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Abstract. We study the improvement in timing accuracy in a neural system having n identical input neurons
projecting to one target neuron. The n input neurons receive the same stimulus but fire at stochastic times selected
from one of four specified probability densities, f , each with standard deviation 1.0 msec. The target cell fires if
and when it receives m inputs within a time window of ε msec. Let σn,m,ε denote the standard deviation of the time
of firing of the target neuron (i.e. the standard deviation of the target neuron’s latency relative to the arrival time
of the stimulus). Mathematical analysis shows that σn,m,ε is a very complicated function of n, m, and ε. Typically,
σn,m,ε is a non-monotone function of m and ε and the improvement of timing accuracy is highly dependent of the
shape of the probability density for the time of firing of the input neurons. For appropriate choices of m, ε, and f ,
the standard deviation σn,m,ε may be as low as 1

n . Thus, depending on these variables, remarkable improvements in
timing accuracy of such a stochastic system may occur.
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A fundamental problem in neurobiology is to under-
stand how the central nervous system (CNS) performs
accurate calculations with components (i.e. neurons)
whose properties vary in time, and from cell to cell,
and which give variable responses under repeated tri-
als. Local noise would compromise the information
processing capabilities of successive levels of the CNS
unless strong compensatory mechanisms were in place.
Therefore, situations in which experimental evidence
shows that information is sharpened as it progresses
inward from the periphery to the CNS are particularly
interesting for they may provide clues about such com-
pensatory mechanisms.

A particularly striking example of increasing accu-
racy as one proceeds into the CNS from the periph-
ery in the auditory system was discovered by Covey
and Casseday (1991). Neurons in the auditory nerve
(AN) synapse on cells in the cochlear nucleus (CN)
and certain cells in the CN, notably octopus cells, send
projections to cells in the columnar region of the ven-
tral nucleus of the lateral lemniscus (VNLLc). Covey
and Casseday discovered that in bats these VNLLc
cells fire a single action potential in response to sound
stimulation with a precise latency; the standard devi-
ation of this latency under repeated trials is typically
about 100 microseconds and in some cases as low as
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30 microseconds. This is remarkable because in the AN
of mammals typical standard deviations for latency un-
der repeated trials in a single fiber are approximately
1 msec. Oertel and co-workers (Oertel, 1999; Oertel
et al., 2000) have proposed that much of this improve-
ment in accuracy is created by coincidence detection
by octopus cells of incoming signals from converging
AN fibers.

Timing and coincidence detection have long been
studied in the auditory system. For example, coinci-
dence detection appears to be a mechanism used by
brainstem nuclei in mammals and birds to determine
azimuthal sound location based on time or phase dif-
ference (Jeffress, 1948; Irvine, 1986; Colburn et al.,
1990; Agmon-Snir et al., 1998) and bats show behav-
ioral responses to exceptionally small binaural timing
differences (Simmons et al., 1990; Pollak, 1993). In ad-
dition to the auditory system, timing and coincidence
detection are important in a wide variety of other CNS
systems. For example, it has been proposed that certain
“binding” mechanisms in the visual system depend on
timing and coincidence detection (Konig et al., 1996).
Matell and Meck (2000) have suggested that the basal
ganglia acts as a coincidence detector of cortical and
thalamic inputs. Bilateral timing mechanisms are also
involved in the improvement of coordination of motor
systems in the cerebellum(Ivry, 1997). On these longer
time scales the “signals” may be volleys of action po-
tentials and the target may be a nucleus or subdivision
thereof.

For many years, synchronous firing of groups of neu-
rons has been proposed as the mechanism by which sen-
sory patterns are represented in the cortex. One mech-
anism by which stable patterns of synchronous firing
could be created is the synfire chain model introduced
by Abeles (1991) and further developed by Aertsen,
Diesmann, and others (see, for example: Riehle et al.,
1997; Diesmann et al., 1999, 2001; Gewaltig et al.,
2001). These investigators have shown that if the num-
ber of firing neurons is large enough and the initial
standard deviation of firing times is small enough, then
stable propagation is possible. We investigate here the
improvement of the standard deviation of spike timing
at a single target neuron which receives convergent in-
put. Thus we are continuing the line of investigation in
Marsalek et al. (1997). Detailed understanding of the
improvement of the standard deviation for firing times
at single neurons will be of value for understanding
the properties of synfire chains using less restrictive
hypotheses.

Figure 1. The connectional pattern. n input neurons, whose
stochastic times of firing are selected from the probability density,
f, project to a target cell. The probability density for the firing time
of the target cell is gn,m,ε (t).

