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The Fenton—Karma model is a simplification of complex ionic models of cardiac membrane that
reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to
be understood analytically. In this paper, a map is derived that approximates the response of the
Fenton—Karma model to stimulation in zero spatial dimensions. This map contains some amount of
memory, describing the action potential duration as a function of the previous diastolic irstedval

the previous action potential duration. Results obtained from iteration of the map and numerical
simulations of the Fenton—Karma model are in good agreement. In particular, the iterated map
admits different types of solutions corresponding to various dynamical behavior of the cardiac cell,
such as 1:1 and 2:1 patterns. ZD02 American Institute of Physic§DOI: 10.1063/1.1515170

Developing mathematical models that represent the dy- systems. In order to optimally control the electrical activity
namics of a cardiac cell is important for understanding  of the heart, it is important to understand its dynamical prop-
life-threatening diseases such as ventricular fibrillation erties. lonic models describing the electrical activity of the
(often the cause of sudden cardiac deajhand developing  cardiac ceftl=* are becoming more and more complex. These
therapies for cardiac disease. One approach for modeling models characterize the total current flowing through the
the electrical activity of a cardiac cell is to incorporate all  membrane by combining various membrane currents ob-
known details, such as changes in ionic concentrations tained in voltage-clamp or patch-clamp experiments. For in-
and mechanisms that regulate the in- and efflux of ions  stance, the model described in Ref. 4, which is based on data
through the cell membrane. Unfortunately, such detailed  from mammalian cardiac cells, consists of 12 currents. The
models often defy simple mathematical analysis. Another  complexity of these models makes it difficult to analyze re-

approach is to devise simplified mathematical models gyits and to carry out two- and three-dimensional simula-
that incorporate what is hoped to be the essential ele- tjgns.

ments of the more complex ionic-based models. One such There have been several simple nonionic models pro-

model of the cardiac membrane is a set of ordinary dif-  ,,seq 1o represent cardiac tisssee, for instance, Refs. 5
ferential equations that Keeps track of the transmem- and 8, but they do not encompass as many aspects of heart
brane voltage and three ionic currents as prqposed re- dynamics as do the ionic models. The Fenton—Katf)
cently by Fenton and Karma. we have lnvest|ggted the ionic model is a simplification of the Luo—Rudy (LR1)
anton—Karma model using a mqltlscale analysis tech- model of the cardiac membranéhat reproduces quantita-
nique and find that the cell dynamics can be represented tively much of the behavior of the full model. The FK model

under some conditions by a mathematical mapping that ; . .
) . . contains three currents, loosely corresponding to sodium,
relates the current duration of an action potential to the : . . o
calcium, and potassium. It is complex enough to exhibit

duration of the preceding one and the preceding diastolic _ .
P g P 9 many of the characteristics of heart cells, yet is simple

interval. Such an analysis should simplify fitting the . . .

model to experimental observations and lead to new enough that. muF:h .Of 't‘?’ b_ehawor can be understood analytl—

predictions. ca_llly. Analyﬂcal |nS|ght is important because, for example, it
will guide the selection of the many parameters that need to

be adjusted in fitting the model to experiments.

. INTRODUCTION One tool for analyzing results obtained from numerical
simulations of ionic models or experiments is to use a finite-

Control of complexity in the heart has been the focus ofdifference equation or mdpThis allows a reduced descrip-
recent research on spatiotemporal complexity in dynamicafion of the trajectory of the ordinary differential equation
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(ODE) by a single number, the action potential durationand the gating variablé evolves according to
(APD). Usually, following the pioneering conceptual founda-

tion put forth by Mines. maps describing localized cardiac —=[f.(v)—f]/7(v). (6)
dynamics relate the APD to the previous diastolic interval dt
(D1) through a restitution function, The voltage-dependent functions on the right-hand side of
APD, ., ;=F(DI,). (1) Eq. (6) are step functions given by
Such a simple mapping model was proposed in Ref. 10 and fo(v)=0 and 71(v)="Ticose If V>Vigaw )
later generalized in Refs. 11-1WA restitution mapping of fo(v)=1 and 7¢(v)="Tiopen If V<Vigawe
the form (1) was obtained in Ref. 14 in a similar spirit; see
also Ref. 15 for a more detailed treatmént. Similarly, the slow inward current has the form,
A more complex model, which includes a phenomeno- Jaow=—SIV) Tgiows ®)

logical memory term describing the long-term evolution of _ ] ) o
tissue properties, was developed and analyzed by Otani afhere the sigmoid functio§(v) is given by
Gilmpgrlﬁito dsscripe a serigs of experime_nts on paced S(v)={1+tanh k(v — Vg 1}/2, 9
Purkinje fiberst” Their model differs from previous models
in that the APD is a function of two variables,

