. Solving for ℓ0 yields:

ℓ0 = τ log

(

s

1 − 2s

)

. (5)

We note that PLIF (ℓ0) = 0 even though H(ℓ0, ℓ0) = 1. because x = ℓ0 is the only
value of x so that H(x, ℓ0) ≥ 1 and this event has probability zero.

In order to find PLIF (ℓ) for ℓ1 < ℓ < ℓ0, we have to find, for each ℓ∗, the point
x∗ so that H(x∗, ℓ∗) = 1. This gives us the value for x∗ which is the boundary
between values of x for which the cell will fire or fail to fire. The LIF neuron will
fire if x∗ ≤ x ≤ ℓ∗, so PLIF (ℓ∗) = ℓ∗−x∗

ℓ∗
since we are assuming that the second hit

is uniformly distributed between the first and the third. The point (x∗, ℓ∗) and the
curve H(x, ℓ) = 1 are shown in Figure 5A. Solving the equation H(x∗, ℓ∗) = 1 yields:

x∗ = τ log

(

1 − s

s
− e−ℓ∗/τ

)

+ ℓ∗, (6)
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so,

PLIF (ℓ) = −
τ

ℓ
log

(

1 − s

s
− e−ℓ/τ

)

. (7)

The function PLIF (ℓ) is graphed in Figure 4 for the case s = .4 and one can see clearly
the gradual decline of PLIF (ℓ) as ℓ goes from ℓ1 to ℓ0.

Figure 5. Region of firing for the LIF neuron. The vertical axis is ℓ, the time between

the arrival of the first and third action potentials. The horizontal axis is x, the arrival time

of the second action potential. Suppose that ℓ = ℓ∗. The neuron will fire if x∗ ≤ x ≤ ℓ∗

(the thickened line) and will not fire if x < x∗. Since we are assuming that x is uniformly

distributed between 0 and ℓ∗, the probability of firing is ℓ∗−x∗

ℓ∗ . For ℓ < ℓ1 the LIF neuron

always fires and for ℓ > ℓ0 the LIF neuron never fires. In between, it is more likely to fire if

the second action potential is near the third. The stimulus strength is s = .4 and the value

for τ is chosen so that ℓ1 = 1.7 (the value obtained for ℓ1 in HH)

In order to compare results for LIF and QIF neurons (Section 4), it is useful to
compute the normalized spread defined as

W =
l0 − l1

l1
.

The normalized spread gives the width of the interval (ℓ1, ℓ0) relative to ℓ1. In this
way it gives a dimensionless measure of the steepness of the drop from probability one
to probability zero. Importantly, it also depends only on the parameter for stimulus
strength, s, allowing a comparison of various models which is independent of the time
constants. A short calculation shows that:

WLIF =
log
(

(1−s)
2(1−2s)

)

log
(

2s
1−s

) . (8)
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For s = .4, this gives a normalized spread of WLIF = 1.41 for the LIF neuron. A
comparison of WLIF with WQIF for all values of s in the interval [1

3
, 1

2
) is given in

Figure 7.

4. Quadratic Integrate-and-Fire Neurons.

In this section we shall calculate PQIF (ℓ), the probability of firing of a QIF neuron
as a function of ℓ, the time between the first and third arriving action potentials. As
in Section 3, we scale the voltage, v, so that the neuron is at rest when v = 0 and and
the threshold for firing is v = 1. All of the symbols introduced in Section 3, namely,
s, x, ℓ, ℓ1, ℓ0, and H(x, ℓ), have the same meanings here. The only difference is that
the differential equation is now v′ = − 1

τ
v(1 − v). Because this differential equation

has an explicit solution we will be able to calculate, ℓ1, ℓ0, PQIF (ℓ), and WQIF (s), but
the calculations are somewhat more complicated. Since the stimuli are at times 0, x,

and ℓ, the voltage is:

v(t) =
se−t/τ

1 − s + se−t/τ
for 0 ≤ t < x, (9)

v(x) =
se−x/τ

1 − s + se−x/τ
+ s, (10)

v(t) =
v(x)e−(t−x)/τ

1 − v(x) + v(x)e−(t−x)/τ
for x ≤ t < ℓ, (11)

v(ℓ) =
v(x)e−(ℓ−x)/τ

1 − v(x) + v(x)e−(ℓ−x)/τ
+ s, for t = ℓ. (12)

Thus,

H(x, ℓ) =

(

se−x/τ

1−s+se−x/τ + s
)

e−(ℓ−x)/τ

1 −

(

se−x/τ

1−s+se−x/τ + s
)

