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The Fenton–Karma model is a simplification of complex ionic models of cardiac membrane that
reproduces quantitatively many of the characteristics of heart cells; its behavior is simple enough to
be understood analytically. In this paper, a map is derived that approximates the response of the
Fenton–Karma model to stimulation in zero spatial dimensions. This map contains some amount of
memory, describing the action potential duration as a function of the previous diastolic intervaland
the previous action potential duration. Results obtained from iteration of the map and numerical
simulations of the Fenton–Karma model are in good agreement. In particular, the iterated map
admits different types of solutions corresponding to various dynamical behavior of the cardiac cell,
such as 1:1 and 2:1 patterns. ©2002 American Institute of Physics.@DOI: 10.1063/1.1515170#
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Developing mathematical models that represent the dy-
namics of a cardiac cell is important for understanding
life-threatening diseases such as ventricular fibrillation
„often the cause of sudden cardiac death… and developing
therapies for cardiac disease. One approach for modeling
the electrical activity of a cardiac cell is to incorporate all
known details, such as changes in ionic concentration
and mechanisms that regulate the in- and efflux of ions
through the cell membrane. Unfortunately, such detailed
models often defy simple mathematical analysis. Another
approach is to devise simplified mathematical models
that incorporate what is hoped to be the essential ele
ments of the more complex ionic-based models. One suc
model of the cardiac membrane is a set of ordinary dif-
ferential equations that keeps track of the transmem-
brane voltage and three ionic currents as proposed re-
cently by Fenton and Karma. We have investigated the
Fenton–Karma model using a multiscale analysis tech-
nique and find that the cell dynamics can be represented
under some conditions by a mathematical mapping that
relates the current duration of an action potential to the
duration of the preceding one and the preceding diastolic
interval. Such an analysis should simplify fitting the
model to experimental observations and lead to new
predictions.

I. INTRODUCTION

Control of complexity in the heart has been the focus
recent research on spatiotemporal complexity in dynam
1031054-1500/2002/12(4)/1034/9/$19.00
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systems. In order to optimally control the electrical activ
of the heart, it is important to understand its dynamical pro
erties. Ionic models describing the electrical activity of t
cardiac cell1–4 are becoming more and more complex. The
models characterize the total current flowing through
membrane by combining various membrane currents
tained in voltage-clamp or patch-clamp experiments. For
stance, the model described in Ref. 4, which is based on
from mammalian cardiac cells, consists of 12 currents. T
complexity of these models makes it difficult to analyze
sults and to carry out two- and three-dimensional simu
tions.

There have been several simple nonionic models p
posed to represent cardiac tissue~see, for instance, Refs.
and 6!, but they do not encompass as many aspects of h
dynamics as do the ionic models. The Fenton–Karma~FK!
ionic model7 is a simplification of the Luo–Rudy I~LR1!
model of the cardiac membrane2 that reproduces quantita
tively much of the behavior of the full model. The FK mod
contains three currents, loosely corresponding to sodi
calcium, and potassium. It is complex enough to exh
many of the characteristics of heart cells, yet is sim
enough that much of its behavior can be understood ana
cally. Analytical insight is important because, for example
will guide the selection of the many parameters that need
be adjusted in fitting the model to experiments.

One tool for analyzing results obtained from numeric
simulations of ionic models or experiments is to use a fin
difference equation or map.8 This allows a reduced descrip
tion of the trajectory of the ordinary differential equatio
4 © 2002 American Institute of Physics
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~ODE! by a single number, the action potential durati
~APD!. Usually, following the pioneering conceptual found
tion put forth by Mines,9 maps describing localized cardia
dynamics relate the APD to the previous diastolic inter
~DI! through a restitution function,

APDn115F~DIn!. ~1!

Such a simple mapping model was proposed in Ref. 10
later generalized in Refs. 11–14.@A restitution mapping of
the form ~1! was obtained in Ref. 14 in a similar spirit; se
also Ref. 15 for a more detailed treatment.#

A more complex model, which includes a phenomen
logical memory term describing the long-term evolution
tissue properties, was developed and analyzed by Otani
Gilmour16 to describe a series of experiments on pac
Purkinje fibers.17 Their model differs from previous model
in that the APD is a function of two variables,

APDn115G~DIn ,APDn!. ~2!

