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Abstract

We explore the precision of neural timing in a model neural system avittentical input neu-
rons whose firing time in response to stimulation is chosen from a defisityhese input neurons
stimulate a target cell which fires when it receivedits within ¢ msec. We prove that the density
of the firing time of the target cell convergessas> 0 to the input density raised to thenth and
normalized. We give conditions for convergence of the densitylinpointwise, and uniformly as
well as conditions for the convergence of the standard deviations.
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1. Introduction

Coincidence detection, in which a neuron (or group of neurons) fires only when it
receives two or more inputs almost simultaneously, has long been thought to play an im-
portant role in the central nervous system [1,4,7-10] And, recently, coincidence detection
has been proposed as the mechanism that creates “precise timers” in the auditory brainstem
[1,2,5,12,13]. These cells fire a single action potential, if they fire at all, at a precise time
delay after the onset of a sound. Under repeated trials with the same sound, the standard
deviation of the time delay in these precise timers is typically 0.1 msec and can be as low
as 0.03 msec. This is very surprising since all the information processed by these neurons
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Fig. 1. Schematic of the model.

comes from the auditory nerve in which the time delays of individual fibers show stan-
dard deviations of approximately 1 msec under repeated trials. For further references and
discussion of the biological background, see [14].

We formulate the question of the improvement of standard deviation by coincidence
detection as follows. Imagineidentical input neurons each of which sends a projection of
equal length to a target cell (see Fig. 1). In response to a stimulus each of the input neurons
sends a signal after a time delay selected independently from a dgnditye target cell
fires, if it fires at all, at the first time that it receivedinputs in the previous msec. We
denote the random variable for the time of firing (conditioned on succesg) hy. ¢, its
density byg,, . ¢, r and its standard deviation by, , ., r. The mathematical question is to
determine the behavior o, ,, ., ¢ (andgy. . ¢, ) as a function ofi, m, ¢, and f.

In [14] it was shown using Monte Carlo simulations that the dependeneg gf; ¢
on e andm is complex and often counter-intuitive. For example, one might expect that as
¢ increases, the timing would become less accurate g},g,,., y would be an increasing
function of ¢. In some cases, this is what was observed (for exampte, 10, m = 2,

f is exponential). On the other hand, for the safnandn but withm =8, 6,, 5., 7 is @
decreasing function of and withm =5, o, ;5 ¢, r IS non-monotone and has a peak at an
intermediate value of. Similarly, one might expect that as increasesg, ¢, f would
decrease. In fact, for most choices of parametgfs, .. s is a non-monotone function of.

A scaling argument showed that it is sufficient to consiflevith standard deviation equal
to 1 msec.

This paper is devoted entirely to the mathematical issues involved in the simalt.
Specifically, the purpose of this paper is to prove that the degsitye ¢ Of Ty n e, ¢
converges to the input densify raised to thenth power and normalized as— 0. L' is
the most natural type of convergence since the normalization requires division by a constant
multiple of the L1 norm of gi.ns, 7. We begin with the lemmas used in tfié proof in
Section 2, then prové! convergence in Section 3. Lastly, in Section 4, we address other
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types of convergence under additional hypothesis; most notably we give conditions for the
convergence of the standard deviation.

2. Lemmasfor the L1 proof

We begin with five lemmas which will be used in tiié proof given in Section 3.
The first lemma allows us to consider the relevant limit without normalizing the densi-
ties. Lemma 2 is essentially set theoretic and is used to estimate the key integrals which
have as limits of integration a minimum of two variables. Lemmas 3-5 introduce and give
properties of the bounded linear transformatinwhich appears repeatedly.

Lemmal. Let { f.} be a parametrized family of non-negative L* functionswith || f; 1 > O.
Let f. — fin L' ase — Owhere f isalsoin L with || f|1 > 0. Then,
fe 1t f

—> — ase— 0.