+
(

se−x/τ

1−s+se−x/τ + s
)

e−(ℓ−x)/τ
+ s

H(x, ℓ) gives the value of the voltage at t = ℓ if the second action potential arrives
at t = x. Thus the QIF neuron fires if H(x, ℓ) ≥ 1. Suppose, for the moment that
x is fixed. If v(x) + s < 1 then the QIF neuron will not fire when the third action
potential arrives. If v(x) + s ≥ 1, then since H(x, ℓ) is strictly monotone decreasing
to zero in ℓ there will be a unique largest ℓ so that H(x, ℓ) ≥ 1. We denote that ℓ by
ℓ(x) and note that by continuity H(x, ℓ(x)) = 1. Solving this equation yields:

ℓ(x) = −τ log

(

1 − s

s

)

− τ log

(

1 − v(x)

v(x)

)

+ x. (13)
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Recall that ℓ1 is that value of ℓ so that PLIF (ℓ) = 1 for all ℓ ≤ ℓ1, i.e. the QIF
neuron fires with probability 1 independent of x. ℓ1 will be the smallest value of ℓ(x)
as x varies from 0 to x̄, the value such that v(x̄) + s = 1. To find the minimum we
compute:

ℓ′(x) = 1 +
τ

v(x)(1 − v(x))

d

dx
v(x).

We note that v(t) is not differentiable as a function of t at x. However, the value of
v(t) at x, namely v(x), is differentiable with respect to x and that is the derivative
that we mean above. Computing d

dx
v(x) and using (11) we find:

ℓ′(x) = 1 −
s(1 − s)e−x/τ

(s(1 − s) + s(1 + s)e−x/τ )((1 − s)2 − s2e−x/τ )
.

Setting ℓ′(x) = 0 and solving for x, a calculation shows that the critical point x1

satisfies

e−x1/τ =
(1 − s)2

s(1 + s)
,

so,

x1 = τ log

(

s(1 + s)

(1 − s)2

)

.

Differentiating ℓ′(x) and collecting terms allows one to check that ℓ′′(x1) > 0, so x1

does indeed give the minimum. Plugging x1 into v(x) gives v(x1) = 1+s
2

, and plugging
both x1 and v(x1) into (13) gives:

ℓ1 = ℓ(x1) = τ log

(

s2(1 + s)2

(1 − s)4

)

.

ℓ0 is the value of ℓ above which PQIF (ℓ) = 0; thus ℓ0 is the maximum of ℓ(x) on
the interval [0, x̄]. A calculation shows that ℓ(x) is concave upwards so the maximum
occurs at one of the endpoints. First we solve v(x̄) + s = 1 to find x̄. Evaluating ℓ(0)
and ℓ(x̄), we find that the values are both the same and equal to:

ℓ0 = τ log

(

2s2

(1 − s)(1 − 2s)

)

.

Figure 6A shows the graph of the function ℓ(x), the points x1 and x̄, and the
heights ℓ1 and ℓ0. The shaded region are the pairs (x, ℓ) such that the QIF neuron
fires.
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We have computed ℓ1 and ℓ0 and we know that PQIF (ℓ) = 1 if ℓ ≤ ℓ1 and
PQIF (ℓ) = 0 if ℓ ≥ ℓ0. For ℓ1 < ℓ < ℓ0 we expect two points, x−,x+, so that ℓ(x−) = ℓ

and ℓ(x+) = ℓ (see Figure 6A). The value of PQIF (ℓ) is then given by

PQIF (ℓ) =
x− + (ℓ − x+)

ℓ
, (14)

the fraction of the line from (0, ℓ) to (ℓ, ℓ) that lies in the shaded region since we are
assuming that the time of the second action is uniformly distributed between 0 and
ℓ. To find x− and x+, we rewrite (13) as

e−(ℓ−x)/τ =

(

1 − s

s

)(

1 − v(x)

v(x)

)

.

Substituting for v(x) and rearranging gives

e−(ℓ−x)/τ =

(

1 − s

s

)(

(1 − s)2 − s2e−x/τ

s(1 − s) + s(1 + s)e−x/τ

)

.

Multiplying out yields a quadratic in e−x/τ whose solutions,

e−x±/τ =
1

2











(

1 − s

s

)2

− e−ℓ/τ

(

1 + s

1 − s

)

∓

√

√

√

√

(

(

1 − s

s

)2

− e−ℓ/τ

(

1 + s

1 − s

)

)2

− 4e−ℓ/τ











,

give the x− and x+ used in (14). The graph of PQIF (ℓ) is shown in Figure 6B.

Finally, the normalized spead , WQIF = ℓ0−ℓ1
ℓ1

, for the QIF neuron is given by:

WQIF =
log
(

2(1−s)3

(1−2s)(1+s)2

)

log
(

s2(1+s)2

(1−s)4

) .

As in the case of the LIF neuron, the normalized spread does not depend on τ . For
s = .4 the formula gives a normalized spread of W = .18, so the QIF neuron has a
very sharp time window as is also clear by Figure 6B. The case s = .4 is not special.
Figure 7 shows WLIF and WQIF for all s in the interval [1

3
, 1

2
).