We shall study the mathematical properties of coin-
cidence detection in a highly simplified neural system.
Consider the network shown in Fig. 1. There are n iden-
tical input neurons stimulated at the same time. Each
responds by sending a single spike to the target neu-
ron at a random time t with standard deviation s. The
random times are drawn from one of four probability
densities: uniform, normal, exponential, and hat. We
assume that the target neuron fires one spike (if it fires
at all) the first time it receives m spikes in the preceed-
ing ε milliseconds. Let σn,m,ε denote the standard devi-
ation of the time of firing of the target cell. If σn,m,ε is
smaller than s, then the accuracy of the time of firing of
the target cell has improved compared to the accuracy
of its inputs. We want to investigate several specific
questions. For example, does requiring more hits (i.e.
increasing m) make firing more accurate? Does making
the time window, ε, smaller increase accuracy? We re-
port in this study the behavior of σn,m,ε as a function of
n, m, and ε. As we will see below, some of the answers
are surprising.

There are good physiological reasons for consider-
ing different initial probability densities. Though it is
natural to assume a normal distribution, or a uniform
distribution (for ease of computation), the latency dis-
tribution in auditory nerve fibers, for example, is close
to exponential (Young et al., 1988; Yin, personal com-
munication). Actual physiological probability densities
are created by many different phenomena, for example,
membrane variability, dendritic geometry, and synapse
distribution (Softky, 1994; Agmon-Snir et al., 1998;
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Segev and London, 2000), and will have many differ-
ent forms depending on these physiological variables.
As we shall see, the form of the initial probability den-
sity has a strong effect on the accuracy of the time of
firing of the target cell.

A scaling law allows one to relate the values of
σn,m,ε for different values of s. Suppose that f (t) is
a probability density with standard deviation s. Then
fs(t) ≡ s f (st) is also a probability density and its stan-
dard deviation is 1. If we make explicit the depen-
dence of the standard deviation of the time of firing
of the target cell on the incoming density by writing
σn,m,ε, f , then a relatively straightforward calculation
(see Mitchell, 2003) shows that,

σn,m,ε, f = sσn,m, ε
s , fs (1)

Thus, the standard deviation of the output for a density
f with s �= 1 can be computed in terms of the standard
deviation of the output for a scaled density with s = 1
by scaling the size of the time window and using the
above formula.

Obviously, the mathematical question briefly out-
lined above is highly simplified compared to the com-
plexity of real neural systems. By using a time-window
rule of firing we ignore the detailed biophysics of the
post-synaptic membrane and we ignore the possibility
of direct inhibitory inputs. Nevertheless, the probabilis-
tic and combinatorial phenomena that we investigate in
this paper are necessarily embedded in models in which
the geometry of the dendritic tree and biophysics of
membranes are taken into account. In such more real-
istic models, however, the non-linear dynamic behavior
and large number of parameters would make the math-
ematical questions treated here difficult to understand.
Therefore, in this paper we have concentrated solely
on the probabilistic and combinatorial issues.

1. Methods

In this section we give a formal description of the math-
ematical question corresponding to the neurobiological
situation pictured in Fig. 1. We assume that each of the
n input neurons reacts independently to an input sig-
nal, e.g. sound stimulation, by firing a single action
potential. The firing time, ti , of the i th input neuron
is found by selecting randomly and independently for
each input neuron from a probability density f . We as-
sume that the travel times along the axons of the input
neurons are identical, so the action potentials arrive at

the target neuron (after a time delay d) at times d + ti .
The target cell is assumed to fire at the first time at
which it receives m action potentials in the previous ε

milliseconds. Note that the target cell may not fire at
all.

Let T denote the random variable whose value is the
firing time of the target neuron, given that it does fire.
We define

gn,m,ε(t) ≡ the probability density of T

and note that gn,m,ε(t) depends on n, m, ε, and f . If
one repeated the above experiment many times and
made a histogram of the firing times of the target cell,
the histogram (divided by the number of firings of the
target cell) would approximate this probability density
gn,m,ε(t).

If one knows gn,m,ε(t), then one can compute its
mean and standard deviation σn,m,ε by the standard
formulas:

µn,m,ε =
∫ ∞

−∞
tgn,m,ε(t) dt (2)

σ 2
n,m,ε =

∫ ∞

−∞
(t − µn,m,ε)2gn,m,ε(t) dt. (3)

The mathematical question is to determine how σn,m,ε

depends on the parameters of the problem, n, m, ε, and
the probability density, f .

Unfortunately, even in this highly simplified biolog-
ical situation, one cannot compute explicit formulas
for σn,m,ε in terms of n, m, ε, and f , except in special
cases. Our goal is to illustrate the behavior of σn,m,ε for
biologically reasonable choices of the parameters. In
auditory nerve fibers the probability density for latency
looks approximately like a smoothed out exponential
density (Rhode and Smith, 1985; Young et al., 1988;
C.T. Yin, personal communication), although there is a
lot of variation between different fibers. Other systems
may have very different latency distributions for the
incoming fibers. Thus, we will focus on four different
choices for f that cover a wide range of situations: the
uniform distribution, the normal distribution, the ex-
ponential distribution and the hat distribution, all with
standard deviation equal to 1.0 msec as shown in Fig. 2.

