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Abstract Such things would suggest a one-time, stage-like increase
During the second year of life, the rate at which most chil-  in the rate of learning. This was r_U|ed out .by_Ganger_and
dren learn words accelerates dramatically, the so—caled “ Brent (2004) who analyzed the lexical acquisition funcsion

cabulary explosion”. Most accounts posit changes in thieichi 4 38 chjldren. All but five showed smooth acceleration and

or specialized learning mechanisms to account for this sud- . . .
den change. However, recently McMurray (2007) demon- NO sudden spurt. While this rules out a one-time developmen-

strated that acceleration is a mathematical consequerna-of tal event as the cause of the vocabulary explosion, it never-

allel learning and the statistical distribution of wordftlifiity theless raises the question as to what causes the more lgenera
across the language. We generalize this model by developing . .
a stochastic version. It demonstrates that the graduatenafu acceleration seen throughout childhood.
Iearrtling ldS crlitical for ?roﬂucing gg:(ie.lber{a.tion,fand gi\cﬁiﬂi- A second class of explanations can be termed bootstap-
cient gradualness, virtually any distribution of wor : . :
can yigeld acceleration. Thﬁs, t%e vocabulary explosion b:/ﬁy ping or leveraged learning approaches. These include mecha
even more mathematically robust than previously thought. nisms like segmentation (Plunkett, 1993), mutual excltysiv
Keywords: Vocabulary Explosion; Stochastic Model. (Markman, Wasow & Hanson, 2003) or syntactic bootstrap-
. ping (Gleitman & Gleitman, 1992). In all three cases, exist-
Introduction ing words in the lexicon are used to help acquire new words.

One of the most dramatic changes during language acquisFhus, as each word is learned, these specialized mechanisms

tion is the spurt of word learning that typically occurs ireth  become more powerful, enabling faster word learning.

second year of life. During this time, the rate of word learn-  Such approaches are supported by computational work

ing accelerates dramatically (Figure 1). Lexical acqisit (Van Geert, 1991). Simple exponential growth systems can

norms suggest that between 11 and 15 months of age, chiodel the vocabulary spurt, but only if the rate of change is a

dren acquire on average 2.7 new words/month, while fronfunction of the number of words already learned.

17-21 months, they average 27.9 (Dale & Fenson, 1996). However, recent work by McMurray (2007) suggests an
alternative: that acceleration is a mathematical by-pebdu

600 of known properties of word learning. Acceleration will
500 Comprehension occur as long as words are learned in parallel and there
- — Production are fewer easy words than moderately difficult words. This
£ 400" model suggests that specialized word learning mechanisms
2 are not needed to explain acceleration in vocabulary growth
f 300" (although they may exist to solve other problems).
'}.g We extend this model to examine the role of learning
= 2007 history in creating acceleration. We derive a generalized
stochastic version of the deterministic model presented in
1007 McMurray (2007). This model takes as a parametethe
S | | amount of history with a word that is required to learn it. Us-
06 12 18 24 30 ing this model, then, we ask about the relationship between
Age (Months) learning history and acceleration. We demonstrate thargiv

sufficient required history, it is possible to relax the erion

Figure 1: Lexical acquisition norms from the MacArthur- in McMurray (2007): acceleration in vocabulary growth is
Bates Communicative Development Inventory (MCDI). even more guaranteed.

The cause of this so-called vocabulary explosion is the sub- The M odel
ject of much debate. Initial explanations posited a unitary
change in the child: the sudden realization that things hav@he original McMurray (2007) model employed a simple de-
names (Reznick & Goldfield, 1992), the onset of categorizaterministic system to model word learning. Each word in the
tion abilities (Gopnik & Meltzoff, 1987), or the acquisitimf =~ model is assigned a degree of difficully (measured in time-
word learning constraints (Mervis & Bertrand, 1994). to-acquisition). Then on each time—step, the model accumu-