[ fe f

Proof. Given y, pick § so thats < % Then, by theL! convergence off,, we can
choosex so that

[r-]s

for all ¢ < «. Therefore,

§/m—fK8

fo=f
[r  [rJr-o

[1-5
fs_i<f€(ff+f67)_i
[fe [F~  [f=8 I

and, similarly

N S
[f [r= [r [rJr=9

So
fs _L<|f8_f|+ st
[fe [F T JfJ =8
Taking the integral of both sides gives
Jfe f
- = sv,
AT

for all ¢ < o which proves the lemma.O

Lemma 2. We will denote the minimum of two numbers ¢ and b by a v b. Let f be an
integrable function on R¥=/+1 andlet k > I, then
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Xk Xk—1 X141 X VX —&

/ ff / fxi—1, ..oy Xp—1)dxj—1---dxg—1

—00 —00 —00 —00

Xk Xk—1 Xi+1 X

=/ // /f(XI—l,--~,Xk—1)dXZ—1--'ka—1

—00 —00 —00 —00

Xk Xk—1 Xi+1 X

_/ /f /f(xl_l,...,xk_l)dxz_1-~-dxk—1-

Xk—EXk—E  Xp—EXp—E
Proof. Let A, B, andC be the sets iR/ ~i+1:

A={xi—1<x <+ <Xp—1 < Xk,
B={xj—1<xVXp—8&xX <X41 <+ <Xp-1 <Xk},
C={xp—e<<x_1<x < -+ <Xp—1 <Xk}

Then, the lemma can be rewritten
B A C

We therefore need only prove that= B U C and thatB andC are disjoint.

A=AN({x—1<xp —eyUfx_1>x, —€})
= (A N{xj—1 < xx — 8}) u (A N{xj—1 > xx — 5})
=BUC.
Since{x; < xx — ¢} and{x; > x; — ¢} are disjoint, their intersections with are also
disjoint. ThereforeB andC are disjoint. O

Lemma 3. Let f be a functionin L", 1 <r < oo, and let J; be the operator from L" to
L" given by (J; f)(x) = je * f where j, isi;L for 0 < x < ¢ and zero otherwise. Then for
1<i<r<oo,

IJe £l < I fIl»  and ‘/f(X)i(Jsf)(x)’idx <IfI7.

Proof. Young's inequality [16] shows thait/. 1l < lljell1ll fll- < | fll» and Holder’s in-
equality proves the second inequalityd

Lemma 4. Let f be a density and F its cumulative distribution. Then, for n > 0,
Je(F"f)< F"J. f.

Proof. (J.F"f)(x) <L [* F'(x)f(y)dy=F'(x)J.f(x). O
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Lemmab. Let f be a density. Then:

@Iffel,1<r<oo,then/.f — finL".
(b) If f isleft continuous, then J. f — f pointwise.
(c) If f isuniformly continuous, the J, f — f uniformly.

Proof. Parts (a) and (c) are proved in [6]. To prove (b), weHebe the cumulative distri-
bution of f. Then by the mean value theorem, for each

F(x)— F(x —
(Je fH(x) = w = f(x — &),

where 0< £(x) < . By left-continuity f (x — £(x)) — f(x) pointwise ag — 0. O

3. L1 convergence

LetYy, Yo,..., Y, be the independent, identically distributed firing times ofitheput
neurons, i.e., each of thés has densityf. It is more useful, however, to consider the
ordered inputs known as order statistics. Ketbe theith order statistic, i.e., the random
variable which is théth smallest of the/;s. A symmetry argument (for an introduction to
order statistics, see [3]) shows that the joint density of the order statistics is given by

Sz (X1, x2, .. xp) =R () f(x2) .o f () X <xp <o <xq) - 1)

In terms of the order statistic%,, , ., r is conditioned on success in triggering a response,
i.e.,, ONAg :={i: X; — X;_u+1 < &} # 0. Therefore, we define

Tm,n,s,f = irgién(Xi).

In the course of thé&! proof we take the additional time to find explicit bounds on the error
terms because these will be helpful in proving the other types of convergence addressed in
Section 4.

Theorem 1. Let f beadensity and let f € L™*1, then
ir f"

gm,n,a,f—) W ase — 0.