APD, , ,=G(DI,,APD,). 2 98 e (v)—slin(v), (10

[In one sense the memory i) is a not-at-all long term: dt

APD, ., depends on no information prior to the previousWwith the right-hand side defined by

action potential. However, under periodic stimulatitsee _ _ .

Sec. Ill), this mapping, or evefi), can exhibit a long-term- S=(v) =0 and 7(v)=Tecose !f 0= Vsgate (12)
memory effect: if the basic cycle length is changed, it may  S=(v)=1 and 74(v)=7gpen If v<Vggae

happen that many stimuli are required before the syste
settles into a new steady-stdte.

In this paper we apply multiscale analysis to the FK  Jy,q=P(v)/ Tyng, (12
ionic model to derive a restitution mapping with memory of
the form proposed by Otani and Gilmour given by KE2).
Thus, this paper strengthens the foundation of their model, 1 if v>Vou,
which had been purely empirical. P(v)= vIVgy  if 0<Vgy.

The paper is organized in the following way. In Sec. Il ) ]
we introduce the FK model describing the cardiac cell relOur formula forP(v) differs slightly from Fenton—Karma.
sponse to periodic stimulation in zero spatial dimensi@ns BY allowing the behavior oP to change a¥/o# Ve, we
set of coupled ODE)s In Sec. IIl we derive a simplified map '€ able to make continuous without changing the behav-
and show that results obtained from numerical simulations off ©f the model significantly. _
the FK model and from iteration of the map are in reasonable ~ 1he stimulus currendg;y, is an external current applied
agreement. In Sec. IV we make three refinements of the mapy the experimenter. Typicallyis;(t) consists of a periodic

in order to achieve better agreement between these resuli&ain of brief pulseswith duration of 1 m§ each of approxi-
Section V presents conclusions. mately twice the strength required to excite fully recovered

tissue. (In our units, the amplitude of each stimulus is
0.2 ms 1, so that the stimulus by itself, would raise the non-
dimensionless voltage by 0)2The currentsl;,g;, Jgiow, and

The Fenton—Karma ionic modetontains three vari- Jung May be identified with sodium, calcium, and potassium
ables: the transmembrane potentidhondimensionalized so  currents, respectively. Table | lists the values of the param-
thatv=0 andv=1 are the rest and peak voltages, respeceters used by Fenton and Karma; we use these values in our
tively) and two gating variable$ ands (mnemonics:f for calculations unless otherwise stated.
the fast,s for the slow. The voltage changes in response to
the ionic currents according to the relation,

dv

and the gate variable is governed by

r':f'he ungated current has the form

where the piecewise-linear voltage dependence is given by

(13

Il. THE FENTON-KARMA MODEL

lll. DERIVATION OF A SIMPLIFIED MAP FOR LARGE «

— = — (Jrasrt Jsiowt JunaT Jstim) - (3) In this section we consider periodic stimulation of the
dt ast Tslow T Tung et FK model. LetBCL denote the pacing interval, and let APD
The fast inward currendy,, has the form, denote the time needed for the cell to repolarize after stimu-
_ lation. We shall show that, with some approximation, the
Jtast= = TQV)/ Tast, (4) (n+1)st APD is a function of the previous APD and dias-
wherer,is a characteristic time for this current, the voltagetolic interval, i.e.,
Qv)= (0=Vei)(1=v) i v>Ver, (5)  This formula has the same form as the empirical model de-
0 if v<Vgi, veloped in Refs. 16 and 17.
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TABLE I. Parameters and their typical values for the Fenton—Karma three- APD, 4 APD,,»
current ionic model.(*) means that these parameters will be eliminated ’ O—I ! ! N
during the derivation of the map and the additional parametgill take ’ DI, E Dlpyq a)
their place. > !
Parameter Valuéms) Parameter Value (diftess) 0.5 E
(*) Tfast 0.25 ch ol WM\ _______
Tslow 127 Vsig 0.85 0.0 4
Tung 130 K 10 i
(*) Ticiose 10 Vout 0.1 1.0 b)
*) Ttopen 18 Vfgale Verit
Tsclose 1000 ngate Verit - |
Tsopen 80 051 i
0.0 5
If every stimulus produces an action potential,, DI 10 i c)
=BCL—-APD,, and (14) can be rewritten expressing ' : !
APD, . ; as a function of APD and the parametdBCL as » | !
APD, . ,=G(APD, ,BCL—APD,). (15) 0-81 ! i
More generally, if everyNth stimulus produces an action | BCL !
potential(an N: 1 responsg then(14) can be rewritten as 06 ' ' ' ) t
1 n 1 n+1 f n+2