@In one sense the memory in~2! is a not-at-all long term:
APDn11 depends on no information prior to the previo
action potential. However, under periodic stimulation~see
Sec. III!, this mapping, or even~1!, can exhibit a long-term-
memory effect: if the basic cycle length is changed, it m
happen that many stimuli are required before the sys
settles into a new steady-state.#

In this paper we apply multiscale analysis to the F
ionic model to derive a restitution mapping with memory
the form proposed by Otani and Gilmour given by Eq.~2!.
Thus, this paper strengthens the foundation of their mo
which had been purely empirical.

The paper is organized in the following way. In Sec.
we introduce the FK model describing the cardiac cell
sponse to periodic stimulation in zero spatial dimensions~a
set of coupled ODE’s!. In Sec. III we derive a simplified map
and show that results obtained from numerical simulation
the FK model and from iteration of the map are in reasona
agreement. In Sec. IV we make three refinements of the
in order to achieve better agreement between these res
Section V presents conclusions.

II. THE FENTON–KARMA MODEL

The Fenton–Karma ionic model7 contains three vari-
ables: the transmembrane potentialv ~nondimensionalized so
that v50 andv51 are the rest and peak voltages, resp
tively! and two gating variablesf and s ~mnemonics:f for
the fast,s for the slow!. The voltage changes in response
the ionic currents according to the relation,

dv
dt

52~Jfast1Jslow1Jung1Jstim!. ~3!

The fast inward currentJfast has the form,

Jfast52 f Q~v !/t fast, ~4!

wheret fast is a characteristic time for this current, the volta
dependenceQ(v) is given by

Q~v !5H ~v2Vcrit!~12v ! if v.Vcrit,

0 if v,Vcrit,
~5!
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and the gating variablef evolves according to

d f

dt
5@ f `~v !2 f #/t f~v !. ~6!

The voltage-dependent functions on the right-hand side
Eq. ~6! are step functions given by

f `~v !50 and t f~v !5t f close if v.Vf gate,

f `~v !51 and t f~v !5t f open if v,Vf gate.
~7!

Similarly, the slow inward current has the form,

Jslow52sS~v !/tslow, ~8!

where the sigmoid functionS(v) is given by

S~v !5$11tanh@k~v2Vsig!#%/2, ~9!

and the gate variables is governed by

ds

dt
5@s`~v !2s#/ts~v !, ~10!

with the right-hand side defined by

s`~v !50 and ts~v !5tsclose if v.Vsgate,

s`~v !51 and ts~v !5tsopen if v,Vsgate.
~11!

The ungated current has the form

Jung5P~v !/tung, ~12!

where the piecewise-linear voltage dependence is given

P~v !5H 1 if v.Vout,

v/Vout if v,Vout.
~13!

@Our formula forP(v) differs slightly from Fenton–Karma
By allowing the behavior ofP to change atVoutÞVcrit , we
are able to makeP continuous without changing the beha
ior of the model significantly.#

The stimulus currentJstim is an external current applie
by the experimenter. Typically,Jstim(t) consists of a periodic
train of brief pulses~with duration of 1 ms!, each of approxi-
mately twice the strength required to excite fully recover
tissue. ~In our units, the amplitude of each stimulus
0.2 ms21, so that the stimulus by itself, would raise the no
dimensionless voltage by 0.2.! The currentsJfast, Jslow, and
Jung may be identified with sodium, calcium, and potassiu
currents, respectively. Table I lists the values of the para
eters used by Fenton and Karma; we use these values in
calculations unless otherwise stated.

III. DERIVATION OF A SIMPLIFIED MAP FOR LARGE k

In this section we consider periodic stimulation of th
FK model. LetBCL denote the pacing interval, and let AP
denote the time needed for the cell to repolarize after stim
lation. We shall show that, with some approximation, t
(n11)st APD is a function of the previous APD and dia
tolic interval, i.e.,

APDn115G~APDn ,DIn!. ~14!

This formula has the same form as the empirical model
veloped in Refs. 16 and 17.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1036 Chaos, Vol. 12, No. 4, 2002 Tolkacheva et al.
If every stimulus produces an action potential, Dn

5BCL2APDn , and ~14! can be rewritten expressin
APDn11 as a function of APDn and the parameterBCL as

APDn115G~APDn ,BCL2APDn!. ~15!

More generally, if everyNth stimulus produces an actio
potential~an N:1 response!, then~14! can be rewritten as

APDn115G~APDn ,N* BCL2APDn!. ~16!