Throughout the proof we will refer to the five lemmas stated and proved in Section 2.
In this sectionm, n, and f are fixed, so for simplicity of notation we will denofg, ,, .
by T; andg, ..« r by g.. Note however thaw, n, and f do play a strong role in the proof.
In fact, it is the elimination of the dependencemmwhich makes the proof difficult and it
is the specific characteristics of the densftyvhich determine the type of convergence.

Proof of Theorem 1. Let fix, 1.=x,}(x) denote the conditional density &f; given that
T. = X; and letP; be the probability thal, = X;. The densityg. of T, is the normalized
sum fromi = m to n of these conditional densities,
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Y i Jix1.=x,) (X) Pi
P(succesp

ge(x) = (2

where P(succesg= P (A, # ). Using the joint density of th&;s (1), we can compute
fix;11.=x,)(x) by integrating over the appropriate event,

Sixit.=x,y(x)

1
=5 S nn (X1, X2, 00 X1, X, Xiq 1, -, Xp) dX1 - dXi_1d X1 dxy.
l {Te=X;=x} (3)

If T, = X; = x, then the first — m variables are sufficiently spread out to insure that
is the smallest element of,. This means that for alf less than (and of coursg > m)
X j— X j_m4+1 must be greater than If we letk = j —m + 1 we see that this is equivalent to
the conditionX; < Xy1,m—1 — &, Wwherek=1,...,i —m. The variables; _,,, 11, ..., xi—1
are them — 1 inputs withing of x and the last: — i variables are greater than Then,

1
i) = gt [ £ fin) [ Foim0 - fGiomin

21 §22
X /f(xi—zn)"'f(xl)dxl"'dxi—ldxi+l'"dxns (4)
23

wheres21, £22, and$23 are the sets

21={x <xit1<--- <xu},
27={x —e <Xj—m41 < <Xj—1<x},
23={x1 < - <xj_pyandxy < xpym—1—efork=1,...,i —m}.

The upper limit of integration fox;, where 1< k < i —m, is therefore the minimum of
Xk4+1 andxgy,—1 — & which we denote 1 V x¢1m—1 — & (we will call these mins). We
can now write the integral over the first- m variables as follows:

h(Xi—1, ..., Xi—m+t1, ) :/f(xi—m)"'f(xl)dxl"'dxi—m

23
Xi—1—¢€ Xi—mVXj—2—¢€
= / f(xifm) / f(xifmfl) T
X2VXy —€
X / f(x1)dxy---dxi—p. (5)

—00
The upper limit on the first integral is simply_; — ¢ sincex;_,,1 will be in [x — &, x]
which implies thaty; 11V x;—1—¢ = x;_1—¢. The integral over the next — 1 variables
is given by
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L) = f FGiD)  Frmi DR i1y s X1, 8) A1+ - dXi 1

Xi—m+2

/f(xz 1)-- f SGicmyDh(Xi—1, ..o, Xicmt1, €) dXj—py1- - - dxi_1.

e (6)
Lastly, sincel; (x) does notdepend on +1, ..., x,, it can be pulled out of the integral
(4) to give

1
Sixir=x;3(x) = Fn!f(x)li(x) / fO) - fxigD) dxigr---dxy,

1 (1— Fx)" !
= Fin!f(x)li(x)w, (7)

whereF (x) is the cumulative distribution function of thgs. Using (7) and multiplying the
numerator and denominator by the convenient fa€fgrs* “=, formula (2) becomes

n!

S ) Z, (= m)y(l Fo))™ (m— 1)|] @)

(n l)’ gn— 1
= , 8
8e = P ( )
where
(m - D!
Py = (n —m)!P(succesp

-1

1 1-F n—i
—(’”ml)<— )'fﬂ)Z( (x)) I(x) dx.