APD, ,1=G(APD,,N*BCL—-APD,). (16
. . . ._FIG. 1. Temporal evolution ofa) the voltagev, and gating variable®) f,
We shall call stimuli that actually produce an action potennaland(c) s, according to numerical simulations of the FK model WRITL

effective After an effective stimulus is applied, the tissue =709 ms. The arrows correspond to the times at which stimuli are applied.
needs a certain time (R to be fully recovered. If the next
stimulus is applied before R, it will not produce an action

potential; typically, one response occurs for every tWorhe action potential produced by the stimulus has duration,
stimuli (2:1 behavioy.
APD:t|v=VCm_tstimv (21)

A. Elimination of the fast current
Figure 1 shows the temporal evolution of the voltage obtained by solving E¢(20) with the initial condition(18).

and the gating variable§ and s according to numerical Thus, the APD is a function &#(tsim),

simulations of the FK model under periodic stimulation at ~ APD=®[s(tgm) |- (22
BCL=700 ms. It can be seen from the graphs that changes
in the fast gating variablé occur much faster than changes
in the voltagev and the gating variables. Therefore, to
simplify the model, we suppose that the fast current simply
raises the voltage to the value=1 following an effective

In the context of periodic stimulation, as shown in Fig.
1, lets, be the value of at the time the i+ 1)st effective

stimulus. This upstroke occurs so quickly treatdoes not 1.00 4
changes appreciably, and after this upstrdkg; vanishes
until the next(effective stimulus. In this approximation we 0.95- '
need to consider only the motion in thg ¢) plane(see Fig. ' i ]
2) ! !
During the time whileV ;;<v <1 following the arrival 0.90 4 E E
of a stimulus at=tg;,, Eq. (3) reduces to ] i '
]
dv  s(t) 1 il '
= ( S(v)— , (17 o °% : i
dt  Tgiow Tung ' i
with initial conditions 0.804 | : i
0 (teim) = 1. (18 | o
I ]
Assuming without loss of generality thiat;,,= 0 the solution 0.754 ! ' i
. ST . !
of (10) during this time is Ve E sig!
S(t)=5(0)e ™ "/"sclosg (19 o70b—f
substitution of(19) into (17) yields, 0.0 0.2 0.4 v 0.6 0.8 10
dv s(0) 1 , _ _
— = S(U)e_UTSclose— _ (20 FIG. 2. Trajectory of the ODE’s in thes(v)-plane according to the FK
dt  7eow Tung model for the cas® CL=700 ms.
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FIG. 3. Shape of the functio®(s,) from Eg. (23) according to the FK

FIG. 4. Form of the functionS(v) given by (9) for two values of the
model for two values of the parameter

parametelk.

stimulus arrives, and let APD; be the duration of then( ~ B- Comparison with the two-current ionic model

+1)st action potential. Rewriting22) in this notation we As an aside, we note that a restitution map of the simpler
obtain form (1) was derived by Karm&' As elaborated in Ref. 15,
one obtains
APD, ;1 =®(s;). (23

1_(:I-_Smin)eiDlnlrsopen
In general, there is no explicit formula for the functidn G(DIp) = Tgjoseln - : (28
Numerical computations of this function are graphed in Fig. . mm_ )
3 for two different values of the parameter (In Sec. IIC ~ Wherésp, is a constant. Comparin@8) with (27) we can
we shall derive an approximate formula frunder the hy- ~ See that the simplification
pothesis thai is large) ® " Y(APD,)e APPn/7sclose=5 . (29)
We claim that

occurs. Thus,(28) gives a restitution map of the familiar

Sp=1—(1—s_,)e P'n/7sopen (24)  form that depends on the previous DI but not the previous
APD. Also note that while® in Fig. 3 obtained from the
where three-current model is convaxpward (28) is convexdown-
ward. Therefore, there is not any parameter region in which
Sh_1= 518 AFPn/7schose (25  the three-current model reduces to the two-current model.