We shall call stimuli that actually produce an action poten
effective. After an effective stimulus is applied, the tissu
needs a certain time (DIth) to be fully recovered. If the nex
stimulus is applied before DIth , it will not produce an action
potential; typically, one response occurs for every t
stimuli ~2:1 behavior!.

A. Elimination of the fast current

Figure 1 shows the temporal evolution of the voltagev
and the gating variablesf and s according to numerica
simulations of the FK model under periodic stimulation
BCL5700 ms. It can be seen from the graphs that chan
in the fast gating variablef occur much faster than change
in the voltagev and the gating variables. Therefore, to
simplify the model, we suppose that the fast current sim
raises the voltage to the valuev51 following an effective
stimulus. This upstroke occurs so quickly thats does not
changes appreciably, and after this upstrokeJfast vanishes
until the next~effective! stimulus. In this approximation we
need to consider only the motion in the (s,v) plane~see Fig.
2!.

During the time whileVcrit,v,1 following the arrival
of a stimulus att5tstim, Eq. ~3! reduces to

dv
dt

5
s~ t !

tslow
S~v !2

1

tung
, ~17!

with initial conditions

v~ tstim!51. ~18!

Assuming without loss of generality thattstim50 the solution
of ~10! during this time is

s~ t !5s~0!e2t/tsclose; ~19!

substitution of~19! into ~17! yields,

dv
dt

5
s~0!

tslow
S~v !e2t/tsclose2

1

tung
. ~20!

TABLE I. Parameters and their typical values for the Fenton–Karma th
current ionic model.~* ! means that these parameters will be eliminat
during the derivation of the map and the additional parameter DIth will take
their place.

Parameter Value~ms! Parameter Value (dim8less)

~* ! t fast 0.25 Vcrit 0.13
tslow 127 Vsig 0.85
tung 130 k 10

~* ! t f close 10 Vout 0.1
~* ! t f open 18 Vf gate Vcrit

tsclose 1000 Vsgate Vcrit

tsopen 80
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The action potential produced by the stimulus has durati

APD5tuv5Vcrit
2tstim, ~21!

obtained by solving Eq.~20! with the initial condition~18!.
Thus, the APD is a function ofs(tstim),

APD5F@s~ tstim!#. ~22!

In the context of periodic stimulation, as shown in Fi
1, let sn be the value ofs at the time the (n11)st effective

FIG. 1. Temporal evolution of~a! the voltagev, and gating variables~b! f ,
and ~c! s, according to numerical simulations of the FK model withBCL
5700 ms. The arrows correspond to the times at which stimuli are app

FIG. 2. Trajectory of the ODE’s in the (s,v)-plane according to the FK
model for the caseBCL5700 ms.

-
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1037Chaos, Vol. 12, No. 4, 2002 Analysis of the Fenton–Karma model
stimulus arrives, and let APDn11 be the duration of the (n
11)st action potential. Rewriting~22! in this notation we
obtain

APDn115F~sn!. ~23!

In general, there is no explicit formula for the functionF.
Numerical computations of this function are graphed in F
3 for two different values of the parameterk. ~In Sec. III C
we shall derive an approximate formula forF under the hy-
pothesis thatk is large.!

We claim that

sn512~12sn21* !e2DI n /tsopen, ~24!

where

sn21* 5sn21e2APDn /tsclose. ~25!

Indeed,~25! results from solving~10! from the arrival of the
nth stimulus untilv5Vcrit , and~24! results from continuing
the solution of~10! from the time whenv5Vcrit until the
next ~effective! stimulus. Replacingn by (n21) in ~23! and
inverting the functionF, we may rewrite~25! as

sn21* 5F21~APDn!e2APDn /tsclose. ~26!

Substituting~24! and ~26! into ~23!, we obtain~14! with

G~APDn ,DIn!5F~12@12F21~APDn!e2APDn /tsclose#

3e2DIn /tsopen!. ~27!

Thus, expression~27! represents our main result, i.e., th
map derived on the basis of the FK model. This map has
same form as the one obtained empirically by Otani a
Gilmour in Ref. 16 using a memory model.