5. Discussion.

In Sections 3 and 4, our explicit calculations show that the LIF neuron does not
have a sharp time window but the QIF does have a very sharp time window. Here
is some intuition that helps explains why this is true. Set τ = 1 and s = 0.4 and
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consider the LIF neuron first. If the first two action potentials arrive at the same
time, then v jumps to .8 at t = 0. The third action potential must arrive before v

decays to 0.6, and that will be a relatively short time since v′ = −v, v(0) = 0.8, and v

will decay rapidly. However, if the second and third action potentials arrive together,
then v′ = −v and v(0) = 0.4, and they must arrive before v decays to 0.2. This decay
will take much longer than in the previous case because v is so much smaller. Thus,
for LIF we expect ℓ1 and ℓ0 to be quite far apart, which is what we see in the formulas
(4) and (5), and in the normalized spread, WLIF , in Figure 7. On the other hand,
for the QIF neuron the right hand side of the differential equation, −v(1− v) curves
back up to 0 as v approaches 1 and its value is not so different at 0.4 and at 0.8.
Thus, the decay rates will be quite similar and we expect that ℓ1 and ℓ0 will be close
together. This gives some understanding of why the Hodgkin-Huxley model and other
non-linear models that we have experimented with have fairly sharp time windows.
The strength of the decay back to the stable equilibrium after one action potential
arrives is not so different from the strength of the decay after two have arrived because
the vector field becomes smaller as one approaches the higher unstable equilibrium.
We also note that the time of firing will vary accross models. In LIF and QIF, the
target cell fires exactly at the time of the third input. In HH and other biophysically
detailed models, firing is not instantaneous. However, preliminary numerical results
indicate that time of firing changes only slightly except in the border cases where the
final input pushes the target cell only slightly past the unstable manifold.

We have compared different models in the case n = 3, m = 3, that is, there
are three afferent fibers and three hits are required to fire the target neuron. As
discussed at the beginning of Section 2, this is the simplest case where one would
expect that different models would have different behavior. When n = m > 3,
explicit calculations become more difficult but we can continue to plot probability of
firing as a function of ℓ = tn−t1 and compute ℓ1, ℓ0 and W . Figure 8 shows numerical
calculations for the case n = m = 4 when we assume that the second and third hits
are uniformly distributed between the first and the fourth. The probability curves for
the QIF model and the Hodgkin-Huxley model drop rapidly, not as rapidly as in the
case n = m = 3, but still much more rapidly than the probability curve for the LIF
model. In the case m < n a higher dimensional comparison is required. One must
determine which points (t2 − t1, t3 − t1, . . . , tn − t1) in R

n−1, lead to successful firings
(as we did in Figures 5 and 6). Analytical results and further numerical simulations
for the cases n = m > 4 or m < n are required to determine whether the time window
behaviors we have found for various models extend to these cases also.

We note that TW neurons and LIF neurons are the same in certain asymptotic
limits. An LIF neuron also has two parameters, the strength of the input Vi

Vthr
, where

Vi is the change in post-synaptic membrane voltage caused by each incoming action
potential and Vthr is the voltage required to fire the target cell, and the time constant,
τ . In the asymptotic limit where τ → ∞, the LIF neuron fires when it has received
≥ V

Vi
inputs (an IF neuron). Similarly, in the asymptotic limit where ε → ∞, the
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TW neuron will fire when the mth hit arrives. Thus in these two special asymptotic
limits the two models are the same and the distribution of the time of firing of the
target cell is given by the mth order statistic (which will depend on the convergence,
n, and input density f).

For several reasons, simple models of individual neurons are useful for studying
complex behavior in the central nervous system. Simple models use less computa-
tional power. If one uses more complex full biophysical models, it may be difficult
to discern whether observed behavior results from network properties or individual
neuron properties. And, finally, if the models for individual neurons are sufficiently
simple, one may actually be able to prove theorems about the origin of the system
behavior under study. Of course, simple models like TW or LIF cannot capture the
complex behavior of full biophysical models. And, physiological behavior probably
depends on network properties, on channel properties, on anatomy through the de-
tailed arrangement of synapses on the target cell, and on learning. Indeed, Azouz and
Gray [2] and Bal and Oertel [3] have shown how specific channel properties enhance
coincidence detection and Golding et al [21] showed how the serial arrangement of
AN fibers on the dendrites of octopus cells compensates for the wave delay on the
cochlea allowing for excellent coincidence detection. Gerstner et al [18] proposed that
coincidence detection could be learned through Hebbian rules and Grothe [14] has
provided evidence of developmental changes to improve coincidence detection in the
medial superior olive of gerbils. Nevertheless, it is useful and important to use simple
neural models, like LIF or TW, to investigate how network properties contribute to
coincidence detection and the synchronous firing of subpopulations of neurons. The
analytical and numerical results of this paper show that the Hodgkin-Huxley model
and the QIF model have sharp time windows similar to the TW neuron (at least in
the case n = m = 3), while the LIF neuron does not have a sharp time window.
This suggests that if one is studying how synchrony or coincidence detection arises
from network structure in the presence of noise or neuronal jitter, it may be more
appropriate to use TW neurons than LIF neurons.