1=m

By Lemma 1, it suffices to show convergence of the un-normalized funcﬂgy)sg ™.
If we could replaceé=2"7; (x) with L2~ 7 (xy"~Lin Eq. (8), then the binomial the-

(i—m)!

orem would give us preciself.g. = f™. We therefore proceed to show th%‘él)’ I; (x)
is apprommately% f(x)"1 for eachm <i < n and to obtain explicit bounds on the

m)!
errors. This is the heart of the proof since the integfaland the errors depend anbut
the limit does not.
The case = m is simple,

Xi—m+2

(m—1)! (m 1)‘
Wlm( f fxiz1)-- / SGicmy) dxi—my1---dxi—1

X—E&

(F(x) — F(x —e))m1
= 8m—1

whereJ, f = 1(F(x) — F(x —¢)).

For i > m, we must find estimates of(x;_1,...,x;—m+1,€). Since each of the
variablesx;_1,...,x;_m+1 IN h is nearx in the integrall;, we need to show that
h(xi—1,...,Xi—m+1, €) IS approximately:(x, ..., x, €). Subtracting the integrals and using
the positivity of f, for x — e < x; < x we have

=L HHx)" L,
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|h(xi—1v°"7x7"'7xi—m+11 8) h(-xl 1005 X s Xi—m+1, 8)|
Xji—1—¢ Xj—m+3VXjt1—€
i—m) """ Jj—m+
J Xiem) J(xj—m+2)
—0o0

Xj—m+2VX—E jm
F(xj—my1)!™
T by P

—m)!
Xj—m+2VXj—€
Xj-1—¢€ Xj—m+3VXjt1—€ jem
F(xj_my2) ™
< / fGizm) - / Fjomy2) — e (Je ) (x — #)
(j —m)!
—0o0
F(xj_g—g) ™1

=e(Je f)(x —&) (—m_D

Applying the triangle inequality with each of the variables,;, 11, ..., xi—1in [x — ¢, x]
gives the estimate

i—m—1
. %0 8) = Rt Xim1, 8)] < 8 — D) (e f)(x — )L.
(i —m—1

)
If m <i < 2m, then we can compute(x, ..., x, &) explicitly:

X3Vx—e X2VX—¢€

h(x,...,x,s>=/f(x,-fm)-~- / Fx2) / FeD) dxs - dxiom

x—e X3 X2
= / f(xi—m)~--f.f(xz)ff(X1)dx1-~-dxi_m

_ Fx—g)™"
D p—— (10)

If i > 2m, we shall show thak(x, ..., x, &) is approxmately% Above, we were
able to remove all of the mins from the limits of mtegratlon In th|s case there are more

thanm — 1 variables so only the last — 1 mins can be removed yielding

Xi—2m+3 Xi—2m42VXi—m —¢€

h(x,...,x,8)=/f(xi7m)~' / f(xi—om2) / fxi—omy1)

X2VXm—¢€

fGx)dxy---dxi_p.
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Lemma 2 shows how to take an iterated integral with a min in the upper limit of the first
variable and change it to a similar iterated integral without the min by subtracting an error
term. Applying Lemma 2 repeatedly, we have

i—2m

h(x,...,x,s):M— Zej.

(i —m)! v

We must now estimate these error terms. In the formation ofithesrror term, we have
used Lemma 2 with =i —m — j and/ =i — 2m — j 4+ 2. Therefore, thgth error term
is given by

xX—¢& Xi—m—j+1 Xi—m—j
ej= / fGizm) - / S &icm—j) / f&icm—j-1)
—00 —0o0 Xi—m—j—€
Xi—2m+2—j Xi—2m41—jVXi—m—1—j—€ X2V Xy —&
/ fxi2mi1—j) / fxiom—j)--- / J(x1).
Xi—m—j—€ —00 —00

Using the positivity off, and applying Lemma 3 which boung,fsf(]sf)m‘1 by | £,
we have

Xi—m—j+1

_ Fyim2nd et n m-1
ej < G—2n— )l m—1) / S Xizm) - / S i) Je ) Ximm—j)

F(x)i—Zm—j gm— 1
S —2m— ) (m—1)!

/f(xl m) /f(xl —m— ])(Jgf)(x, —m— j)m !

