
A Stochastic Model for the Vocabulary Explosion

Colleen C. Mitchell (colleen-mitchell@uiowa.edu)
Department of Mathematics, 225E MLH

Iowa City, IA 52242 USA

Bob McMurray (bob-mcmurray@uiowa.edu)
Department of Psychology, E11 SSH

Iowa City, IA 52242 USA

Abstract

During the second year of life, the rate at which most chil-
dren learn words accelerates dramatically, the so–called “vo-
cabulary explosion”. Most accounts posit changes in the child
or specialized learning mechanisms to account for this sud-
den change. However, recently McMurray (2007) demon-
strated that acceleration is a mathematical consequence ofpar-
allel learning and the statistical distribution of word difficulty
across the language. We generalize this model by developing
a stochastic version. It demonstrates that the gradual nature of
learning is critical for producing acceleration, and givensuffi-
cient gradualness, virtually any distribution of word difficulty
can yield acceleration. Thus, the vocabulary explosion maybe
even more mathematically robust than previously thought.
Keywords: Vocabulary Explosion; Stochastic Model.

Introduction
One of the most dramatic changes during language acquisi-
tion is the spurt of word learning that typically occurs in the
second year of life. During this time, the rate of word learn-
ing accelerates dramatically (Figure 1). Lexical acquisition
norms suggest that between 11 and 15 months of age, chil-
dren acquire on average 2.7 new words/month, while from
17-21 months, they average 27.9 (Dale & Fenson, 1996).
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Figure 1: Lexical acquisition norms from the MacArthur-
Bates Communicative Development Inventory (MCDI).

The cause of this so-called vocabulary explosion is the sub-
ject of much debate. Initial explanations posited a unitary
change in the child: the sudden realization that things have
names (Reznick & Goldfield, 1992), the onset of categoriza-
tion abilities (Gopnik & Meltzoff, 1987), or the acquisition of
word learning constraints (Mervis & Bertrand, 1994).

Such things would suggest a one-time, stage-like increase
in the rate of learning. This was ruled out by Ganger and
Brent (2004) who analyzed the lexical acquisition functions
of 38 children. All but five showed smooth acceleration and
no sudden spurt. While this rules out a one-time developmen-
tal event as the cause of the vocabulary explosion, it never-
theless raises the question as to what causes the more general
acceleration seen throughout childhood.

A second class of explanations can be termed bootstap-
ping or leveraged learning approaches. These include mecha-
nisms like segmentation (Plunkett, 1993), mutual exclusivity
(Markman, Wasow & Hanson, 2003) or syntactic bootstrap-
ping (Gleitman & Gleitman, 1992). In all three cases, exist-
ing words in the lexicon are used to help acquire new words.
Thus, as each word is learned, these specialized mechanisms
become more powerful, enabling faster word learning.

Such approaches are supported by computational work
(Van Geert, 1991). Simple exponential growth systems can
model the vocabulary spurt, but only if the rate of change is a
function of the number of words already learned.

However, recent work by McMurray (2007) suggests an
alternative: that acceleration is a mathematical by-product
of known properties of word learning. Acceleration will
occur as long as words are learned in parallel and there
are fewer easy words than moderately difficult words. This
model suggests that specialized word learning mechanisms
are not needed to explain acceleration in vocabulary growth
(although they may exist to solve other problems).

We extend this model to examine the role of learning
history in creating acceleration. We derive a generalized
stochastic version of the deterministic model presented in
McMurray (2007). This model takes as a parameterr, the
amount of history with a word that is required to learn it. Us-
ing this model, then, we ask about the relationship between
learning history and acceleration. We demonstrate that given
sufficient required history, it is possible to relax the criterion
in McMurray (2007): acceleration in vocabulary growth is
even more guaranteed.

The Model

The original McMurray (2007) model employed a simple de-
terministic system to model word learning. Each word in the
model is assigned a degree of difficultyDi (measured in time-
to-acquisition). Then on each time–step, the model accumu-



lates one point for each unlearned word. When a word crosses
its threshold, it is considered learned.

This simplistic approach to learning was intended as a min-
imal instantiation of parallel learning in which the mathemat-
ics of learning itself could not cause acceleration – each word
accumulates points at a constant rate. This simple learner
implements no bootstrapping type mechanisms – the current
contents of the lexicon cannot influence the rate at which un-
learned words accumulate points. While this may be implau-
sible theoretically, it is a useful null-model – if acceleration
can be seen in this model (without specialized learning de-
vices), it will certainly appear in more nonlinear approaches.