FIG. 3. Shape of the functionF(sn) from Eq. ~23! according to the FK
model for two values of the parameterk.
Downloaded 18 Nov 2002 to 152.3.25.60. Redistribution subject to AIP 
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B. Comparison with the two-current ionic model

As an aside, we note that a restitution map of the simp
form ~1! was derived by Karma.14 As elaborated in Ref. 15
one obtains

G~DIn!5tcloselnS 12~12smin!e
2DIn /tsopen

smin
D , ~28!

wheresmin is a constant. Comparing~28! with ~27! we can
see that the simplification

F21~APDn!e2APDn /tsclose5smin ~29!

occurs. Thus,~28! gives a restitution map of the familia
form that depends on the previous DI but not the previo
APD. Also note that whileF in Fig. 3 obtained from the
three-current model is convexupward, ~28! is convexdown-
ward. Therefore, there is not any parameter region in wh
the three-current model reduces to the two-current mode

C. Approximation for large k

As noted above,~20! cannot be solved analytically with
S(v) given by ~9!, preventing us from obtaining an explic
formula forF in general. In Fig. 4 we have graphedS(v) for
two values of the parameterk, the original value chosen by
Fenton and Karma (k510) and a large valuek540. In this
subsection, assuming thatk is large, we approximateS(v)
by a step function,

S~v !5H 1 if v.Vsig,

0 if v,Vsig,
~30!

and then solve~20! analytically.~In Sec. IV C below we will
consider moderatek.!

Following the arrival of the (n11)st effective stimulus
Eq. ~20! becomes, using approximation~30!,

FIG. 4. Form of the functionS(v) given by ~9! for two values of the
parameterk.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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dv
dt

5H sn

tslow
e2t/tsclose2

1

tung
if Vsig,v,1,

2
1

tung
if Vcrit,v,Vsig,

~31!

which may be solved analytically. We decompose
APDn11 given by Eq.~21! into the sum of two contributions
coming from the two alternatives in~31!,

APDn11[F~sn!5a11a2 , ~32!

where

a15tuv5Vsig
2tuv51 , a25tuv5Vcrit

2tuv5Vsig
. ~33!
th

e
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Solving ~31!, we see thata1 anda2 satisfy

sntsclose

tslow
~e2a1 /tsclose21!1

a1

tung
211Vsig50, ~34!

a25tung~Vsig2Vcrit!. ~35!

A formula for the inverse functionF21 of ~23! can be
obtained without further approximation. By~32! and ~35!,

a15APDn112tung~Vsig2Vcrit!; ~36!

substituting this into~34!, replacingn by n21 and solving
for sn21 we obtain
sn21[F21~APDn!5

APDn

tung
2~12Vcrit!

12exp$@2APDn1tung~Vsig2Vcrit!#/tsclose%

tslow

tsclose
. ~37!
m

the
this

mp
nt

re
To derive a formula for the functionF itself, we need to
make an additional approximation based on the fact
tsclose, which appears in the exponent in~37!, is much larger
than any of the other quantities in the model. Thus, we us
power series expansion of exp@2z#.12z1z2/21O(z3),
wherez[a1 /tsclose!1, which allows us to rewrite~37! as a
quadratic equation for the APDn11 and obtain

APDn115F~sn!5tscloseFC12
tslow

tungsn

1A12
C2

sn
1S tslow

tungsn
D 2G , ~38!

where

C1511
tung

tsclose
~Vsig2Vcrit!,

C252tslowF 1

tung
1

~Vsig21!

tsclose
G . ~39!

Substitution of expressions~37!–~39! into ~27! gives the ex-
plicit form of the functionG for the case of largek.

D. Comparison of the mapping with numerical
simulations of the ODE’s

For a fixed value ofBCL, consider iteration of~16! with
G given by ~27!, whereF and F21 are given by~38! and
~37!, respectively. The functionG is presented in Fig. 5
~thick solid lines! for BCL5200 ms andN51 and 2. The
intersection of the graph ofG(APDn ,N* BCL2APDn) with
the diagonal APDn115APDn ~solid line! gives the fixed
points of the map. The dashed line,

APDn5BCL2DIth ~40!

indicates when the response switches fromN51 to N52
response patterns, as we discuss below.
at

a

In Fig. 6 we show bifurcation diagrams obtained fro
~16! and from numerical simulation of the ODE’s withk
540. For the ODE’s, we start from a very longBCL, apply
at least 100 stimuli~in order to eliminate transients!, and
record the APD resulting from the last; then we decrease
BCL by 2 ms and repeat the procedure. We continue
procedure down to a small value ofBCL. As shown in the
Fig. 6, at sufficiently smallBCL, the system jumps from an
N51 response to anN52 response~denoted by th1). After
this downsweep ofBCL, we start from a shortBCL and
increaseBCL on each step obtaining an upsweep. The ju
from N52 response toN51 response occurs at a differe