In addition to the work on the auditory nerve and cochlear nucleus cited in the
Introduction, there have been many other interesting and insightful investigations
of the network properties that give rise to synchrony and coincidence detection. In
the theory of synfire chains, proposed by Abeles [1] and developed by many others
(for example [13][39][22]) for studying cortical circuits, the networks have both noise
and high convergence from level to level. Brunel and coworkers have studied, both
analytically and computationally, the emergence of synchrony in sparsely connected
networks [6][5], and also how synaptic noise affects the frequency response of spiking
neurons [7]. Kempter, Gerstner, and van Hemmen investigated how the capacity for
coincidence detection depends on the membrane time constant and the threshold [27]
and how the synchrony of the output depends on neural parameters and jitter param-
eters [28]. Kopell and Ermentrout investigated the complementary roles of excitatory
and inhibitory synapses in networks that have the capacity for synchronous oscilla-
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tions [30] and Borgers and Kopell investigate conditions under which sparse random
connectivity can give rise to synchronous oscillations [4]. Marinazzo et al [31] have
suggested that if synapses are allowed to be dynamic then excitatory-inhibitory net-
works can encode both temporal characteristics of the input and spatial correlations.
Except for [30] and [4], which used QIF neurons and the the theta-model, most of
these modeling studies used LIF neurons. It would be very interesting to redo some
of these investigations with TW neurons instead of LIF neurons, because the results
presented here suggest that synchrony and coincidence detection will be improved
with TW neurons and that some physiological neurons may behave approximately
like TW neurons.

Finally, we note that Rochel and Cohen [42] have raised the very interesting ques-
tion of whether networks themselves could have time windows. This is particularly
important if the network receives a continuous stream of time varying inputs that the
network turns into population codes that must be read out in real time by a higher
level system. The population representation of the temporal pattern should last only
a short time so that it can be replaced by the next pattern. It would be interesting
to investigate how such network time windows could be created by inhibition.

This paper is about models. It would be very interesting if experimentalists could
determine how sharp the time windows of different types of physiological neurons are.
There is some evidence for sharp time windows. If the Hodgkin-Huxley equations
represent the physiology of the squid giant axon well, then the squid giant axon has
a sharp time window, at least in the case n = 3, m = 3. Ferragamo and Oertel [16]
have conducted a detailed study of the potential of the post-synaptic membrane of
octopus cells in the CN that require many incoming action potentials from different
AN fibers to fire. They showed that it is the rate of rise of the potential (dependent
on the rate of arrival of incoming spikes) that determines whether the octopus cell
fires. This is exactly what one would expect if the octopus cell had a sharp time
window. If the rate of rise is high enough then there will be enough incoming spikes
in the time window and if the rate of rise is too slow then there will not be enough
incoming spikes in the time window.
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Figure 6. The QIF neuron. Panel A shows the region of firing for the QIF neuron.

The vertical axis is ℓ, the time between the arrival of the first and third action potentials.

The horizontal axis is x, the arrival time of the second action potential. Suppose that

ℓ = ℓ∗. The QIF neuron will fire if either 0 ≤ x ≤ x− or x+ ≤ x ≤ ℓ∗ (thickened lines).

Since x is assumed to be uniformly distributed between 0 and ℓ∗, the probability of firing

is x−+(ℓ∗−x+)
ℓ∗ . For ℓ < ℓ1 the QIF neuron always fires and for ℓ > ℓ0 the QIF neuron never

fires. In between, it is more likely to fire if the second action potential is near either the

first or the third. Panel B shows the probability of firing of the QIF neuron as a function

of ℓ. Since ℓ1 and ℓ0 are quite close, the QIF neuron behaves similarly to the time window

neuron and the Hodgkin-Huxley neuron. The stimulus strength is again s = .4 and the

value for τ is chosen so that ℓ1 = 1.7 (the value obtained for ℓ1 in HH)
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Figure 8. The case n = m = 4. Probability of firing as a functions of ℓ where ℓ is the

time between the first and fourth hits. The stimulus strength s = 0.3 was chosen to be

between 1
4 and 1

3 . The values for the time constants for LIF and QIF were chosen so that

all three models have the same value for ℓ1. The value of ℓ1 = 1.2, and the values for ℓ0

for all three models are shown (approximately 1.8 for HH, 2.0 for QIF and 5.2 for LIF) are

shown. Again, HH and QIF have much sharper time windows than LIF.
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