A critical factor in the McMurray (2007) model was the
distribution of difficulty,g, across the lexicon. This describes
the relative number of easy, moderate and hard words. Given,
g, the number of words known at any given time,T, is simply
the integral of that distribution from 0 toT.
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Figure 2: The model presented in McMurray (2007). A) The
Gaussian Distribution of time-to-acquisition. B) number of
words known as a function of time-step.

The most likely distribution of difficulty is Gaussian (Fig-
ure 2A). Word-difficulty is likely to be the sum of many fac-
tors (e.g. phonological complexity, frequency in the child’s
environment, syntactic category, etc). Since these factors will
be largely independent, their individual distributions sum to
a Gaussian (by the Central Limit Theorem). However it is
important to note that any distribution of difficulty which
includes only few easy (smallDi) and more moderate (mid
rangeDi) will show acceleration in learning.

This model demonstrates acceleration in word learning
(Figure 2B), despite a constant accumulation of points. Thus,
it was concluded, as long as words are learned in parallel and
vary in difficulty in this way, acceleration is guaranteed.

A Stochastic Version
One could reasonably argue that this effect is due to the de-
terminism of the model. A model incorporating some degree
of randomness would be more theoretically valid and perhaps
more generalizable. We therefore introduce a stochastic ver-
sion of the model which shows not only that the acceleration
in word learning is extremely robust but also reveals the im-
portance of learning history.

We start by describing a discrete version of the determinis-
tic model and then generalizing it to a stochastic version. We
number each wordi = 1 toN whereN is the number of words
to be learned. Each word is assigned a difficultyDi so that the

distribution of difficulties approximatesg. In the determinis-
tic case, at each time–step one point is added to each word.
When a word reaches its threshold,Di , it has been learned.

To make this model stochastic, we again number each word
i = 1 to N. Next, each word is assigned a probability,pi .
We think of pi as the probability that the child is exposed to
the ith word in any one time step. Thuspi is proportional
to the frequency of the word. Each word is also assigned a
threshold,r i , the number of repetitions required before a word
is learned. Then at each time step, a word has probabilitypi

of gaining a point and it is learned once it has accumulated
r i points. We can think ofr i as the difficultyindependent of
its frequency of occurrence. Thus, the original deterministic
model can be described as the special case in which allpi are
1 andr i corresponds to word difficulty,Di .

The analysis of the stochastic model is done by first inves-
tigating the time to acquisition of a single word. We compute
the cumulative distribution function or c.d.f,Fi(T), for the
time of acquisition of that word. SoFi(T) is the probability
that theith word has been learned by timeT. Next we com-
pute the expected number of words learned as a function of
time,L(T). Since the acquisition of the words is independent,
L(T) is the sum of these distributions,Fi . That is

L(T) = expected number of words learned by timeT

= ∑
i

P(the ith word was learned by timeT)

= ∑
i

Fi(T)

The analysis and discussion of this stochastic model is done
in two cases. In both cases,r (the amount of required expo-
sure) is constant across all words. We adopt this simplistic
assumption for ease of analysis–in real language words may
vary dramatically in difficulty but currently there are no ex-
isting metrics. Work in progress is undertaking analysis of
cases in whichr varies.

In the first case,r = 1, the word is learned the first time it is
heard and the learner has no need to keep any history of past
experience with the word. We therefore call this the history-
free case and it instantiates a somewhat implausible one-shot
learning. In the second case,r > 1, the word is learned only
after r points are accumulated. In this case, the accumulated
history of the word is important. The cases are treated sepa-
rately since they have fundamentally different behavior which
highlights the importance of gradual learning in the vocabu-
lary explosion.

History-Free Case: r = 1
The first simulations and analysis contrast the deterministic
model with the stochastic (r = 1) model. In this simplest case,
at each step there is a probabilitypi of acquiring a point and
hence learning the word and no dependence on previous time
steps.

The number of time steps until the word is learned,X, is a
Geometric Random Variable with parameterpi . This means



that the expected time to acquisition isE(X) = 1
pi

. Since we
know the expected time to acquisition, we can chose the val-
ues ofpi such that the time to acquisition fits any distribution
we would like, and allows us to compare this model to the
deterministic model.