FIG. 5. Graph ofG(APDn ,N* BCL2APDn) for the case of largek, for
BCL5200 ms, DIth57 ms, N51 and 2. Values of other parameters a
given in Table I.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1039Chaos, Vol. 12, No. 4, 2002 Analysis of the Fenton–Karma model
point (th2) than in the downsweep. Thus, an hysteresis lo
is observed by changing theBCL from short to long values
and back.18 For some region ofBCL, both stable 1:1 and 2:1
solutions exist. The existence of such bistability regions
forced piecewise-linear Fitzhugh–Nagumo-type systems
some parameter values was proved mathematically in R
19 and 20.

The points (BCL,APD) in Fig. 6 computed from the
map represent fixed points of~16!. For a point (BCL,APD)
on the bifurcation diagram corresponding to anN51 re-
sponse,

BCL2APD.DIth ; ~41!

otherwise there would not be sufficient time for the cell
respond to the next stimulus. Similarly, for anN52 re-
sponse,

BCL2APD,DIth . ~42!

Since the parameter DIth does not occur explicitly in the FK
model~it replaces the fast current!, we have to introduce it in
the map by hand. Following~41!, we choose the value o
DIth in such a way that the jump from 1:1 to 2:1 solutio
during the map iteration takes place at the same point (1)
as happens according to numerical simulations of the
model.

One can see from the graphs presented in the Fig. 6
there is good qualitative agreement between the bifurca
diagrams obtained from the numerical simulation of t
original ODE’s and from the map iteration~in particular,
both bifurcation diagrams exhibit bistability and have t
same qualitative shape!. Even though the quantitative agre
ment is not perfect, this simplification still contains most
the important physiological effects and should be useful
explaining experimental results through adjustment of
rameters. In Sec. IV, we will explain the reason for the d

FIG. 6. Bifurcation diagrams obtained from numerical simulations of
FK model ~squares! and iterated map for DIth520 ms,k540.
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crepancy between the predictions of the map and the OD
and will improve the map to achieve better quantitati
agreement.

IV. THREE REFINEMENTS TO THE MAP

In this section we discuss three refinements that ach
better quantitative agreement between the map and
model. The first refinement is based on the fact that the
sodium current is strongly coupled with the other currents
the FK model and so the process of eliminating the fast c
rent should be re-examined. The second refinement d
with an additional increase of the APD that occurs for t
case of 2:1 behavior due to the effect of subthreshold
sponse~see, for instance, Refs. 12, 21, and 22!. In the third
refinement we derive a map for the case of moderatek, be-
cause this parameter regime corresponds more closely to
value used in the original FK model.

A. Elimination of the fast current re-examined

In deriving a simplified map from the FK model, w
dropped the term that describes the fast sodium currentJfast

from Eq. ~3!, based on the fact that changes in the gate v
able f occur much faster than changes in the voltagev and
gating variables. Actually, the fast gating variablef does
decay to zero quickly~see Fig. 1!, but surprisingly the fast
current Jfast may not decay as quickly. In Fig. 7, the tim
evolution ofJslow, Jfast, and their sum~based on numerica
simulations of the FK model! is presented for different initia
values of the slow current (sn) starting a few msec after th
stimulus arrived~let us call this time ast0). Note that the
value of the fast current should already be negligible~be-
causet fast!t0) according to our previous assumption. How
ever, as can be seen from Fig. 7, the value of the fast cur
can still be significant depending on initial value of the slo

FIG. 7. Time evolution of inward~fast and slow! currents and their sum for
the different initial values of the slow current:~a! sn50.05; ~b! sn50.55; ~c!
sn50.95.
license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1040 Chaos, Vol. 12, No. 4, 2002 Tolkacheva et al.
currentsn . This occurs for the following reason: ifJslow is
suppressed, the voltage following stimulation falls fas
than otherwise, and as a result the voltage-dependent f
tion Q(v) in ~4! is larger than otherwise, partially compe
sating for the decay off . Indeed, although the values ofJslow

andJfast are different in the three cases in Fig. 7, their su
has nearly the same initial value in all three cases, whic
approximately equal toJung,

Jslow1Jfast.Jung. ~43!