Indeed,(25) results from solving10) from the arrival of the
nth stimulus unti|v=VCm, and(24) results from Continuing C. Approximation for |arge K
the solution of(10) from the time whernv =V, until the
next (effective stimulus. Replacing by (n—1) in (23) and
inverting the functiond®, we may rewrite(25) as

As noted above(20) cannot be solved analytically with
S(v) given by (9), preventing us from obtaining an explicit
formula for® in general. In Fig. 4 we have graph&) for

sk, =® Y(APD,)e APPn/7sciose (26)  two values of the parametes, the original value chosen_ by
Fenton and Karmax=10) and a large value=40. In this
Substituting(24) and (26) into (23), we obtain(14) with subsection, assuming thatis large, we approximat&(v)
by a step function,
G(APD,,DI))=®(1-[1—® 1(APD,)e APPn/7sclose] _
1 if U>Vsig1 30
—Dlp/7sopen = .
xe Pe). (27) SO0 i vevy, 30

Thus, expressiof27) represents our main result, i.e., the and then solvé20) analytically.(In Sec. IV C below we will
map derived on the basis of the FK model. This map has theonsider moderate.)
same form as the one obtained empirically by Otani and Following the arrival of the f+ 1)st effective stimulus
Gilmour in Ref. 16 using a memory model. Eq. (20) becomes, using approximati@80),
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s 1 Solving (31), we see that; anda, satisfy
n e—t/TscIOSe— — if VSig<v <1,
dv Tslow Tung SnTscl a
T (31 TR0 @ a1 Tsdose— 1) + — — 14 Vgg=0, (34)
- if Vcrit<U<Vsig! Tslow Tung
Tung

which may be solved analytically. We decompose the 32 Tund Vsig™ Veri)- (35)
APD, ., given by Eq.(21) into the sum of two contributions A formula for the inverse functiod® ! of (23) can be
coming from the two alternatives i{81), obtained without further approximation. B$2) and (35),

APD,1=®(s)=a;t+a,, 32

et (Sn) e 32 a,=APDy 1~ 7'ung(vsig_ Verit); (36)
where
B _ substituting this inta34), replacingn by n—1 and solving
al_t|U:VSig_t|U:1' a2_t|v=ch_t|v=Vsig' 33 for Sh_1 We obtain
APD,
T - (1_ Vcrit) Ty
Sy_1=® Y APD,)= i = (37)
ot " 1- eXp{[ —APD,+ 7'ung(vsig_ Vcrit)]/Tsclosé Tsclose
|
To derive a formula for the functiof® itself, we need to In Fig. 6 we show bifurcation diagrams obtained from

make an additional approximation based on the fact thatl6) and from numerical simulation of the ODE’s witk
Tscloser WHiCh appears in the exponent(i7), is much larger  =40. For the ODE’s, we start from a very loBCL, apply
than any of the other quantities in the model. Thus, we use at least 100 stimuliin order to eliminate transientsand

power series expansion of dxpz]=1—z+7/2+0(Z%), record the APD resulting from the last; then we decrease the
wherez=a, / 7¢4os< 1, which allows us to rewrit¢37) asa BCL by 2 ms and repeat the procedure. We continue this
guadratic equation for the ARDR; and obtain procedure down to a small value BfCL. As shown in the
Fig. 6, at sufficiently smalBCL, the system jumps from an
APD, . ,=®(s,) = Tsclose{ C,— Tslow N=1 response to aN =2 responsédenoted by th). After
Tungn this downsweep oBCL, we start from a shorBCL and
C - 2 increaseBCL on each step obtaining an upsweep. The jump
+ \/1_ _2+( S'°‘”) J (38)  from N=2 response tdN=1 response occurs at a different
Sn TungSn
where
Tung 300 T T T T T T T v
Ci=1+ Vsio— Verit) |
1 Tsclose( sig crlt) | N=2
I
1 (Vg 1) 2704 : 1
C2=2gm4 +£—%L——} (39 | !
Tung Tsclose !
Substitution of expressior87)—(39) into (27) gives the ex- 240+ i
plicit form of the functionG for the case of large. ! \ 1
T 2104 i ]
D. Comparison of the mapping with numerical Q N=1 |/ APDn.i=APDy |
simulations of the ODE’s < 180 !
For a fixed value oBCL, consider iteration of16) with i APD;, = BOL - Dl |
G given by (27), where® and® ! are given by(38) and '/ i
(37), respectively. The functiorG is presented in Fig. 5 150 i
(thick solid lines for BCL=200 ms and\N=1 and 2. The ! ]
intersection of the graph @&(APD,,,N*BCL—APD,)) with |
. _ . . . . 120 —rt
theT diagonal APD, ;=APD, (so'l|d line) gives the fixed 120 150 180 210 240 270 300
points of the map. The dashed line,