Simulations A series of simulations implemented the de-
terministic and stochastic models to compare their perfor-
mance. Each model was run 10 times using the represen-
tative parameters of McMurray (2007). For each model, a
10,000 word lexicon was initialized. Each word was given
a difficulty Di (time-to-acquisition) randomly chosen from a
Gaussian distribution,g, with a mean of 4000 and standard
deviation of 1400. For the stochastic model, these were con-
verted into probabilities (pi = 1

Di
). Then at each time-step

10,000 random numbers (one for each word) were selected
from a uniform distribution ranging from 0 to 1. Any word,
i, whose random number was less than itspi , was deemed
learned and removed from further consideration. The deter-
ministic model was identical to McMurray (2007).

Results are displayed in Figure 2. All of the deterministic
models showed a period of slow growth followed by accelera-
tion. In contrast, the stochastic models showed initially rapid
learning which gradually tapered off.
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Figure 3: Number of words learned by each model as a func-
tion of time-step.

Analysis We begin with the analysis of a single word. For
ease of notation, we temporarily drop the subscripts onF,
D, p and r. As we’ve described,E(X) = 1

p is equal toD
which is equivalent in the two models. What, then explains
the discrepancies between them?

First, while the first moments of time-to-acquisition are
equivalent, the second moments are not. In the stochastic
model, the variance of the time to acquisition is Var(X)= 1−p

p2

(it is zero in the deterministic model). Additionally, the coef-
ficient of variation (a non-dimensional measure of the spread
of a random variable) is

√
1− p. Since p must necessarily

be small (otherwise the model will acquire the bulk of the
lexicon within the first measurement period), the variance in

time-to-acquisition (X) will necessarily be high. Thus, any
single run of the model is quite unlikely to approximate the
expected values of X (see Figure 4). In a sense, then, the ex-
treme variance of this model prevents it from modeling diffi-
culty to the same degree as the deterministic model.

The probability that the word is learned at timeT is simply
the probability that that word was not learned on the previous
T −1 steps times the probability that it is learned on timeT.

p(T) = (1− p)T−1p

Thus, the probability that a word is learnedby timeT is

F(T) =
T

∑
i=1

p(i) = 1− (1− p)T

Intuitively, the rate of change of this functionF at time T
is the probability that the word is learned at time T. That is
∆F
∆T = p(T). Sincep(T) decreases as a function ofT, F(T)
is concave down. Thus, the likelihood of learning any given
word continually decreases over the life of the model. This
then explains the failure of this model to show acceleration.

We have shown that the c.d.f. for each word is concave
down. In order to obtain the function,L(T) for the expected
number of words learned up to timeT, we sum the c.d.f.s over
all the words in the lexicon. So

L(T) =
N

∑
i=1

Fi(T).

Since the sum of concave down functions is concave down,
we know thatL(T) is concave down. This can also be un-
derstood by looking at the expected number of new words
learned on a particular step. At any time step, the expected
number of new words learned is the sum of the probabilities
pi of the remaining words. As more words are learned, this
sum must decrease. Thus the number of new words learned is
expected to decrease at each time–step. Note that this is true
regardless of how the probabilitiespi are chosen.

Discussion The stochastic model withr = 1 seems to argue
against the findings of McMurray (2007). The vocabulary
explosion is not guaranteed despite a graded distribution of
difficulty (instantiated asp) and parallel learning. However,
this case (r = 1) does not reasonably capture either of these
important theoretical constructs.

First, the history free case does not clearly instantiate word
difficulty. As we discussed,pi in this model can be mapped
onto difficulty in the deterministic model as it’s reciprocal
(pi = 1

Di
), making the expected time to acquisition of any

word is equivalent across both models. However, the variance
of the time to acquisition in the history free case is enormous.
If the mean time-to-acquisition is 4000 time–steps this yields
a variance of nearly 16,000,000 time-steps. As a result, the
observed time to acquisition for any word is unlikely to be
near the expected time to acquisition (Figure 4).

Second, this model builds in explicit deceleration. Since
the probability of acquiring a word is independent of previous
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Figure 4: The observed time-to-acquisition as a function of
the a priori expected time-to-acquisition for a representative
run of ther = 1 model.

time-steps, the expected time to acquisition for an unlearned
word increases over time. If a word starts with an expected
time to acquisition of 4000 time-steps and is not learned after
1000, then its expected time to acquisition is now 5000.