F(x)i—Zm gMm— 1
== . I1f 1
Jl@ —2m — j)! (m — 1)!
Note that this estimate depends on the fact tfiat L™ (by interpolation, sincef €

L™+ L1 [15]). Summing these estimates and using the binomial theorem, we have that
fori > 2m,

i—m i—2m m—1 i—2m
F(x —¢) B ' € m (2F(X))
’h(x,...,x,s)—w = jgzo ejg(m_l)'“f” 2m)' . (11)

Now we can estimate;(x). In the integral for[;(x) given in (6) we replace
h(Xi—1, ..., Xi—m+1, &) With

F(x)i—m

(i —m)!

(i —m)! (i —m)! (i —m)!

+ (h(xi—lv cees Xi—m+1,s 8) - h(-xv e X, 8))

giving rise to



576 C.C. Mitchell / J. Math. Anal. Appl. 309 (2005) 567-582

o __i)lli(x) = F.(xL(Jsf)(X)m_l+ E1+ Ex+ E3. (12)
gm (i —m)!
From (9)
F(x )1 —m—1 . 1
|E1l <e(m —D(Je fHx —e )(m—(Jsf)(x) (13)

If m <i <2m, Eo =0 by (10) and ifi > 2m, we use (11) to obtain

m—1 ( ))l 2m

€ m—1
|E2| < (m_l)‘llfll ~2m)] (Je )™ (14)

Finally, Lemma 4 shows that

Je Fifmfl i—-m—1
Bl = IO et <o D e (15)

Summing (12) over and using the binomial theorem yields

(L= F)"

Pege(x) = f(x) ) _(n—m)! r——

i=m

« <F.(L(Jgf>(x>'"l FE 4+ Ead E3>
(i —m)!

= fO) e /)(X)" t+ E1+ E2 + Es, (16)

where

|E1l < e(n—m) f(x)(m — D (T )" e f)(x —e),
m—1 1 @ ( )n 2m
5 Ve D" = m)te =

|E3| < e(n—m)fx)(Je f)(x)™. 17)

We can now estimate

ol < f (1) —
(m

f |Poge(x) — f()"]

< / FEO| e HE)™ = )™ + I Evlls + 1 E2ll1 + 1 E3lla

< —=DJef = fllmll fl "+ em—m)|| £I0ET
Sm—l on— —2m om

! , 18
S RO e E (18)
where we have used Lemma 3 and Hdélder’s inequality to bound the first term and Lemma 3
to bound the error terms. By LemmaJk,f — f in L™. Therefore, Eq. (18) implies that
P.g:(x) = f(x)™ in L and the result follows from Lemma 1.0
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4. Other typesof convergence

In Section 3, we proved that the density , ., s of the random variabl&, ,, . con-
verges inL! to the limiting densityff%. In this section we extend Lemma 1 to include
other types of convergence and state additional hypothesgsrequired to obtain other

forms of convergence of the densities. We then discuss convergence of the standard devia-
tion oy e, f-

Lemma 6. Let B be a Banach space of measurable functions. Let ||.|| denote the norm on
B. Let { f.} be a parametrized family of non-negative functionsin L1 N B with non-zero L1
norm. Suppose that f, — f ase — 0in L1 and in the norm ||| and that || f| < oo and
[ fllz> 0. Then,

fe I
[fe I
ase — 0in LY andinthenorm ..
. : v )* _
Proof. Given y > 0, we can picks < T T Then choosex; so that| [ f

[ fe,] < 8 for all &1 < a1 and choosex, so that||f — fe,|l < 8 for all &2 < ap. Let
a = min(a1, a2). Then, using the same trick as in Lemma 1, foread{ o,

fex)  fx) ) ( ||f||+5)
- <1 <y.
T T ST =) S

Corallary 1. If, in addition to the hypothesis of Theorem 1, f isleft-continuous, then

m
Emn.e, f — jfw pointwisease — 0.