This fact is a feature of the FK model~even though it is
not physiological!, and we have to take it into account
order to achieve a full correspondence between the map
the model. Thus, we propose the following procedure
eliminate the fast current: we assume that instead of c
plete elimination of the fast current (Jfast50) we keep part
of it, which can be significant whenv;1 and the value of
the slow current is small. Following this logic, the express
for the fast current that we retain can be found from E
~4!–~7! and is taken as

Jfast52
f ~ tstim!Q~v !

t fast
e2t/t f close.2

f ~ tstim!Q̃~v,t !

t fast
. ~44!

In order to determinef (tstim), consider Eq.~43! at the mo-
ment t0 using Eqs.~4!, ~8!, and~12!,

Q0f ~ t0!

t fast
1

S0s~ t0!

tslow
2

1

tung
.0, ~45!

so that

f ~ t0!5F 1

tung
2

S0s~ t0!

tslow
G t fast

Q0
, ~46!

whereQ0 andS0 are values of functionsQ̃(v,t) andS(v) at
time t0 (S0.1 becausev;1). Here we used the approxima
tion: exp@2t0 /tsclose#, exp@2t0 /tfclose#'1, since t0

!tsclose,t f close. Equation~3! can be rewritten using~44! and
~46! and assuming thatt0.tstim, so that

dv
dt

5
sn

tslow
S~v !e2t/tsclose2

1

t~v,sn!
, ~47!

where

1

t~v,sn!
5

Q̃~v,t !

Q0
S 1

tung
2

sn

tslow
D2

1

tung
. ~48!

Here, as before,sn is the value ofs(tstim) at the arrival time
of the (n11)st stimulus. Note that the only difference b
tween Eqs.~20! and~47! is that the parametertung from the
first equation becomes a variablet(v,sn) in the latter one.

The presence ofv-dependent functionst(v,sn) in Eq.
~47! makes it impossible to solve analytically as was done
Sec. III for the simplified case. Hence, we must use ot
simplifications. Our analysis shows that the functionQ̃(v,t)
does not play a crucial role in determining the APD; it on
prevents the fast current from decaying when there is
enough slow current. To avoid difficulties coming from th
Downloaded 18 Nov 2002 to 152.3.25.60. Redistribution subject to AIP 
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term, we assume thatQ̃(v,t)/Q0[z15const, and write
down empirically the total APDn11 calculated from Eq.~47!
as

APDn115n1a11n2a21A0 , ~49!

wheren1 and n2 are constants chosen by hand for eachk,
based on comparison with results of numerical simulatio
and the meaning of the termA0 will be explained in the next
section. We find thatn1 and n2 do not change if other pa
rameters are changed.

Thus, the results of our first refinement is that we have
solve the equation

dv
dt

5
sn

tslow
S~v !e2t/tsclose1z1S 1

tung
2

sn

tslow
D2

1

tung
~50!

instead of Eqs.~20! and use formula~49! to determine the
APDn11 .

B. Effect of subthreshold response: Comparison
with results of numerical simulations of the FK model

We make a second refinement based on the fact t
following an ineffective stimulus, the APD is increased d
to the subthreshold effect. This effect was described in R
21 and 22, where the response of a modified Beeler–Re
model to periodic stimulation by rectangular stimuli w
studied. Later, the subthreshold response was mentione
Ref. 12 where transitions from a 1:1 to a 2:1 rhythm
periodically driven single ventricular cells were analyz
based on the LR1 model. When the 2:1 behavior occurs, o
the first stimulus is effective and produces an action pot
tial, and the second stimulus does not because it is app
before the cell is fully recovered. However, the effect of t
second stimulus on the APD is to prolong it due to the stim
lus artifact. We have found from numerical simulations th
this additional increase of the APD for the case of 2:1 b

FIG. 8. Bifurcation diagrams, similar to ones presented in the Fig. 6, for
case when two refinements are taken into account during the map deriv
with n150.8,n251.4, andz150.2.
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havior is approximately the same for any value of theBCL.
We take this effect into account adding constantA0 to the
expression~49!,

A05H 27 ms, N52,

0, N51.
~51!