Finally, while it can be construed as parallel, this model
fails to model learning, since learning is a gradual process.
While events can be construed as occurring at the same time,
this does not constitute parallel learning because learning re-
quires the gradual accumulation of material. Parallel learning
requires maintaining this material across multiple items.

This is true in basic learning principles (Rescorla & Wag-
ner, 1972) and connectionist accounts (Elman, Bates, John-
son, Karmiloff-Smith, Parisi, & Plunkett, 1996). It also
appears in word learning, where children learn the sound-
pattern of a word before its meaning (Graf Estes, Alibali
& Saffran, 2007), and much of learning takes the form of
a slow elaboration (Capone & McGregor, 2005) or gradual
improvement of skills (Fernald, Perfors & Marchman, 2006).
Even so–called fast-mapping does not support this. Horst and
Samuelson (in press) have demonstrated that novel names
used in fast-mapping situations are not retained, even five
minutes later. Parallel learning cannot be instantiated asa
series of independent acquire-or-not events. By decoupling
acquisition of a word from its developmental history in the
system, the history free case fails to capture parallel learning.

Thus, ther = 1 case does not seem to instantiate any real-
istic developmental processes. However, we now contrast it
with the model in whichr > 1, to reveal the importance of
gradualness in dictating the form of growth.

General Case: r > 1

Gradual learning can easily be incorporated into this stochas-
tic model by settingr to any value greater than 1. In this
case, the value ofr represents the degree of gradualism, or
the amount of history that the child must have with a word

to acquire it. Once this property is built into the stochastic
model, acceleration returns under virtually all circumstances.

In this model, at each step there is a probabilityp of acquir-
ing a point and the word is learned oncer points have been
acquired. The number of time steps until the word is learned
(X) is a Negative Binomial Random Variable with parame-
ters (r,p). The expected time to acquisition isE(X) = r

p and
again, we can compare with the deterministic model by set-
ting r andp such thatE(X) is the time to acquisition.
Simulations To test this, the prior stochastic simulations
were repeated, this time with a range ofrs (2-20), which
was constant for all words within a simulation. Difficulties
were selected from an identical Gaussian distribution, and
converted to the probability of receiving a point (pi = r

Di
).

This ensured that the mean time-to-acquisition was constant
across simulations despite the change inr. 10 simulations
were conducted for eachr.

Figure 4 shows average vocabulary size as a function of
time. It is clear that higher values ofr show long periods of
slow growth followed by acceleration. However, evenr =
2 shows a period of slow growth followed by acceleration.
Thus, a vocabulary explosion can be seen as long asr > 1.
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Figure 5: Vocabulary acquisition in the stochastic model asa
function of time andr.

Analysis Our analysis begins, as before, with the analysis
of a single word. Similarly to the previous analysis, the vari-
ance of the time to acquisition is Var(X) = r(1−p)

p2 , giving a

coefficient of variation of
√

1−p
r Here, an increase inr (in-

creasing the amount of required history) or an increase inp
(forcing the model closer to the deterministic model) will re-
duce the variability. As a result, incorporating gradual learn-
ing makes any given instantiation of the model more likely to
show effects of word difficulty.

The probability that a word is learned at timeT corre-
sponds to (1) theT − r steps in which no points are earned
each with probability(1− p) and (2) ther steps where points



are earned. This gives a probability:

p(T) =
(T −1)!

(T − r)!(r −1)!
(1− p)T−r pr

.

Thus the probability that a word is learned by time T is
F(T) = ∑T

i=1 p(i). The rate of change of this functionF at
T is ∆F

∆T = p(T). A calculation shows thatp(T) is increasing
for T ≤ r−1

p and decreasing forT >
r−1

p . Therefore,F(T) is

concave up forT ≤ r−1
p and concave down forT >

r−1
p . Any

value of r greater than 1 will this yield some portion of initial
acceleration (concave-up).

Now that we have computed the c.d.f. for a single word,
we can sum over the lexicon to obtain the functionL(T) for
the expected number of words learned by timeT, L(T) =

∑N
i=1Fi(T). This sum is in general very difficult and except in

simple cases must be computed numerically.