As indicated in the Introduction, if we can under-
stand the behavior of σn,m,ε for one fixed standard
deviation, s, in the incoming fibers, the scaling law
(1) allows us to understand σn,m,ε for all s. We shall
fix the standard deviation of the latency of the inputs
to be s = 1 msec since the standard deviation under
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Figure 2. Four probability densities. Pictured in this figure are the
probability density functions for the uniform (dashes), exponential
(dashes and dots), normal (dots) and hat distributions (solid line).
All distributions have standard deviation equal to 1.0 msec. For each
density function, f, the probability that a random selection from that
distribution lies between a and b msec equals

∫ b
a f (t) dt .

repeated trials in auditory nerve fibers is of this mag-
nitude (Rhode and Smith, 1985; Young et al., 1988;
Heil and Irvine, 1997; C.T. Yin, personal communi-
cation). For the uniform distribution, the probability
of the time of arrival is equal throughout an interval
of length 3.46 msec (this is required so that the stan-
dard deviation is 1.0). The normal and hat distributions
are symmetric with peaks at t = 0. The exponential
distribution starts with its peak at t = 0 and decays ex-
ponentially. The standard deviation, σn,m,ε , of the firing
time of the target neuron does not depend on the mean
of f and so, for pictoral simplicity, we have chosen the
means of the uniform, normal and hat distribution to
be 0 and the mean of the exponential to be 1. Since our
main interest is the behavior of σn,m,ε as a function of
the time window ε, and the number of hits required,
m, we restrict ourselves to two choices for n, namely,
n = 4 and n = 10.

The graphs in Figs. 3, 6, 7, and 8 were obtained by
Monte Carlo simulations. For each simulation, n, m, ε,
and the probability density, f , for the latency in the in-
coming fibers were specified. The experiment was re-
peated 105 to 107 times, as necessary, in order to obtain
an accurate approximation to the probability density
for the time of firing of the target cell, gn,m,ε(t). Time
was binned in units of 0.02 msec. From the probability
density so obtained, the mean and standard deviation,
σn,m,ε , were obtained by machine computation by eval-
uating the appropriate integrals in Eqs. (2) and (3).

Figure 3. Percentage of trials in which the target neuron fires. The
solid curves show the percentage of successful firings of the target
neuron as a function of ε when f is the exponential density for three
different choices of m, the number of hits required to cause the target
cell to fire. The dashed lines show the analogous curves when f is
the normal density. In each case the number of incoming fibers, n,

is 10.

2. Results

We begin by examining the probability of firing of the
target neuron as a function of m and ε. Then we in-
vestigate the behavior of σn,m,ε for two special cases,
ε = 0 (Section 2.1), and ε = ∞ (Section 2.2). Finally
we treat the general behavior of σn,m,ε as a function of
ε (Section 2.3) and m (Section 2.4).

The curves in Fig. 3 show the probability of firing
(percent successes) of the target neuron for different
choices of f and m as a function of the size of the time
window, ε.

When m = 2, i.e. only two hits are required, and
n = 10, the target cell is essentially certain to fire when
ε ≥ 0.1 msec. Of course, as ε gets extremely small the
probability decreases to 0 as can be seen in the figure.
However, if 5 hits are required the situation is much
more interesting. For the exponential density, the prob-
ability of firing of the target falls from 97% to 10%
as the time window ε decreases from 1 to 0.2 msec.
If, however, f is the normal density, the probability
of firing falls from 85% to 1% over the same ε range.
If the number of hits required for a successful firing
is increased to 8, then the differences between the two
cases are even greater. For the normal density the prob-
ability of success of firing has fallen to 2% when ε is
1 msec while it remains at 31% for the exponential.
Thus, if there are 10 incoming fibers, the behavior in
the physiological range, approximately ε = 0.5 msec
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to ε = 1.0 msec, is dramatically different in the three
cases m = 2, 5, 8. If m = 2 the target cell is certain to
fire, if m = 8 the target cell is highly unlikely to fire, and
if m = 5 the probability of firing drops dramatically as
the time window, ε, decreases through the physiolog-
ical range. The hat and uniform densities give results
similar to the normal (curves not shown). Thus we see
that the probability of firing goes to zero as ε → 0, but
that the rate depends strongly on m and the nature of
the probability density, f , for the input neurons.

We now turn our attention to σn,m,ε , the standard
deviation of the latency of firing of the target neuron.
From a physiological point of view, it does not make
sense to make ε too small since, as shown above, the
target cell will seldom fire. It also does not make sense
physiologically to make the time window, ε, larger than
a few milliseconds, since by that time the biophysical
effect of the first hit on the membrane potential will
have been “forgotten”. Nevertheless, these two limiting
cases, ε small (Section 2.1) and ε large (Section 2.2) are
of interest because they are mathematically tractable
and provide insight into the behavior of σ for large and
small time windows.