lates one point for each unlearned word. When a word crossedistribution of difficulties approximateg In the determinis-
its threshold, it is considered learned. tic case, at each time—step one point is added to each word.
This simplistic approach to learning was intended as a minWhen a word reaches its thresholyl, it has been learned.
imal instantiation of parallel learning in which the mathatm To make this model stochastic, we again number each word
ics of learning itself could not cause acceleration — eadldwo i = 1 to N. Next, each word is assigned a probabilipy,
accumulates points at a constant rate. This simple learnéffe think of p; as the probability that the child is exposed to
implements no bootstrapping type mechanisms — the currerthe it" word in any one time step. Thyg is proportional
contents of the lexicon cannot influence the rate at which unto the frequency of the word. Each word is also assigned a
learned words accumulate points. While this may be implauthresholdy;, the number of repetitions required before a word
sible theoretically, it is a useful null-model — if acceléoa  is learned. Then at each time step, a word has probalplity
can be seen in this model (without specialized learning deef gaining a point and it is learned once it has accumulated
vices), it will certainly appear in more nonlinear appro@sh  r; points. We can think of; as the difficultyindependent of
A critical factor in the McMurray (2007) model was the its frequency of occurrenceThus, the original deterministic
distribution of difficulty,g, across the lexicon. This describes model can be described as the special case in whigh atie
the relative number of easy, moderate and hard words. Giveri, andr; corresponds to word difficulty);.

0, the number of words known at any given tinig,is simply The analysis of the stochastic model is done by first inves-
the integral of that distribution from O . tigating the time to acquisition of a single word. We compute
the cumulative distribution function or c.d.i(T), for the
A B time of acquisition of that word. SB(T) is the probability
5, g that thei word has been learned by tinfe Next we com-
2 2 pute the expected number of words learned as a function of
s £ time,L(T). Since the acquisition of the words is independent,
* & 2000 L(T) is the sum of these distributiong, That is
1000
Ou 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 L(T) = eXpeCted number of words learned by time
Time-to-acquisition (d) Time-step (T)

= Z P(theit" word was learned by tim€)

Figure 2: The model presented in McMurray (2007). A) The '
Gaussian Distribution of time-to-acquisition. B) numbér o = z F(T)
words known as a function of time-step. !

The most likely distribution of difficulty is Gaussian (Fig- The analysis and discussion of this stochastic model is done
ure 2A). Word-difficulty is likely to be the sum of many fac- in two cases. In both casas(the amount of required expo-
tors (e.g. phonological complexity, frequency in the cBild sure) is constant across all words. We adopt this simplistic
environment, syntactic category, etc). Since these faotdl  assumption for ease of analysis—in real language words may
be largely independent, their individual distributionsrsto  vary dramatically in difficulty but currently there are no-ex
a Gaussian (by the Central Limit Theorem). However it isisting metrics. Work in progress is undertaking analysis of
important to note that any distribution of difficulty which cases in which varies.
includes only few easy (smalll;) and more moderate (mid  |n the first caser, = 1, the word is learned the first time it is
rangeD;) will show acceleration in learning. heard and the learner has no need to keep any history of past

This model demonstrates acceleration in word learningsxperience with the word. We therefore call this the history
(Figure 2B), despite a constant accumulation of points.sThu free case and it instantiates a somewhat implausible ooke-sh
it was concluded, as long as words are learned in parallel anigarning. In the second case;> 1, the word is learned only
vary in difficulty in this way, acceleration is guaranteed. after r points are accumulated. In this case, the accuntllate

. . history of the word is important. The cases are treated sepa-

A Stochastic Version rately since they have fundamentally different behavioicivh
One could reasonably argue that this effect is due to the denighlights the importance of gradual learning in the vocabu
terminism of the model. A model incorporating some degre€ary explosion.
of randomness would be more theoretically valid and perhaps
more generalizable. We therefore introduce a stochastic veHistory-Free Case: r =1
sion of the model which shows not only that the acceleratiorThe first simulations and analysis contrast the deterniinist
in word learning is extremely robust but also reveals the im-model with the stochastic & 1) model. In this simplest case,
portance of learning history. at each step there is a probabiliiyof acquiring a point and

