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Abstract

We explore the precision of neural timing in a model neural system withn identical input neu-
rons whose firing time in response to stimulation is chosen from a densityf . These input neuron
stimulate a target cell which fires when it receivesm hits within ε msec. We prove that the densi
of the firing time of the target cell converges asε → 0 to the input densityf raised to themth and
normalized. We give conditions for convergence of the density inL1, pointwise, and uniformly a
well as conditions for the convergence of the standard deviations.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Coincidence detection, in which a neuron (or group of neurons) fires only wh
receives two or more inputs almost simultaneously, has long been thought to play
portant role in the central nervous system [1,4,7–10] And, recently, coincidence det
has been proposed as the mechanism that creates “precise timers” in the auditory br
[1,2,5,12,13]. These cells fire a single action potential, if they fire at all, at a precise
delay after the onset of a sound. Under repeated trials with the same sound, the s
deviation of the time delay in these precise timers is typically 0.1 msec and can be
as 0.03 msec. This is very surprising since all the information processed by these n
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Fig. 1. Schematic of the model.

comes from the auditory nerve in which the time delays of individual fibers show
dard deviations of approximately 1 msec under repeated trials. For further referenc
discussion of the biological background, see [14].

We formulate the question of the improvement of standard deviation by coincid
detection as follows. Imaginen identical input neurons each of which sends a projectio
equal length to a target cell (see Fig. 1). In response to a stimulus each of the input n
sends a signal after a time delay selected independently from a densityf . The target cel
fires, if it fires at all, at the first time that it receivedm inputs in the previousε msec. We
denote the random variable for the time of firing (conditioned on success) byTm,n,ε,f , its
density bygm,n,ε,f and its standard deviation byσm,n,ε,f . The mathematical question is
determine the behavior ofσm,n,ε,f (andgm,n,ε,f ) as a function ofn, m, ε, andf .

In [14] it was shown using Monte Carlo simulations that the dependence ofσn,m,ε,f

on ε andm is complex and often counter-intuitive. For example, one might expect th
ε increases, the timing would become less accurate, i.e.,σn,m,ε,f would be an increasin
function of ε. In some cases, this is what was observed (for example,n = 10, m = 2,
f is exponential). On the other hand, for the samef andn but with m = 8, σm,n,ε,f is a
decreasing function ofε and withm = 5, σn,m,ε,f is non-monotone and has a peak at
intermediate value ofε. Similarly, one might expect that asm increases,σn,m,ε,f would
decrease. In fact, for most choices of parameters,σn,m,ε,f is a non-monotone function ofm.
A scaling argument showed that it is sufficient to considerf with standard deviation equa
to 1 msec.

This paper is devoted entirely to the mathematical issues involved in the smallε limit.
Specifically, the purpose of this paper is to prove that the densitygm,n,ε,f of Tm,n,ε,f

converges to the input densityf raised to themth power and normalized asε → 0. L1 is
the most natural type of convergence since the normalization requires division by a co
multiple of theL1 norm of gm,n,ε,f . We begin with the lemmas used in theL1 proof in

Section 2, then proveL1 convergence in Section 3. Lastly, in Section 4, we address other
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types of convergence under additional hypothesis; most notably we give conditions
convergence of the standard deviation.

2. Lemmas for the L1 proof

We begin with five lemmas which will be used in theL1 proof given in Section 3
The first lemma allows us to consider the relevant limit without normalizing the d
ties. Lemma 2 is essentially set theoretic and is used to estimate the key integrals
have as limits of integration a minimum of two variables. Lemmas 3–5 introduce and
properties of the bounded linear transformationJε, which appears repeatedly.

Lemma 1. Let {fε} be a parametrized family of non-negative L1 functions with ‖fε‖1 > 0.
Let fε → f in L1 as ε → 0 where f is also in L1 with ‖f ‖1 > 0. Then,

fε∫
fε

L1−→ f∫
f

as ε → 0.