2.1. The Case ε → 0

Under appropriate hypotheses on the properties of the
probability density of the latency, f (t), of the n inde-
pendent incoming fibers, one can prove mathematically
that

gn,m,ε(t) → f (t)m∫ ∞
−∞ f (t)m dt

(4)

as ε → 0 (Mitchell, 2003). For example, this is true if
f is piece-wise continuous, which is the case for our
four choices for f . For convenience, we will denote the
normalization

∫ ∞
−∞ f (t)m dt by N . Thus, in this limit

we have an explicit formula for the density gn,m,0(t)
of T and we note that the density is independent of
n. Intuitively, taking the mth power of a continuous
density f and renormalizing will emphasize, that is,
put more probability in, the region near the peak, and
de-emphasize the regions away from the peak. This
sharpening around the peak can be seen by comparing
the renormalized densities for m = 3 in Fig. 4 with the
densities for m = 1 shown in Fig. 2.

Thus, if the density f has a peak, we expect the
standard deviation of f (t)m/N to be smaller than that
of f and to decrease as m gets larger. Straightforward

Figure 4. Third powers of the probability densities renormalized.
The probability densities, f (t)m/N , obtained by setting m = 3 and
letting ε → 0 for the four choices of f are shown. For the exponen-
tial, hat, and normal densities, considerable sharpening can be seen
compared to the probability densities in Fig. 2 where m = 1.

calculations show that:

σn,m,0 =




1 if f = uniform
1

m
if f = exponential

1√
m

if f = normal√
12

(m + 2)(m + 3)
if f = hat
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Figure 5. The behavior of σn,m,ε when ε = 0. The graphs of σn,m,0

as a function of m are shown for the uniform, exponential, normal,
and hat densities.

To understand these formulas, consider the case where
f is the uniform distribution and imagine a very small
time window. The target cell fires at the time T when
there are for the first time m hits in the previous ε msecs.
The probability of achieving a firing gets smaller as ε

gets smaller. However, the location of the firing time
(if it does fire) will be approximately uniform over the
same interval. Therefore, the standard deviation of T
should be approximately 1. So, if f is the uniform
distribution, there is no improvement in the standard
deviation. The other distributions have peaks and, as
m gets larger, more and more of the probability is cen-
tered near the maxima, and therefore σn,m,0 decreases
as m increases. This is illustrated in Fig. 5 where σn,m,0

is graphed for each density as a function of m. Note
that σn,m,0 decays like 1

m for the hat and the exponen-
tial distributions, while σn,m,0 decays like 1√

m
for the

normal. This occurs because the hat and exponential
have sharp peaks rather than a smooth peak like the
normal distribution.

2.2. The Case ε → ∞

As ε gets larger and larger the time window restriction
has less and less effect. Thus, in the limit when ε → ∞,
the target neuron will fire when the mth action potential
arrives (this is equivalent to the simplest integrate and
fire model considered by Marsalek et al. (1997)). The
mth largest of n selections from a density f is called an
order statistic and this random variable has probability

density:

gn,m,∞(t) = n!

(m − 1)!(n − m)!

× F(t)m−1(1 − F(t))n−m f (t) (5)

where F(t) is the cumulative distribution function of
f (t), that is F(t) = ∫ t

−∞ f (s) ds (see, for example,
Arnold et al., 1993; Balakrishnan and Rao, 1998a,
1998b). Since one has an explicit formula for the den-
sity of T one can compute, either by hand or by ma-
chine, the standard deviation σn,m,∞ of T .

To illustrate the behavior of order statistics, we
choose n = 10, i.e., there are 10 input fibers. Figure 6
shows graphs of the standard deviation, σ10,m,∞, of the
firing time of the target cell as a function of m.

Consider first the case where the latencies of the
incoming fibers are selected from a uniform distribu-
tion. If m = 1, i.e. the target cell fires at first hit, then
σ10,1,∞ = 0.287 msec. Note that this is much lower
than the standard deviation of latency in the incom-
ing fibers which is 1.0 msec. This increased precision
in time of firing of the target cell arises because the
first of 10 hits selected from the uniform distribution
is highly likely to occur near the left edge (i.e., near
−1.7 msec). Similarly, the 10th hit is highly likely to
occur near the right edge (i.e., near +1.7 msec) and
because of the symmetry of the uniform distribution
will have the same standard deviation as for the first
hit. For m = 4, 5, 6 or 7 the standard deviation σ10,m,∞
is considerably higher because there is more variation
in the time of arrival of the mth hit in these cases. Note,

Figure 6. Order statistics. The graphs of σ10,m,∞ as a function of
m for the four indicated probability densities.
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however, that even in these cases the precision of the
time of firing has been improved by at least a factor of
two.