We start by describing a discrete version of the determinishence learning the word and no dependence on previous time
tic model and then generalizing it to a stochastic versioa. W steps.
number each wortd= 1 toN whereN is the number of words The number of time steps until the word is learn¥djs a
to be learned. Each word is assigned a difficlifygo thatthe  Geometric Random Variable with paramepgr This means



that the expected time to acquisitionH$X) = p Since we time-to-acquisition (X) will necessarily be high. Thus,yan
know the expected time to acquisition, we can chose the vakingle run of the model is quite unlikely to approximate the
ues ofp; such that the time to acquisition fits any distribution expected values of X (see Figure 4). In a sense, then, the ex-
we would like, and allows us to compare this model to thetreme variance of this model prevents it from modeling diffi-
deterministic model. culty to the same degree as the deterministic model.

The probability that the word is learned at tiffigs simply
the probability that that word was not learned on the presiou
T 1 steps times the probability that it is learned on time

Simulations A series of simulations implemented the de-
terministic and stochastic models to compare their perfor-
mance. Each model was run 10 times using the represen-
tative parameters of McMurray (2007). For each model, a p(™) = (1— p)Tflp

10,000 word lexicon was initialized. Each word was given

a difficulty D; (time-to-acquisition) randomly chosen from a Thus, the probability that a word is learnbytime T is
Gaussian distributiong, with a mean of 4000 and standard

deviation of 1400. For the stochastic model, these were con- Zl p p)
verted into probabilitiesf = Dii). Then at each time-step

10,000 random numbers (one for each word) were seIeCte?lntuitively, the rate of change of this functidn at time T

from a uniform distribution ranging from O to 1. Any word, is the probability that the word is learned at time T. That is
i, whose random number was less thanpts was deemed A . .
pM. Sincep™ decreases as a function of F(T)

learned and removed from further consideration. The deterdT
ministic model was identical to McMurray (2007). Is concave down. Thus, the likelihood of learning any given

. A - ord continually decreases over the life of the model. This
Results are displayed in Figure 2. All of the determmlstlcW nuay v I I

then explains the failure of this model to show acceleration
models showed a period of slow growth followed by accelera- b

i | trast. the stochasti dels sh dinit d We have shown that the c.d.f. for each word is concave
lon. 'n contrast, tne stochastc models showed ini el down. In order to obtain the functioh(T) for the expected
learning which gradually tapered off.

number of words learned up to tinie we sum the c.d.f.s over

10000 all the words in the lexicon. So

Deterministic Model| . L (T) o E
.............. _ :
8000 [ | seseeseusensense Stochastic Model | /e §

Since the sum of concave down functions is concave down,
o we know thatl (T) is concave down. This can also be un-

derstood by looking at the expected number of new words
learned on a particular step. At any time step, the expected

number of new words learned is the sum of the probabilities

p; of the remaining words. As more words are learned, this
sum must decrease. Thus the number of new words learned is

expected to decrease at each time—step. Note that thigis tru

0 ':' I I I I HH
0 2000 2000 6000 2000 regardless of how the probabilitigs are chosen.

Time-steps Discussion The stochastic model with= 1 seems to argue
against the findings of McMurray (2007). The vocabulary
flgur?t3 Nuznber of words leamned by each model as afuncexplosmn is not guaranteed despite a graded distribution o
lon oftime-step. difficulty (instantiated ag) and parallel learning. However,
this case = 1) does not reasonably capture either of these
Analysis We begin with the analysis of a single word. For jmportant theoretical constructs.

ease of notation, we temporarily drop the subscripts=on  First, the history free case does not clearly instantiateiwo
D, pandr. As we've describedE(X) = + is equal toD  difficulty. As we discussedp; in this model can be mapped
which is equivalent in the two models. What, then explainsonto difficulty in the deterministic model as it's reciprdca
the discrepancies between them? (P = ), making the expected time to acquisition of any
First, while the first moments of time-to-acquisition are word is equivalent across both models. However, the vaganc
equivalent, the second moments are not. In the stochastm‘ the time to acquisition in the history free case is enormou
model, the variance of the time to acquisition is (ay = p—p If the mean time-to-acquisition is 4000 time—steps thisdge
(it is zero in the deterministic model). Additionally, theef-  a variance of nearly 1000,000 time-steps. As a result, the
ficient of variation (a non-dimensional measure of the spprea observed time to acquisition for any word is unlikely to be
of a random variable) is/1— p. Since p must necessarily near the expected time to acquisition (Figure 4).
be small (otherwise the model will acquire the bulk of the Second, this model builds in explicit deceleration. Since
lexicon within the first measurement period), the variamce i the probability of acquiring a word is independent of prexgo