APD,,

APD,=BCL- DIy, (40)
L . FIG. 5. Graph ofG(APD,,N*BCL—APD,) for the case of largex, for
indicates when the response switches frbi 1 to N=2 BCL=200ms, Dp=7ms, N=1 and 2. Values of other parameters are

response patterns, as we discuss below. given in Table I.
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FIG. 6. Bifurcation diagrams obtained from numerical simulations of the to t (msec)

FK model(squaresand iterated map for R}=20 ms, k= 40.
FIG. 7. Time evolution of inwardfast and slow currents and their sum for
the different initial values of the slow currertg) s,= 0.05; (b) s,=0.55; (c)
s,=0.95.

point (th,) than in the downsweep. Thus, an hysteresis loop
IS observ%d by changlng teCL from short to Ior.19 value.s crepancy between the predictions of the map and the ODE’s
and back® For some region oBCL, both stable 1:1 and 2:1 7 : o

X . : . - : . and will improve the map to achieve better quantitative
solutions exist. The existence of such bistability regions in

. S - agreement.

forced piecewise-linear Fitzhugh—Nagumo-type systems for
ign;dpf;:)ameter values was proved mathematically in Reffv THREE REEINEMENTS TO THE MAP

The points BCL,APD) in Fig. 6 computed from the In this section we discuss three refinements that achieve
map represent fixed points ¢6). For a point 8CL,APD) better quantitative agreement between the map and the
on the bifurcation diagram corresponding to B=1 re- model. The first refinement is based on the fact that the fast

sponse, sodium current is strongly coupled with the other currents in
the FK model and so the process of eliminating the fast cur-
BCL—APD>Dly; (41) rent should be re-examined. The second refinement deals

with an additional increase of the APD that occurs for the

case of 2:1 behavior due to the effect of subthreshold re-

sponse(see, for instance, Refs. 12, 21, and.22 the third

refinement we derive a map for the case of modekatee-

BCL—APD<Dly,. (42)  cause this parameter regime corresponds more closely to the
value used in the original FK model.

otherwise there would not be sufficient time for the cell to
respond to the next stimulus. Similarly, for ah=2 re-
sponse,

Since the parameter [pldoes not occur explicitly in the FK
model(it replaces the fast currentve have to introduce it in
the map by hand. Following4l), we choose the value of In deriving a simplified map from the FK model, we
Dly, in such a way that the jump from 1:1 to 2:1 solutions dropped the term that describes the fast sodium cutggt
during the map iteration takes place at the same poin) (th from Eg.(3), based on the fact that changes in the gate vari-
as happens according to numerical simulations of the Fkablef occur much faster than changes in the voltagend
model. gating variables. Actually, the fast gating variablé does
One can see from the graphs presented in the Fig. 6 thalecay to zero quicklysee Fig. 1, but surprisingly the fast
there is good qualitative agreement between the bifurcatiopurrent Js,i; may not decay as quickly. In Fig. 7, the time
diagrams obtained from the numerical simulation of theevolution ofJgy,, Jiast, @and their sum{based on numerical
original ODE’s and from the map iteratiofin particular, simulations of the FK modgis presented for different initial
both bifurcation diagrams exhibit bistability and have thevalues of the slow currentsf) starting a few msec after the
same qualitative shapeEven though the quantitative agree- stimulus arrived(let us call this time ag,). Note that the
ment is not perfect, this simplification still contains most of value of the fast current should already be negligitide-
the important physiological effects and should be useful forcauser;,<ty) according to our previous assumption. How-
explaining experimental results through adjustment of paever, as can be seen from Fig. 7, the value of the fast current
rameters. In Sec. IV, we will explain the reason for the dis-can still be significant depending on initial value of the slow