Proof. Sincef is left-continuous, Lemma 5(b) states thiaf’ — f pointwise. Therefore,
Egs. (16) and (17) imply thaR. gm ». (x) — f(x)™ pointwise. For each we let| f||, =

| £ (x)| be a norm on the set of equivalence classes of left-continiiddanctions where
fis equivalent tg if f(x)=g(x). Then Lemma 6 implies that for eaghg,, , ¢, r (x) —
o

Coroallary 2. If, in addition to the hypothesis of Theorem 1, f isuniformly continuous, then

m

8mune f — ]ffm uniformly ase — 0.

Proof. Since f is uniformly continuous Lemma 5(c) states thatf — f uniformly.
Therefore, Egs. (16) and (17) imply thBig,, »..(x) — f(x)™ uniformly. One can easily
show that if f is uniformly continuous and integrable, thgris bounded and the hypothe-
ses of Lemma 6 are satisfied. Therefore the convergengg of ; is also uniform. O
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We now turn our attention to the convergence of the standard deviatigharid ffTi"
have finite standard deviation we wish to show that the standard deviati@jp of, ¢
converges to the standard deviationyé/'f"m. We use the weightefi? spacesL?"*, where

f e LP¥if and only if

1/p
1l = (/(1+x2)k|f(x)|pdx> .

We begin with three lemmas. The first states that in order to have convergence of the
standard deviations we need only show convergendé-th. The second shows thd is

1
a bounded operator ab¥-1. And the third shows thaf, f L f.

Lemma 7. Let f be adensity in L11 and let {f,,} be a sequence of densities such that
Jfa — fin L1 1. Thenthe standard deviations of the f,, s converge to the standard deviation

of f.
The proof of Lemma 7 is elementary and is omitted.
Lemma 8. J; isa bounded linear operator on L1, 1 < p < oo, with || Js|| < (1+&)%/?.

Proof. Let f € LP1 and let fy(®) = f(x — y). Then, using the definition of, and
Holder’s inequality,

IIJstIZ,l=/(1+x2)(fsf)(X)de < /js(Y)||J£f||Z:Ll||fy”p,ld)’- (19)
Where we can estimatgfy || ,,1, using the change of variables= x — y, as follows:
||fy||§’l=/(1+lz)|f(t)|pdt+/2ty|f(t)|pdt+/y2|f(l)|pdt

<A+W2ILIL ;- (20)
Plugging back into Eq. (19) gives

1 . 1
e FI1D 3 < I FID 0 f 1l / @+ 0P je ) dy < e fIL 1 fllpa@ + )%

and thereford| J, f1l,1 < (1+&)?P|| fllp1. O

Lemmao. If f e L7, then J, f L5 1.

Proof. Let f,(x) = f(x) if |x| <n and O otherwise. Sincg¢ € L?1, we can pickn so
that|| f — f.ll»,1 is arbitrarily small and it is sufficient to show thif, f;, — fullp,1 — 0

ase — 0,

e fu = full}y 1 = /(1+x2)|Jgfn — P <L+ @+ e f - £,

which can be made arbitrarily small by Lemma 5(ajz
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Theorem 2. If, in addition to the hypotheses of Theorem 1, we require that ferLmtil

then the standard deviation of T, converges to the standard deviation of L T ase — 0.

Proof. By Lemmas 6 and 7, it is sufficient to show thatg, — f™ in L11. By (16),

| Pegmme. = f™" | Lo <N FUeN" = "1+ 1Elia + I E2llns + I Eallaa.

We estimate the first term using Holder's inequality and the bound/.oproven in
Lemma 8,

| £ e = s <UL Mmal e f =l a (Ve £ 12+ 16 £l 21 it
+o IR
<A+2m=DIfIn T f = Fllma.

Sincef € Ll by interpolation, Lemma 9 applies atid; f — f/m,1 — O. Lastly we es-
timate|| E1ll1.1, [ E2/l1,1, and|| E3]|1,1 using the bounds on these error terms from Eq. (17)
and the bound od, proven in Lemma 8. FOE; we must also use Eq. (20) with= ¢,

I1E1ll1 < et —m)om — DIl fllmsrallJe £l g1 ] (e ) (x — &) [

<en—m)m— DA+ fInTT
B gmfl 2n72m
— |
IE2ll1,1 < - l),(n m)-( 2m),(1+8) [l Al
I1E3ll11 < e(n —m)(A+ )| 75T .
ThereforePe gy ne, r — f™ in LY1, Lemma 6 implies that the normalized densities
also converge i1, so Lemma 7 applies and the standard deviations converge.