Proof. Given γ , pick δ so thatδ � γ
∫

f

2+γ
. Then, by theL1 convergence offε, we can

chooseα so that∣∣∣∣
∫

fε −
∫

f

∣∣∣∣ �
∫

|fε − f | � δ

for all ε � α. Therefore,

fε∫
fε

− f∫
f

�
fε

( ∫
f −δ∫
f

+ δ∫
f

)
∫

f − δ
− f∫

f
= fε − f∫

f
+ δfε∫

f (
∫

f − δ)

and, similarly

fε∫
fε

− f∫
f

� fε − f∫
f

− δfε∫
f (

∫
f − δ)

.

So ∣∣∣∣ fε∫
fε

− f∫
f

∣∣∣∣ � |fε − f |∫
f

+ δfε∫
f (

∫
f − δ)

.

Taking the integral of both sides gives∥∥∥∥ fε∫
fε

− f∫
f

∥∥∥∥
1
� γ,

for all ε � α which proves the lemma.�
Lemma 2. We will denote the minimum of two numbers a and b by a ∨ b. Let f be an

integrable function on Rk−l+1, and let k � l, then
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xk∫
−∞

xk−1∫
−∞

· · ·
xl+1∫

−∞

xl∨xk−ε∫
−∞

f (xl−1, . . . , xk−1) dxl−1 · · ·dxk−1

=
xk∫

−∞

xk−1∫
−∞

· · ·
xl+1∫

−∞

xl∫
−∞

f (xl−1, . . . , xk−1) dxl−1 · · ·dxk−1

−
xk∫

xk−ε

xk−1∫
xk−ε

· · ·
xl+1∫

xk−ε

xl∫
xk−ε

f (xl−1, . . . , xk−1) dxl−1 · · ·dxk−1.

Proof. Let A, B, andC be the sets inRj−i+1:

A = {xl−1 < xl < · · · < xk−1 < xk},
B = {xl−1 < xl ∨ xk − ε, xl < xl+1 < · · · < xk−1 < xk},
C = {xk − ε � xl−1 < xl < · · · < xk−1 < xk}.

Then, the lemma can be rewritten∫
B

=
∫
A

−
∫
C

.

We therefore need only prove thatA = B ∪ C and thatB andC are disjoint.

A = A ∩ ({xl−1 < xk − ε} ∪ {xl−1 � xk − ε})
= (

A ∩ {xl−1 < xk − ε}) ∪ (
A ∩ {xl−1 � xk − ε})

= B ∪ C.

Since{xl < xk − ε} and{xl � xk − ε} are disjoint, their intersections withA are also
disjoint. ThereforeB andC are disjoint. �
Lemma 3. Let f be a function in Lr , 1 � r � ∞, and let Jε be the operator from Lr to
Lr given by (Jεf )(x) = jε ∗ f where jε is 1

ε
for 0 � x � ε and zero otherwise. Then for

1� i � r < ∞,

‖Jεf ‖r � ‖f ‖r and

∣∣∣∣
∫

f (x)i(Jεf )(x)r−i dx

∣∣∣∣ � ‖f ‖r
r .

Proof. Young’s inequality [16] shows that‖Jεf ‖r � ‖jε‖1‖f ‖r � ‖f ‖r and Hölder’s in-
equality proves the second inequality.�
Lemma 4. Let f be a density and F its cumulative distribution. Then, for n � 0,
Jε(F

nf ) � FnJεf .

∫

Proof. (JεF

nf )(x) � 1
ε

x

x−ε
F n(x)f (y) dy = Fn(x)Jεf (x). �
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Lemma 5. Let f be a density. Then:

(a) If f ∈ Lr , 1� r < ∞, then Jεf → f in Lr .
(b) If f is left continuous, then Jεf → f pointwise.
(c) If f is uniformly continuous, the Jεf → f uniformly.