D
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=3
(=]

Words Known
N
=3
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to acquire it. Once this property is built into the stochasti
model, acceleration returns under virtually all circunms@s.

In this model, at each step there is a probabibigf acquir-
ing a point and the word is learned onc@oints have been
acquired. The number of time steps until the word is learned
(X) is a Negative Binomial Random Variable with parame-
ters ¢,p). The expected time to acquisitionE{X) = & and
again, we can compare with the deterministic modjel by set-
ting r andp such thaE(X) is the time to acquisition.
Simulations To test this, the prior stochastic simulations
were repeated, this time with a range r&f (2-20), which
was constant for all words within a simulation. Difficulties
were selected from an identical Gaussian distribution, and
converted to the probability of receiving a poirg; & DLi).
This ensured that the mean time-to-acquisition was cohstan

Figure 4: The observed time-to-acquisition as a function oftc"0SS simulations despite the change.in10 simulations
the a priori expected time-to-acquisition for a represtvga  Were conducted for each

run of ther = 1 model. Figure 4 shows average vocabulary size as a function of

time. It is clear that higher values ofshow long periods of

slow growth followed by acceleration. However, ever-
shows a period of slow growth followed by acceleration.
hus, a vocabulary explosion can be seen as long-as.

Observed TTA

0 2000 4000 6000 8000 10000
Expected TTA

time-steps, the expected time to acquisition for an unkgrn
word increases over time. If a word starts with an expecte
time to acquisition of 4000 time-steps and is not learneeraft
1000, then its expected time to acquisition is now 5000.

Finally, while it can be construed as parallel, this model 80007
fails to model learning, since learning is a gradual process
While events can be construed as occurring at the same time,
this does not constitute parallel learning because legnan 60001
quires the gradual accumulation of material. Paralleli&say
requires maintaining this material across multiple items.

This is true in basic learning principles (Rescorla & Wag-
ner, 1972) and connectionist accounts (Elman, Bates, John-
son, Karmiloff-Smith, Parisi, & Plunkett, 1996). It also
appears in word learning, where children learn the sound- 20007 =2 3" 5 10,20
pattern of a word before its meaning (Graf Estes, Alibali
& Saffran, 2007), and much of learning takes the form of ‘ ‘ ‘

: 0 ‘ ‘
a slow elaboration (Capone & McGregor, 2005) or gradual 0 1000 2000 3000 4000 5000

improvement of skills (Fernald, Perfors & Marchman, 2006). Time-steps

Even so—called fast-mapping does not support this. Hotst an

Samuelson (in press) have demonstrated that novel namé&ggure 5: Vocabulary acquisition in the stochastic moded as

used in fast-mapping situations are not retained, even fivéunction of time and-.

minutes later. Parallel learning cannot be instantiated as

series of independent acquire-or-not events. By decogplinAnalysis Our analysis begins, as before, with the analysis

acquisition of a word from its developmental history in the of a single word. Similarly to the previous analysis, theivar

system, the history free case fails to capture parallehiegr  ance of the time to acquisition is \(x) = "A-P giving a
Thus, ther = 1 case does not seem to instantiate any real- P

istic developmental processes. However, we now contrast goefficient of variation ofy / #’ Here, an increase in (in-

with the model in whichr > 1, to reveal the importance of creasing the amount of required history) or an increasg in

4000 1

Words known

gradualness in dictating the form of growth. (forcing the model closer to the deterministic model) wt r
duce the variability. As a result, incorporating gradualrte
General Case: r > 1 ing makes any given instantiation of the model more likely to