Note that the convergence of the standard deviation required a special type of conver-
gence of the density functions and does not imply convergence in mean or in mean square
of the underlying random variables. We have only discussed the convergence of the den-

sities because each of the random variallgs, .. s is on a different probability space.
Since the outputs are conditioned on the target cell firing, the sample spé@gs, of is

the set of input firing times which will elicit a response. If we think of the input firing times
as a vector inR", then the sample space is the subseR®iwith at leastn of the entries
within ¢ of each other. Therefore, although we have given conditions for several types of

convergence of the densities, we have not claimed any type of convergence of the random
variables. In fact, it only makes sense to talk about the convergence of the random variables

in distribution which follows easily from Theorem 1.

5. Discussion

The limiting behavior forse small is important because it gives a simple expression
for the output density,, , ., ¢ in terms of the input density’. However, ass — 0 the
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probability that the target cell will fire also goes to 0. This means that the actual neural
system can not operate at= 0. If ¢ is small, however, we can estimags, ,, ., r and
Omn.e, f DY &m0 ¢ andoy, 5 0 ¢ and the error can be bounded using the explicit bounds
given. We can also compute the first asymptotic correctierfam both the densityg,, ,, ., ¢
and its standard deviatiaf, ,, ¢ ¢ [11].

As an example, we will compage and its smalk limit in the special case = 3,m =2
and the input density is exponential. In this case we can compute the degsignd the
standard deviation, explicitly. Using Eq. (8), we have

0’ forx < O,
ge—h(l_e—X), 0<x<e,
Pege = g(%e—se—x _e—ZX+e—3X(%e8—1)) e <x < 2s,

g(e’zx e -1+ efgx(%eg -1 %e%)), x = 2e.
Integrating this expression gives the valueRyf

e —1
g3

P =

We can divide both sides of the equation Byto get an explicit formula for the density
g+(x). Note that this value o, corresponds to a probability of success(bf— e=3).
Figure 2 shows this density for several values0Dne can see that asdecreases, the
densities approach the limiting density.

We can further compute the mean and standard deviation in the standard way

1 5 11
e 7[688 +ef — 5 2€j|

G
and

. . . . . . . . !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
X

Fig. 2. The density, for several values of. One can see the densities approaching the limiting densT'tﬁ“Z
(labeled ag = 0).
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1

approximation

-

actual

Fig. 3. The standard deviatian as a function ok. The curve labeled “approximation” is the first asymptotic
correction to the limit.

1 13 49
2 6. e 3 2
gg:m[%ea—i—e (2+28)+68<—1—8—48—48)
49
— 6% 4+ 2 + 3—6]. (21)

Taking a square root gives the standard deviatipnOne can see that although explicit
calculation of the density and standard deviation are possible in this simple case, it is still
rather tedious. This is one reason that understanding the limits is important for cases where
computing the density is either impossible or impractical. Figure 3 shows the standard
deviation as a function of. In addition we have included the first asymptotic correction

op = % + %8 +0(?),
which can be computed either from the formula given in [11] or from Eg. (21).

In [14], four example input densities were used: uniform, normal, exponential and hat
(an upside down v with the peak at zero). All four of these densities satisfy the conditions
for convergence irL! and for convergence of their standard deviations as 0. In ad-
dition, the four densities can all be made left-continuous to give pointwise convergence.
However, only the normal and the hat are uniformly continuous and so only their densities
converge uniformly.

Much work remains to be done in the mathematical question formulated in the intro-
duction. We would like to prove theorems about the qualitative behavie,gf, r as
a function ofm ande. For biological applications (in which andm are often large), it
would be useful to explore the limit— oo, m — oo, with the ratiom/n fixed. Finally, it
is also important to consider independent but non-identically distributed inputs.
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