For the exponential distribution, firing on the first
hit is extremely precise, σ10,1,∞ = 0.1 msec, because
the first hit is very likely to occur in the narrow
peaked region of the exponential distribution shown
in Fig. 2. By contrast, the 10th hit is likely to occur
out in the tail of the exponential distribution and its
time of occurence will have a great variability. If fact,
σ10,10,∞ = 1.22 msec, even greater than the variability
of the incoming signal times. This illustrates that for
a non-symmetric distribution like the exponential, the
number of hits required to fire the target cell may make
a large difference in the improvement or degradation
of the precision of timing.

For the hat distribution, firing on the first hit is less
precise than for the uniform because the first hit is likely
to occur in the furthest left region along the t axis with
area 1

n under the density curve and this region is wider
for the hat than for the uniform. On the other hand, the
middle hits have smaller standard deviations for the hat
distribution because of its peak. When f is the normal
distribution, the results are quite similar to the those for
the hat distribution, except that the standard deviation
goes up significantly for 1st hit and 10th hit because
those hits are very likely to occur in the early or late
tails of the normal distribution. Notice that the number
of hits required for firing, m, does not matter very much
for the normal and hat distributions, and that in both
cases the precision of timing is increased by a factor of
approximately two.

We have seen that if a cell fires when it receives it’s
mth hit out of 10, the improvement in the precision of
firing depends on m. The amount of improvement and
the variability of σ10,m,∞ are highly dependent on the
nature of f , the probability density for the latency of
the input neurons.

Note that if m = 1, then we are always in the case
of order statistics no matter what the size of the time
window since the target cell fires at first hit. That is,

σn,1,ε = σn,1,∞ (6)

for all ε and all n whatever the form of the incoming
latency density f .

Finally, we note that formula (1) becomes particu-
larly simple in the limit ε → ∞ :

σn,m,∞, f = sσn,m,∞, fs .

If we denote σn,m,∞, f by σout and s by σin then we have:

σout = σin σn,m,∞, fs . (7)

Thus, in this limit where ε → ∞, σout is proportional
to σin. In the general case, the size of the time window
is involved; see formula (1).

2.3. Time-Window Behavior

We now consider the effect of the size of the time win-
dow, ε, on the standard deviation of the time of firing,
T , of the target cell, which of course depends on n, and
m. The dependence on m is considered in the next sec-
tion. Here, we make four different choices for (n, m) to
show the different kinds of dependence of σn,m,ε on ε.

Figure 7A shows the behavior of σn,m,ε as a func-
tion of ε for the case m = 2, n = 4, i.e. there are
4 inputs and 2 hits within ε msec are required to fire
the target cell. Particularly striking is that when the
incoming latency density, f , is normal, hat, or expo-
nential, the σ4,2,ε curves are non-monotone with peaks
near ε = 0.5 msec. In fact, all four curves (including
the one for f uniform) are monotone decreasing for
ε > 0.5 msec, which means that increasing the size of
the time-window improves the time accuracy of firing
of the target cell. This seems counter-intuitive, but there
is a good reason for this behavior. For a moderate-sized
time window (ε = 0.5 msec in this case), the success-
ful hit might be the second, third, or the fourth hit and
thus the time distribution of hits will be fairly spread
out and therefore have a fairly large standard deviation.
As ε is increased, the successful hit (i.e. the one that
fires the cell) is more and more likely to be the second
hit, and therefore the probability density for the time
of firing will be more narrow. We note that when f
is the uniform distribution the curve is always mono-
tone decreasing, so increasing the time window always
improves the accuracy of firing of the target cell.

When ε gets large, we expect σn,m,ε to approach
the value given by order statistics. For the ex-
ponential and normal distributions (with standard
deviation = 1.0 msec), the standard deviation of the
second order statistics for n = 4 are 0.417 msec and
0.600 msec, respectively, i.e. an appreciable improve-
ment in the accuracy of the time of firing. As one can
see in Fig. 7A, the curves for σ4,2,ε approach these val-
ues as ε gets large.

As ε decreases below 0.5 msec, σ4,2,ε decreases
somewhat when f is the hat, normal, or exponential
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Figure 7. Behavior of σn,m,ε as a function of ε. Panels A, B, C, and D show graphs of the functions σ4,2,ε , σ10,2,ε , σ10,5,ε , σ10,8,ε , respectively.

distribution. Thus in this range, and for these choices
of f , making the time window smaller improves the
accuracy of time of firing of the target cell. As ε → 0
the curves approach the limiting values, σ4,2,0, dis-
cussed in Section 2.1, namely 1.0, 0.5, 0.707, and
0.775 msec, when f is uniform, exponential, normal,
or hat, respectively.

The nature of the distribution of latency in the in-
coming fibers (i.e. f ) has a large effect on how much
the accuracy of timing is improved. In this case, where
we require 2 out of 4 hits in an ε time window, expo-
nential is always better than normal which is better than
hat, which is better than uniform, and the exponential
gives an appreciably larger improvement than any of
the others for all ε. It is remarkable that, except when
f is uniform, the size of the time window has relatively
little effect on the improvement of timing accuracy.