In Fig. 8, bifurcation diagrams similar to the ones fro
Fig. 6 are presented. Here, the two refinements descr
above are taken into account. One can see from the gr
that there is good agreement, both qualitative and quan
tive, between these bifurcation diagrams: the slope of
curves is similar and jump points th1 and th2 are nearly
equal.

C. Derivation of the map for moderate k

As we have mentioned, we can only find an expli
formula for the functionG constituting our map~14! for the
case of largek. In general, the shape of this function~which
is determined by the functionF! depends on the value ofk
~see Fig. 3!. Typically, the value ofk used in the literature
~see, for instance, Ref. 7! is not so large (k.10). Here we
present a map derived for the case of moderatek. For this
purpose we approximateS(v) by a piecewise linear function

S~v !5H av1b if v.V0 ,

0 if v,V0 ,
~52!

where

a5
1

12V0
, b52

V0

12V0
, ~53!

and V0 is chosen by hand depending on value of thek in
order to achieve a better fit with the original shape of
function S(v) ~for instance,V050.7 for k510).

Following the arrival of the (n11)st effective stimulus,
Eq. ~47! becomes, according to approximation~52!,

dv
dt

5H ~av1b!
sn

tslow
e2t/tsclose2

1

t~sn!
if V0,v,1,

2
1

tung
if Vcrit,v,V0 ,

~54!

which may be solved analytically. Similar to the case of la
k, we decompose the APDn11 given by Eq.~21! into the sum
of two contributions coming from the two expressions
~54!, so that Eq.~32! @which is now written as Eq.~49!# is
valid with

a15tuv5V0
2tuv51 , a25tuv5Vcrit

2tuv5V0
. ~55!

Solving ~54!, we can find expressions to determinea1 and
a2 ,

F~a1![e2gC2
b

a
1

tsclose

t~sn!
Ei@g#e2g2V050, ~56!

a25tung~V02Vcrit!, ~57!

whereC is the integral constant defined from the initial co
dition ~18!,
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C5eg0F11
b

a
2

tsclose

t~sn!
Ei@g0#e2g0G , ~58!

Ei@z# is the exponential integral function,

Ei@z#5E
2z

` e2t

t
dt, ~59!

and

g5g0e2a1 /tsclose, g05asn

tsclose

tslow
. ~60!

Note thata1 is now an implicit function ofsn and can be
found only numerically, so that both the functionsF and
F21, and thus the functionG representing the total ma
~27!, are implicit.

Figure 9 shows bifurcation diagrams for the case
moderatek obtained from numerical simulations of the F
model and iteration of the map. We see that these results
in good agreement. Comparing Figs. 8 and 9, we see a s
difference between the bifurcation diagrams for different v
ues of the parameterk; for the case of largek the value of
the APD is larger when the 2:1 behavior takes place, and
range of theBCL where bistability occurs is wider. For in
stance, the jump from the upper to the lower branch (th2) for
moderatek occurs atBCL;250 ms with APD;255 ms,
and for largek atBCL;300 ms with APD;320 ms, respec-
tively. The slopes of the branches are also slightly differ
for both cases.

V. CONCLUSIONS

In this paper, we apply asymptotic analysis to derive
map from the Fenton–Karma ODE’s that predict the
sponse of a cardiac cell to periodic external stimulation. T
map has the general form APDn115G(DIn ,APDn), and
thus it contains some amount of memory due to its dep

FIG. 9. Bifurcation diagrams obtained from the numerical simulations of
FK model and iteration of the map withk510, DIth510 ms, n151.35,
n251, andz150.35.
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dence on two variables. Our work places the empirical p
posal of Otani and Gilmore,16 who put forth a map of the
same general form, on a rigorous mathematical founda
~although the specific functionG is different in their pro-
posal!. We find that the agreement between the prediction
the Fenton–Karma ODE’s and the map are in good ag
ment when the model parameterk is large, and we describ
various refinements to the map, including one that extend
useful range to moderate values ofk.

We believe the simplified map will be helpful in fittin
the FK model to experimental data. One may employ a tw
stage procedure: first choosing parameters in the map to
tain a rough fit to the data, and then refining the fit us
numerical simulations of the ODE’s. Application of this pr
cedure to the experiments18 will be published elsewhere. In
that paper we will also document a property of the model
derived in this paper, i.e., the model displays rate-depen
restitution, and hence the dynamic andS1 –S2 restitution
curves are different.
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