A. Elimination of the fast current re-examined
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currents,,. This occurs for the following reason: &, is 3401
suppressed, the voltage following stimulation falls faster 320 4
than otherwise, and as a result the voltage-dependent func- .
tion Q(v) in (4) is larger than otherwise, partially compen- 300
sating for the _decay df Indeed, although_the _valuesmgﬁ_ow —~ 280
and Js,q; are different in the three cases in Fig. 7, their sum §
has nearly the same initial value in all three cases, which is £ 260+
approximately equal td,ng, a 240-
o

Jsiow™ Jfast:‘]ung- (43 < 2904

This fact is a feature of the FK modé&ven though it is 200 1:1
not physiological, and we have to take it into account in .
order to achieve a full correspondence between the map and 1801
the model. Thus, we propose the following procedure to 160_' th, = numerical simulations
eliminate the fast current: we assume that instead of com- map

plete elimination of the fast currendfs=0) we keep part W +———
: : Py N 100 150 200 250 300 350 400

of it, which can be significant when~1 and the value of

the slow current is small. Following this logic, the expression BCL (msec)

for the fast .current that we retain can be found from Edsgg, 8. Bifurcation diagrams, similar to ones presented in the Fig. 6, for the
(4)—(7) and is taken as case when two refinements are taken into account during the map derivation

with »,=0.8p,=1.4, and{,=0.2.
f(tstim) Q(v) e _ f(tsim Q(v,t)

Ttast Ttast

Jias= — ~t/7fclose~ . (49

. . term, we assume tha®(v,t)/Qu=¢;=const, and write
In order to determind (ts;y), consider Eq(43) at the mo-  down empirically the total APR, ; calculated from Eq(47)

mentt, using Eqs.(4), (8), and(12), as
Qof(to)  Sps(te) 1 APDy 1= via;+vax+Ag, (49
+ - —=0, (45
Ttast Tslow  Tung wherev; and v, are constants chosen by hand for each

based on comparison with results of numerical simulations,

so that and the meaning of the terfy, will be explained in the next
1 Ss(to)] Trast section. We find thav; and v, do not change if other pa-
f(to)= - = (46)  rameters are changed.
Tung Tsiow | Qo

Thus, the results of our first refinement is that we have to
whereQ, and$S, are values of function®(v,t) andS(v) at ~ SOlve the equation

timety (Sy=1 because ~1). Here we used the approxima- do s, 1 s, 1
tion:  exd—to/Tiosd,  ©XH—to/Ticosd =1, Since tg a9 . Se Usclose §1(T—— T—) -——— 0
< Toglose Trelose- EQUAtion(3) can be rewritten usingt4) and stow ung  Tslow Tung
(46) and assuming thap=tg;,, So that instead of Egs(20) and use formuld49) to determine the
APD,, 1.
dv s,
—= S(l) ) e_t/TscIose— , (47)
dt  Tgow (v,Sn) B. Effect of subthreshold response: Comparison
where with results of numerical simulations of the FK model

_ We make a second refinement based on the fact that,
1 Qv,t)[ 1 Sh 1 following an ineffective stimulus, the APD is increased due
(v,S,) - Qo |\ Tung _) N Tng (48 {5 the subthreshold effect. This effect was described in Refs.
21 and 22, where the response of a modified Beeler—Reuter
Here, as befores, is the value ofs(t;y) at the arrival time  model to periodic stimulation by rectangular stimuli was
of the (n+1)st stimulus. Note that the only difference be- studied. Later, the subthreshold response was mentioned in
tween Egs(20) and(47) is that the parameter,,s from the  Ref. 12 where transitions from a 1:1 to a 2:1 rhythm in
first equation becomes a variabttv,s;) in the latter one.  periodically driven single ventricular cells were analyzed
The presence ob-dependent functions(v,s,) in Eq.  based on the LR1 model. When the 2:1 behavior occurs, only
(47) makes it impossible to solve analytically as was done inthe first stimulus is effective and produces an action poten-
Sec. lll for the simplified case. Hence, we must use othefial, and the second stimulus does not because it is applied
simplifications. Our analysis shows that the funct@(u,t) before the cell is fully recovered. However, the effect of the
does not play a crucial role in determining the APD; it only second stimulus on the APD is to prolong it due to the stimu-
prevents the fast current from decaying when there is nolus artifact. We have found from numerical simulations that
enough slow current. To avoid difficulties coming from this this additional increase of the APD for the case of 2:1 be-

Tung  Tslow,
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havior is approximately the same for any value of B€L. 2704
We take this effect into account adding constagtto the

expression49),

27 ms, N=2,
Ao= 0, N=1.