Suppose the number of incoming fibers is increased
from 4 to 10, but we still require 2 hits within an ε time
window to fire the target cell. In this case (Fig. 7B),

each of the σ10,2,ε curves is monotone decreasing in
ε, so increasing the size of the time window always
improves accuracy. Most of the improvement occurs
in the range 0 to 0.5 msec. Again, the case when f
is exponential gives a much larger improvement in the
standard deviation than for the other choices of f . Note
that the improvement of timing is clearly better when
there are 10 incoming fibers than when there are 4 for
ε ≥ 0.2 msec.

To see the effect of keeping the ratio of required hits,
m, to total fibers, n, constant, but increasing both, we
examine the case m = 5 and n = 10; see Fig. 7C. Note
that as in Fig. 7A, the curves are non-monotone, but
the peaks have moved from ε ≈ 0.5 msec to ε ≈ 1.0
msec. Also, as in Fig. 7A, the accuracy of time of firing
of the target cell is always best if f is exponential, next
best for hat, next best for normal, and worst for uni-
form. For all choices of f and time windows ε, m = 5
and n = 10, gives more accurate time of firing for the
target cell than the case when m = 2 and n = 4.
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Thus increasing the number of incoming fibers and
the number of hits required in constant ratio improves
accuracy.

We now leave the number of incoming fibers at 10,
but increase the number of hits required to fire the target
cell to m = 8; see Panel D. For f exponential, the
time of firing of the target cell is very accurate when
ε is small (σ10,5,0 = 1

5 msec and σ10,8,0 = 1
8 msec).

As ε increases there is a large monotonic increase in
σ10,8,ε . And, for ε large, 8 hits required gives much less
accuracy than when 5 hits are required (compare with
Panel C). The reason is that when ε is large σ10,8,ε is
approximately given by order statistics and the standard
deviation of the 8th hit will be larger than the standard
deviation of the 5th hit because it is likely to occur out
in the tail of the exponential. Note that when f is either
hat or normal, the size of the time window doesn’t make
much difference, and that all four choices for f give
similar results at large values of ε.

Figure 8. Behavior of σn,m,ε as a function of m. Panels A through D show the graphs of σ10,m,ε as a function of m for the choices ε =
0.2, ε = 0.5, ε = 1.0, ε = 3.0 msec, respectively. In each panel, the graphs show σ10,m,ε for the four choices of incoming density f (t), uniform,
exponential, hat, and normal.

2.4. Dependence on m, the Number of Hits Required

In this section we investigate the dependence of σn,m,ε

on m, for different choices of the time window, ε. The
number of fibers is fixed at n = 10.

Figure 8A shows the graphs of σ10,m,0.2 as a function
of m when ε = 0.2 msec for our four choices of the
incoming latency density, f . A priori, one might think
that increasing m would increase the accuracy of the
time of firing of the target cell. On the contrary, it is par-
ticularly striking that all four curves are non-monotone
and increase as m is increased from 1 to 2 to 3. The
change is particularly dramatic when f is the expo-
nential or the uniform distribution. In the case of the
exponential, σ10,m,0.2 is 0.1 msec when m = 1, i.e. the
accuracy of the time of firing has increased by an order
of magnitude. This occurs because the smallest selec-
tion out of 10 random selections from the exponential
density is highly likely to occur very early where the
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exponential is peaked. If m is increased the likely time
of the mth hit in the 0.2 msec window will be later and
thus will occur on a somewhat flatter part of the expo-
nential density. This is why σ10,m,0.2 increases to 0.37
when m = 3. However, when m increases still further,
σ10,m,0.2 decreases because if many hits are required to
be almost coincident in order for the target cell to fire,
they will likely occur earlier (i.e. nearer the peak) in
the exponential. The reason the coincidence is likely
to occur earlier is that for a given size of the time win-
dow there is more probability, p, for each hit to occur
within the time window if it occurs earlier. The proba-
bility of m hits in the time window will involve the mth
power of p and will be very small if p is very small and
m is large. Note that even in the “worst” case, m = 3,
there is an almost 3-fold increase in accuracy of time of
firing compared to the standard deviation σ = 1 msec
of f .

In the case when f is the uniform density, σ10,m,0.2

is 0.28 msec when m = 1 and increases to 0.96 msec
when m = 3. If only one hit is required, then we are in
the case of order statistics for the uniform distribution
and (by formula (3)) σ10,1,0.2 = σ10,1,∞ = 0.28 msec
(as shown in Fig. 6). If two hits are required, there is
only a small chance that the earliest two will be within
0.2 msec, i.e. that the target cell fires at second hit. If
there are two hits within 0.2 msec, it may be the 5th
and 6th or 9th and 10th, so the time of occurence of
such a pair will likely be spread out over the interval
of the uniform distribution. Thus we would expect that
σ10,m,0.2 will increase dramatically as m goes from 1
to 2, and it does. For m large we expect the time of
coincidence to be almost uniformly distributed on the
interval and therefore the standard deviation should be
almost 1 msec, as seen in Fig. 8A for m ≥ 3.