Gradual learning can easily be incorporated into this sieeh Snow effects of word difficulty.

tic model by setting to any value greater than 1. In this  The probability that a word is learned at tinie corre-
case, the value of represents the degree of gradualism, orsponds to (1) thd —r steps in which no points are earned
the amount of history that the child must have with a wordeach with probabilitf1— p) and (2) the steps where points



are earned. This gives a probability: 100001

o = e (P |

Thus the probability that a word is learned by time T is 6000
F(T) = 3, pl). The rate of change of this functidh at
T is 25 = p{T). A calculation shows thap(™) is increasing
for T < = and decreasing fof > 2. Thereforef(T) is

concave up fofl < =% and concave down foF > r;pl. Any
value of r greater than 1 will this yield some portion of ialti
acceleration (concave-up).

Now that we have computed the c.d.f. for a single word, 0o 2000 4000 6000 8000
we can sum over the lexicon to obtain the functigi) for Time-steps (T)
the expected number of words learned by tifneL(T) =
N F(T). This sum is in general very difficult and except in
simple cases must be computed numerically.

New Words

4000

20001

# of words

A B C

Discussion This demonstrates that even whes- 2 (min-
imal history), acceleration is guaranteed for some range of
time. If r > 1, the probability of having learned a word at
any given time accelerates. Larger values aficrease the
suddenness of the acceleration; the length of the accelerat
phase (Figure 5); and the likelihood that the observed tone t
acquisition matches the expected. Thus, instantiatingyis
creates a non-deterministic model that captures bothlpharal
learning and difficulty, and hence, shows acceleration.vA fe
special cases deserve attention.

1/2000 1/6000 1/2000 1/6000 1/2000 1/6000

Probability of Occurrence (p;)

Figure 7: A comparison of the stochastic model with 20
when the distribution of probabilityp;, is A) a violation of
McMurray, 2007, B) uniform and C) consistent with McMur-
ray, 2007. The acceleration phase is longer for consisient d
tributions.

10000 made by McMurray (2007) since the distribution of word dif-
ficulty does not monotonically increase.
8000 | This powerful example suggests that the vocabulary explo-

sion may be more robust than McMurray (2007) hypothe-
sized. It shows that while the precise shap& @F) depends
in complicated ways on the distributions of frequencipp (
and required historyr{, the vocabulary spurt will exist for a
wide range of reasonable choicesgn if the difficulty distri-
=1 27 57 20 bution is not monotonically increasing.
2000 Simulations have also been conducted for various distribu-
tions of p; with r assumed to be the same across all words.
Figure 7, for example, demonstrates the acquisition of a
h T000 2000 3000 4000 5000 6000 model when the distribution afis (frequency) was either in
Time-steps accordance with McMurray, 2007 (Figure 7, curve C), a vi-
) ] ] olation (curve A), or flat (curve B). When= 20, all three
Figure 6: Results of a stochastic model with a conseland  yqqels show acceleration, even the model that directly vio-
by consequence time-to-acquisitid), across all words. lates these assumptions. However, the shape of the distribu
tion plays an important role in the length of the slow period
preceding the acceleration.

We can also show that in the limit a@ndp increase with
a{he distribution of expected time to acquisition fixed, thee d
terministic model is obtained, and the spurt is dependent on
et;g_e distribution of difficulty.

D
(=3
(=3
=]

Words Known
B
(=]
(=1
(=]

An implausible but theoretically illuminating case occurs
in a model in which all words have the same difficulty and the
same frequency. ThdnT) = N-F(T) and we know it has a
nice period of acceleration. Figure 6 shows simulations of
stochastic model in whicl; was constant across the, D00
word lexicon, and is chosen so that all cases have the same
pected time to acquisition as previous simulations. Itéacl . .
that atr = 1, no acceleration can be seen. However, at all Discussion
r > 1, there is acceleration, and at highsythe spurt is quite  These simulations and analysis confirm that the broad frame-
dramatic. This explicitly violates one of the two assumpsio work laid out by McMurray (2007) is correct: acceleration in



word learning arises out of the mathematical regularities o nal of Speech, Language, and Hearing Resead&)

parallel learning and variation in difficulty. The preserdn 1468-1480.