In Fig. 8, bifurcation diagrams similar to the ones from
Fig. 6 are presented. Here, the two refinements described
above are taken into account. One can see from the graphs
that there is good agreement, both qualitative and quantita-
tive, between these bifurcation diagrams: the slope of the
curves is similar and jump points thand th are nearly
equal.

(51) 240

210 1

APD (msec)

180 1

numerical simulations

thy ¥ .
. map

C. Derivation of the map for moderate & 150

100

T T T T 1
200 250 300 350 400

BCL (msec)

T
As we have mentioned, we can only find an explicit 150

formula for the functionG constituting our magl14) for the

case of largec. In general, the shape of this functiGwhich
is determined by the functio®) depends on the value af
(see Fig. 3 Typically, the value ofx used in the literature
(see, for instance, Ref.) 7s not so large £=10). Here we
present a map derived for the case of moderat€or this
purpose we approximat&(v) by a piecewise linear function,

av+pB if v>Vy,
SO=10 it vev,, 2
where
1 Vo
@ (53

:1_—\/0, ,3:—1_—\/0,

and V, is chosen by hand depending on value of thé&

order to achieve a better fit with the original shape of the

function S(v) (for instanceVy=0.7 for x=10).
Following the arrival of the if+ 1) st effective stimulus,
Eq. (47) becomes, according to approximatis),

Sn
av+ e~ U7sclose— if Vo<v<li,
dv _ ( A Tslow 7(Sp) 0
dt 1
e |f ch<v <V0,
Tung
(59

FIG. 9. Bifurcation diagrams obtained from the numerical simulations of the
FK model and iteration of the map witk=10, Dl,=10 ms, v;=1.35,
v,=1, and{,;=0.35.

B Tsclose, .
=% - — ~9%
C=¢%| 1+ @ (s, Ei[ggle 9|, (58
Ei[ z] is the exponential integral function,
0 e_t
Ei[z]=J’ —dt, (59
it
and
_ —a. _ Tsclose
g=goe 1'7scose  gg=as, . (60)
Tslow

Note thata; is now an implicit function ofs,, and can be
found only numerically, so that both the functiods and
® 1, and thus the functiorG representing the total map
(27), are implicit.

Figure 9 shows bifurcation diagrams for the case of
moderatex obtained from numerical simulations of the FK
model and iteration of the map. We see that these results are
in good agreement. Comparing Figs. 8 and 9, we see a small
difference between the bifurcation diagrams for different val-

which may be solved analytically. Similar to the case of largeues of the parametes; for the case of large the value of

x, we decompose the ARDR; given by Eq.(21) into the sum

the APD is larger when the 2:1 behavior takes place, and the

of two contributions coming from the two expressions inrange of theBCL where bistability occurs is wider. For in-

(54), so that Eq(32) [which is now written as Eq49)] is
valid with

ar=tl,oy,~tl-1,  @=tl,oy  ~tlov, (55

Solving (54), we can find expressions to determiag and
a,,

_ B Tsclose
= Ic— —
F(a;)=e °C > + 7(5)

Eifgle 9-V,=0, (56)

= 7'ung(VO —Veit)s (57)

stance, the jump from the upper to the lower branch)(for
moderatex occurs atBCL~250 ms with APD-255 ms,
and for largex atBCL~ 300 ms with APD-320 ms, respec-
tively. The slopes of the branches are also slightly different
for both cases.

V. CONCLUSIONS

In this paper, we apply asymptotic analysis to derive a
map from the Fenton—Karma ODE's that predict the re-
sponse of a cardiac cell to periodic external stimulation. The

whereC is the integral constant defined from the initial con- map has the general form ARD,=G(DI,,APD,), and

dition (18),

thus it contains some amount of memory due to its depen-
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