Discussion This demonstrates that even whenr = 2 (min-
imal history), acceleration is guaranteed for some range of
time. If r > 1, the probability of having learned a word at
any given time accelerates. Larger values ofr increase the
suddenness of the acceleration; the length of the acceleration
phase (Figure 5); and the likelihood that the observed time to
acquisition matches the expected. Thus, instantiating history
creates a non-deterministic model that captures both parallel
learning and difficulty, and hence, shows acceleration. A few
special cases deserve attention.
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Figure 6: Results of a stochastic model with a constantp (and
by consequence time-to-acquisition,D) across all words.

An implausible but theoretically illuminating case occurs
in a model in which all words have the same difficulty and the
same frequency. ThenL(T) = N ·F(T) and we know it has a
nice period of acceleration. Figure 6 shows simulations of a
stochastic model in whichpi was constant across the 10,000
word lexicon, and is chosen so that all cases have the same ex-
pected time to acquisition as previous simulations. It is clear
that atr = 1, no acceleration can be seen. However, at all
r > 1, there is acceleration, and at higherrs, the spurt is quite
dramatic. This explicitly violates one of the two assumptions
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Figure 7: A comparison of the stochastic model withr = 20
when the distribution of probability,pi , is A) a violation of
McMurray, 2007, B) uniform and C) consistent with McMur-
ray, 2007. The acceleration phase is longer for consistent dis-
tributions.

made by McMurray (2007) since the distribution of word dif-
ficulty does not monotonically increase.

This powerful example suggests that the vocabulary explo-
sion may be more robust than McMurray (2007) hypothe-
sized. It shows that while the precise shape ofL(T) depends
in complicated ways on the distributions of frequencies (p)
and required history (r), the vocabulary spurt will exist for a
wide range of reasonable choices,even if the difficulty distri-
bution is not monotonically increasing.

Simulations have also been conducted for various distribu-
tions of pi with r assumed to be the same across all words.
Figure 7, for example, demonstrates the acquisition of a
model when the distribution ofpis (frequency) was either in
accordance with McMurray, 2007 (Figure 7, curve C), a vi-
olation (curve A), or flat (curve B). Whenr = 20, all three
models show acceleration, even the model that directly vio-
lates these assumptions. However, the shape of the distribu-
tion plays an important role in the length of the slow period
preceding the acceleration.

We can also show that in the limit asr andp increase with
the distribution of expected time to acquisition fixed, the de-
terministic model is obtained, and the spurt is dependent on
the distribution of difficulty.

Discussion
These simulations and analysis confirm that the broad frame-
work laid out by McMurray (2007) is correct: acceleration in



word learning arises out of the mathematical regularities of
parallel learning and variation in difficulty. The present work
extends these findings by demonstrating that this was not due
to the determinism of the original model. Any stochastic
model that incorporates even the minimal amount of gradual
learning will show acceleration in word learning.

The only case in which this was not true was the stochas-
tic model in which learning occurred after a single exposure
(r = 1). However, this model does not meaningfully capture
learning, and it is not unambiguously parallel. The same re-
sults could be achieved by a model which randomly sampled
each word sequentially. Thus, this does not appear to be a
disconfirmatory case.

More importantly, our analysis of this stochastic model
suggest that the degree of history required to learn a word
is itself a factor in determining the acceleration observedin
word learning. Specifically, when learning is very gradual,
a substantial spurt can be observed, even when the distribu-
tion of easy and hard words does not conform to the assump-
tions of McMurray (2007) (e.g., if there are more hard words
than easy words). Of course, gradualness interacts in complex
ways with the distribution of difficulty, and word frequency,
and future work must examine both the empirical and compu-
tational underpinnings of this interaction. However, the bot-
tom line is that specialized mechanisms are even less nec-
essary to account for acceleration than previously thought.
There are multiple routes to the same end.

This model is sufficiently general that it can be applied to
virtually any parallel learning system. While the issue of ac-
celeration is theoretically important in vocabulary acquisition
(Bloom, 2000), the mathematics presented here will also un-
derlie many other domains of learning.

The vocabulary explosion is an incredibly dramatic devel-
opmental process. This has led to a large number of theories
positing equally dramatic changes or learning devices on the
part of the child. However, such things are not necessary to
explain acceleration. Apparent acceleration will always ap-
pear in parallel learning systems, even when the fundamental
learning processes are perfectly constant. The so-called vo-
cabulary explosion is a mathematically robust phenomenon
that will arise under virtually any parallel learning circum-
stances. There is no need to invoke more complex mecha-
nisms to explain it.
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