extends these findings by demonstrating that this was not dugale, P., and Fenson, L. (1996). Lexical development norms

to the determinism of the original model. Any stochastic for young children.Behavior Research Methods, In-

model that incorporates even the minimal amount of gradual struments,& Computer28, 125-127.

learning will show acceleration in word learning. Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A.,
The only case in which this was not true was the stochas- Parisi, D. and Plunkett, K. (199&ethinking Innate-

tic model in which learning occurred after a single exposure ness: a Connectionist Perspective on Development

(r =1). However, this model does not meaningfully capture Cambridge, MA: The MIT Press

learning, and it is not unambiguously parallel. The same reFernald, A., Perfors, A., and Marchman, V. (2006) Picking up
sults could be achieved by a model which randomly sampled Speed in Understanding: Speech Processing Efficiency
each word sequentially. Thus, this does not appear to be a  and Vocabulary Growth across the 2nd Yd2evelop-
disconfirmatory case. mental Psychology2(1), 98-116

More importantly, our analysis of this stochastic modelGanger, J., and Brent, M. (2004) Reexamining the Vocabulary
suggest that the degree of history required to learn a word ~ Spurt.Developmental Psycholog§0(4), 621-632.
is itself a factor in determining the acceleration observed Gleitman, L. R. and Gleitman, H. (1992). A picture is worth

word learning. Specifically, when learning is very gradual, a thousand words, but thats the problem: the role of
a substantial spurt can be observed, even when the distribu-  syntax in vocabulary acquisitio@urrent Directions in
tion of easy and hard words does not conform to the assump- ~ Psychological Sciencé, 31-5.

tions of McMurray (2007) (e.g., if there are more hard wordsGopnik, A., and Meltzoff, A. N. (1987). The development
than easy words). Of course, gradualness interacts in @mpl of categorization in the second year and its relation to
ways with the distribution of difficulty, and word frequency other cognitive and linguistic developmen@hild De-
and future work must examine both the empirical and compu- velopment58, 1523-1531.

tational underpinnings of this interaction. However, thi-b ~ Graf Estes, K.M., Evans, J., Alibali, M.W., and Saffran, J.R
tom line is that specialized mechanisms are even less nec-  (2007). Can infants map meaning to newly segmented

essary to account for acceleration than previously thaught words? Statistical segmentation and word learning.
There are multiple routes to the same end. Psychological Sciencé8, 254-260.

This model is sufficiently general that it can be applied toHorst, J.S., and Samuelson, L.S. (in press) Fast Mapping but
virtually any parallel learning system. While the issue of a Poor Retention in 24-month-old Infantafancy.
celeration is theoretically important in vocabulary aaition ~ Markman, E.M., Wasow, J.L., and Hanson, M.B. (2003) Use
(Bloom, 2000), the mathematics presented here will also un-  of the mutual exclusivity assumption by young word
derlie many other domains of learning. learnersCognitive Psychology7, 241-275.

The vocabulary explosion is an incredibly dramatic devel-McMurray, B. (2007) Defusing the childhood vocabulary ex-
opmental process. This has led to a large number of theories ~ Plosion.Science317(5838), 631.
positing equally dramatic changes or learning devices en thMervis, C. B., and Bertrand, J. (1994). Acquisition of the
part of the child. However, such things are not necessary to ~ novel name/nameless category (N3C) princigild

explain acceleration. Apparent acceleration will alwaps a Developmeni6s, 16461662. .
pear in parallel learning systems, even when the fundarnent®lunkett, K. (1993). Lexical segmentation and vocabulary
learning processes are perfectly constant. The so-catled v growth in early language acquisitiodournal of Child

cabulary explosion is a mathematically robust phenomenon  Language20, 4360.
that will arise under virtually any parallel learning ciroa ~ Rescorla, R.A and Wagner, A.R. (1972) A theory of Pavlo-

nisms to explain it. inforcement and non-reinforcement. In A. Black & W.
Prokasy WF (Eds.Elassical Conditioning Il: Current
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