As discussed in Section 2.2, first hit gives less accu-
racy for the time of firing of the target cell if f is the
hat or normal distribution than if f is exponential or
uniform. As m increases to 3, σ10,m,0.2 increases some-
what for both the hat and normal, and then decreases
for larger m. Notice that σ10,m,0.2 changes much less as
m goes from 1 to 10 for the hat and the normal than for
the uniform or exponential distributions.

If the size of the time window increases to 0.5 msec,
the shapes of the σ10,m,0.5 versus m curves remain the
same with the following exceptions (compare Fig. 8B
to Fig. 8A). The peaks of the σ10,m,0.5 curves for the ex-
ponential and uniform cases have shifted from m = 3
to m = 4. Secondly, the curve for the normal density
decreases when m goes from 1 to 2 whereas it increases

when ε = 0.2 msec. Note that in both cases the mag-
nitude of the change in σ10,m,0.5 is quite small.

If the size of the time window increases to 1.0 msec
(Fig. 8C), the peaks of all four curves shift to m = 5.
Note that the curve for the normal density retains its
complex form and that the curve for the uniform density
is significantly lower for large m.

If the time window is large (3.0 msec compared to the
standard deviation of 1.0 msec for each of the choices
for f ), then the σ10,m,3 curves should begin to look sim-
ilar to the curves for order statistics. Indeed, comparing
Fig. 8D to Fig. 6, we see that the curves are already quite
similar. Notice that the curve for the uniform density
in Fig. 8D is nearly symmetric and the peak is consid-
erably lower than in Fig. 8C. And, for the exponential
density, the σ10,m,3 curve increases rapidly up to m = 9,

where it reaches its peak.

3. Discussion

The standard deviation, σn,m,ε , of the time of firing of
the target neuron depends on the shape of the proba-
bility density, f (t), for the time of firing of the input
neurons, the number of hits required, m, the size of the
time window, ε, and the number of incoming fibers, n.
We shall discuss in this order the effects of these vari-
ables and the main unexpected findings of this study.

To what extent does the improvement in timing accu-
racy depend on the shape of the probability density, f ,
of the time of firing of the input neurons? We examined
four different incoming densities, each with standard
deviation 1.0 msec. As shown in Fig. 5 through 8, there
are major differences in the degree of improvement in
the accuracy of firing of the target cell depending on the
shape of f . In most cases (i.e. for most values of the
other parameters), the exponential distribution yields
the largest improvement in standard deviation and the
uniform distribution yields the smallest improvement.
The improvement if f is exponential is substantial,
with σ decreasing from 1.0 msec to as little as 0.1
or 0.2 msec in many cases. On the other hand, the im-
provement tends to be substantially less if f is uniform.
Note, however, that if the time window is large (Figs. 6,
8D) and m is high, then the uniform may actually give
more improvement in accuracy than the exponential.
The hat and the normal densities are so similar that it
is difficult to distinguish between their graphs (Fig. 2).
Nevertheless, their differences (i.e. the hat density is
pointed and the normal has non-zero probability out to
infinity) have significant effects in some cases on the
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improvement of accuracy. When m = 1 the hat always
gives more accuracy than the normal no matter what
the time window (Fig. 8) because first hit for the nor-
mal is more variable since the tail of the normal extends
to −∞.

Does accuracy improve if one requires more hits in a
small time window? Not necessarily! Consider Fig. 8A
which shows the graphs σ10,m,0.2 as a function of the
numbers of hits m for the four choices of f . In all cases
the accuracy of firing of the target cell gets substantially
worse as m increases from 1 to 2 to 3. The accuracy
improves as m gets larger, except for the uniform dis-
tribution where the accuracy remains low (i.e. σ near
1 msec). Similar phenomena can be seen for other time
windows in Fig. 8B–D. If ε = 1.0 msec, the accuracy
gets worse as m increases in the range m = 1 to m = 5.
For a large time window, ε = 3.0 msec, the accuracy
gets worse over the entire range m = 1 to m = 9 if f
is exponential.

Does accuracy improve if one requires the same
number of hits but in a smaller time window? Not nec-
essarily! In Fig. 7B (n = 10, m = 2), it can be seen
that accuracy of the time of firing of the target neuron
gets worse as ε gets smaller over the whole range of ε

for all four choices of the density, f . For other choices
of n and m the situation is more complicated: accuracy
may improve or worsen as ε is decreased, depending
on the range of ε considered, the values of n and m,
and the choice of f .

