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Abstract

We use probabilistic techniques to study neural systems which improve the timing accuracy
of action potential firing. A striking example of such accuracy was discovered in the columnar
region of the VNLL by Covey and Casseday (J. Neurosci. 11 (1991) 3456). In response to sound
stimulation, these VNLL cells fire an action potential whose latency under repeated trials has
a standard deviation of approximately 100 ps. This is remarkable because the typical standard
deviation in the auditory nerve is 1 ms. In simple systems, we show how the improvement in
timing depends on the number of incoming fibers and the number of hits required in a small
time window.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Coincidence detection; Octopus cells; Probability

1. Introduction

A fundamental problem in neurobiology is to understand how the central nervous
system (CNS) performs accurate calculations with components whose properties vary
in time and from cell to cell and which give variable responses under repeated trials.
Local noise would compromise the information processing capabilities of successive
levels of the CNS unless strong compensatory mechanisms were in place. Therefore,
situations in which experimental evidence shows that information is sharpened as it
progresses inward from the periphery to the CNS are particularly interesting for they
may provide clues about such compensatory mechanisms.

A particularly striking example of increasing accuracy as one proceeds into the CNS
from the periphery in the auditory system was discovered by Covey and Casseday [2].
Neurons in the auditory nerve (AN) synapse on cells in the cochlear nucleus (CN) and
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certain cells in the CN, notably octopus cells, send projections to cells in the columnar
region of the ventral nucleus of the lateral lemniscus (VNLLc). Covey and Casseday
discovered that in bats these VNLLc cells fire a single action potential in response to
sound stimulation with a precise latency; the standard deviation of this latency under
repeated trials is typically about 100 pus and in some cases as low as 30 ps. This is
remarkable because in the AN of mammals typical standard deviations for latency under
repeated trials in a single fiber are approximately 1 ms. Oertel and co-workers [3,7]
have proposed that much of this improvement in accuracy is created by coincidence
detection by octopus cells of incoming signals from converging AN fibers.

For many years, synchronous firing of groups of neurons has been proposed as the
mechanism by which sensory patterns are represented in the cortex. One mechanism by
which stable patterns of synchronous firing could be created is the synfire chain model
introduced by Abeles [1] and further developed by Aertsen, Diesmann, and others.
These investigators have shown that if the number of firing neurons is large enough
and the initial standard deviation of firing times is small enough, then stable propa-
gation is possible. Our research explores the improvement of the standard deviation
of spike timing at a single target neuron which receives convergent input. Thus we
are continuing the line of investigation by Marsalek et al. [4]. Detailed understanding
of the improvement of the standard deviation for firing times at single neurons will
be of value for understanding the properties of synfire chains using less restrictive
hypotheses.

Our report describes the mathematical properties of coincidence detection in a highly
simplified neural system [8]. Consider the network shown in Fig. 1. There are n identi-
cal input neurons stimulated at the same time. Each responds by sending a single
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Fig. 1. The connectional pattern. n input neurons, whose stochastic times of firing are selected from the
probability density, f, project to a target cell. The probability density for the firing time of the target cell
iS gn,m,e(¢). (Taken with permission from [8].)
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spike to the target neuron at a random time ¢ selected from a distribution f with
standard deviation o. We assume that the target neuron fires one spike (if it fires at
all) the first time it receives m spikes in the preceeding ¢ milliseconds. Let g, ,, . denote
the standard deviation of the time of firing of the target cell. If g, ,, . is smaller than
g, then the accuracy of the time of firing of the target cell has improved compared to
the accuracy of its inputs. We report in this study the behavior of ¢, , . as a function
of n,m, and e.

Unfortunately, even in this highly simplified biological situation, one cannot compute
explicit formulas for o, . in terms of n, m, ¢, and f, except in special cases.

One millisecond which is reasonable since the standard deviation under repeated
trials in auditory nerve fibers is of this magnitude. One can show that for any value
of g, the parameters can be rescaled so that the probability density of the output is
simply a rescaling of the output for the =1 case. Therefore, we fix =1 ms, which is
the typical standard deviation under repeated trials in auditory nerve fibers. We begin
by examining the behavior of ¢, ,, . for two special cases, ¢ =0 and oco. Then we
investigate the general behavior of ¢, , . as a function of ¢ and as a function of m.

2. The case ¢ — 0

Under appropriate hypotheses on the properties of f, one can prove mathematically
that
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as ¢ — 0 [5]. Intuitively, taking the mth power of a continuous density f and renor-
malizing will emphasize the region near the peak and de-emphasize the regions away
from the peak. One can show that for m large the standard deviation, g, 0, Will be of
order 1/m for input densities, f, which have non-zero first derivative at their maximum
(e.g. the exponential) and order 1/y/m or larger for input densities which have a first
derivative of zero at their maximum (e.g. the normal) [6]. Clearly, the improvement
in timing will depend strongly on the specific input density chosen.

Gnme(t) = (1)

3. The case ¢ — oo

As ¢ gets large the time window restriction has less effect. Thus, in the limit when
& — oo, the target neuron will fire when the mth action potential arrives (this is
equivalent to the simplest integrate and fire model considered by Marsalek et al. [4]).
The mth largest of n selections from a density f is called an order statistic and this
random variable has probability density:
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where F(¢) is the cumulative distribution function of f(¢), that is F(¢) = f:oo f(s)ds.
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4. Dependence on ¢ and m

We now consider the effect of the size of the time window, ¢, and the number
of hits required, m. In this case the bulk of our investigation was done by Monte
Carlo simulation. One would expect that as ¢ increases, the timing would become less
accurate, i.e. g, would increase. In some cases, this is exactly what happens (e.g.

=10, m=2, f is exponential). On the other hand, there are also cases where exactly
the opposite occurs (e.g. n=10, m =38, f is exponential). There are even cases where
onm. has a peak at some intermediate value of ¢ (e.g. n=10, m=5, f is exponential)!
Similarly, one would expect that as m increases, more convergence of inputs would
cause a decrease in o, .. In fact, our Monte Carlo simulations showed that in most
cases o, ;. 1s a non-monotone function of m! From these examples, we see that the
dependence of o, ,,. on & and m is complex and often counter-intuitive.

In conclusion, the complexity of the behavior that we have found suggests that
determining the relationship between structure and function in the nervous system may
be very difficult. In some circumstances, one could get improvement in timing either
by increasing or by decreasing m. Similarly, one could get improvement either by
increasing or by decreasing ¢. The degree to which timing is improved depends in a
complicated and interesting way on the input density f, the number of input neurons,
n, the number of hits required, m and the duration of the time window, e.
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