As indicated in Sections 2.1 and 2.2 of the Results
Section, the limiting cases σn,m,0 and σn,m,∞ are eas-
ier to handle analytically than the intermediate cases
0 < ε < ∞. Since we expect σn,m,ε to be close σn,m,0

for ε small and close to σn,m,∞ for ε large, perhaps
only these two limiting cases need be considered. Un-
fortunately, the standard deviation under repeated tri-
als (s) in auditory nerve fibers in approximately 1 msec
and typical integration times (ε) for auditory brain-
stem cells are roughly 1 msec. So, the “time window”
is about the same order of magnitude as the standard
deviation in the incoming signals. Thus, there are good
physiological reasons, at least in the auditory system,
to consider the behavior of σn,m,ε over the whole range
of ε.

For simplicity, we have only examined the case
n = 10 in this paper (except for one graph, Fig. 7A).
Nevertheless, it is clear that the dependence of σn,m,ε

on n is important. Note the large difference between
Fig. 7A and Fig. 7B when n is increased from 4 to 10.
Note also the differences between Fig. 7A and Fig. 7C

which show that the behavior of σn,m,ε does not depend
only on the ratio of m to n. In the simple case where f is
exponential and the target cell fires at first hit (m = 1),
then σn,1,ε = 1

n , a fact used by Young et al. (1988) to
explain the improved accuracy of firing in cochlear nu-
cleus bushy cells. The behavior of σn,m,ε as a function
of n in more complicated situations will be the subject
of future work.

Marsalek et al. (1997) examined the relationship be-
tween the standard deviation of the timing of synaptic
inputs to a neuron and the standard deviation (which
they term “jitter”) of the timing of its spike output in
several special cases. First they consider an integrate
and fire (I&F) model where each incoming spike adds
a fixed voltage to the target cell, which fires when a
threshold voltage is reached. This is just the case of or-
der statistics considered in Section 2.2 where m is the
number of inputs required to achieve threshold (our m
is their nth). They showed that if the input density is
normal and n = m, then increasing n lowers σ . They
also compute explicitly a formula for σ as a function
of n and m in the case where the input density is uni-
form and derive formula (7) in that case. They then
added leakage to the I&F model (making explicit cal-
culations impossible) and their computer simulations,
again assuming a normal initial density, showed for a
physiologically reasonable time constant τ = 10 msec
that marked improvements in σ were possible. Leakage
in their model is roughly equivalent to a finite time win-
dow, ε, in our model because as the leakage gets faster
the input spikes must arrive within a shorter time pe-
riod to fire the target cell for any given threshold. Thus,
our results in Section 2.3 show how the standard error
of the output depends in a complicated and interesting
way on the size of ε (on the size of τ , intuitively). We
also show the detailed behavior of σn,m,ε as a function
of m (Section 2.4) and the dependence on the nature of
input probability density.

Marsalek et al. (1997) also considered an explicit
non-linear somatic membrane model with a large num-
ber of voltage dependent ion conductances. They found
that for reasonable parameter ranges σ can be less than
the input standard deviation and that the results were
similar to their results for the I&F and the leaky I&F
models. This supports our contention in the Introduc-
tion that the combinatorial and probabilistic calcula-
tions in this study reveal phenomena that will also
occur in neural models with more biophysically re-
alistic membrane properties. There is experimental
evidence that hippocampal neurons use feed-forward
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inhibition to create time-windowed firing rules (Pouille
and Scanziani, 2001). Further studies are required to
ascertain the quantitative differences between time-
windowed models, leaky I&F models, and fully non-
linear models, in the improvement of the accuracy of
time of firing of the target cell.

In conclusion, we would like to make two points.
First, the variation in latency under repeated trials
that we use as input in this model arises in actuality
from the geometry of synapse placement on dendrites
of different shapes and sizes and variability in the
underlying biophysical processes. Recent theoretical
(Agmon-Snir et al., 1998; Segev and London, 2000;
Cai et al., 2000) and experimental (Stuart et al., 1999;
Oertel, 1999; Oertel et al., 2000) studies address the
issue of coincidence detection as a function of dendrite
structure, synaptic distributions, and channel proper-
ties. The effect on coincidence detection of other kinds
of stochastic variability (e.g. variable placement of a
synapse on a dendrite) arise in these contexts. Deter-
mining the way in which such variability affects func-
tion is a fundamental tool for understanding the rela-
tionship between structure and function in the nervous
system.

Second, the complexity of the behavior that we have
found (e.g. the non-monotone nature of many of the
σn,m,ε , curves) suggests that determining the relation-
ship between structure and function in the nervous sys-
tem may be very difficult. In our case, “function” means
enhancing the accuracy of time of firing. “Structure”
means the amount of convergence, n, and the firing
rule (m and ε) at the target cell. Since the σn,m,ε , curves
are often non-monotone, there are many different pos-
sible evolutionary choices for improving the function
of the system (i.e. the accuracy of the time of firing
of the target cell). In some circumstances, one could
get improvement either by increasing or by decreas-
ing m. Similarly, one could get improvement either by
increasing or by decreasing ε. This makes it difficult
to understand the relationship between the structure on
one hand and the function on the other hand, even for
this simple system.
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