Proof. Parts (a) and (c) are proved in [6]. To prove (b), we letF be the cumulative distri
bution off . Then by the mean value theorem, for eachx,

(Jεf )(x) = F(x) − F(x − ε)

ε
= f

(
x − ε̃(x)

)
,

where 0< ε̃(x) < ε. By left-continuityf (x − ε̃(x)) → f (x) pointwise asε → 0. �

3. L1 convergence

Let Y1, Y2, . . . , Yn be the independent, identically distributed firing times of then input
neurons, i.e., each of theYis has densityf . It is more useful, however, to consider t
ordered inputs known as order statistics. LetXi be theith order statistic, i.e., the rando
variable which is theith smallest of theYis. A symmetry argument (for an introduction
order statistics, see [3]) shows that the joint density of the order statistics is given by

f1,2,...,n:n(x1, x2, . . . , xn) ≡ n!f (x1)f (x2) . . . f (xn)χ{x1<x2<···<xn}. (1)

In terms of the order statistics,Tm,n,ε,f is conditioned on success in triggering a respon
i.e., onAε := {i: Xi − Xi−m+1 � ε} 
= ∅. Therefore, we define

Tm,n,ε,f := min
i∈Aε

(Xi).

In the course of theL1 proof we take the additional time to find explicit bounds on the e
terms because these will be helpful in proving the other types of convergence addre
Section 4.

Theorem 1. Let f be a density and let f ∈ Lm+1, then

gm,n,ε,f
L1−→ f m∫

f m
as ε → 0.

Throughout the proof we will refer to the five lemmas stated and proved in Sect
In this section,m, n, andf are fixed, so for simplicity of notation we will denoteTm,n,ε,f

by Tε andgm,n,ε,f by gε. Note however thatm, n, andf do play a strong role in the proo
In fact, it is the elimination of the dependence onn which makes the proof difficult and
is the specific characteristics of the densityf which determine the type of convergence

Proof of Theorem 1. Let f{Xi |Tε=Xi }(x) denote the conditional density ofXi given that
Tε = Xi and letPi be the probability thatTε = Xi . The densitygε of Tε is the normalized

sum fromi = m to n of these conditional densities,
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gε(x) =
∑n

i=m f{Xi |Tε=Xi }(x)Pi

P (success)
, (2)

whereP(success) = P(Aε 
= ∅). Using the joint density of theXis (1), we can comput
f{Xi |Tε=Xi }(x) by integrating over the appropriate event,

f{Xi |Tε=Xi }(x)

= 1

Pi

∫
f1,2,...,n:n
{Tε=Xi=x}

(x1, x2, . . . , xi−1, x, xi+1, . . . , xn) dx1 · · ·dxi−1 dxi+1 · · · dxn.

(3)

If Tε = Xi = x, then the firsti − m variables are sufficiently spread out to insure thai

is the smallest element ofAε. This means that for allj less thani (and of coursej � m)
Xj −Xj−m+1 must be greater thanε. If we letk = j −m+1 we see that this is equivalent
the conditionXk < Xk+m−1 − ε, wherek = 1, . . . , i − m. The variablesxi−m+1, . . . , xi−1
are them − 1 inputs withinε of x and the lastn − i variables are greater thanx. Then,

f{Xi |Tε=Xi }(x) = 1

Pi

n!f (x)

∫
Ω1

f (xn) · · ·f (xi+1)

∫
Ω2

f (xi−1) · · ·f (xi−m+1)

×
∫
Ω3

f (xi−m) · · ·f (x1) dx1 · · ·dxi−1 dxi+1 · · ·dxn, (4)

whereΩ1, Ω2, andΩ3 are the sets

Ω1 = {x < xi+1 < · · · < xn},
Ω2 = {x − ε < xi−m+1 < · · · < xi−1 < x},
Ω3 = {x1 < · · · < xi−m andxk < xk+m−1 − ε for k = 1, . . . , i − m}.

The upper limit of integration forxk , where 1� k � i −m, is therefore the minimum o
xk+1 andxk+m−1 − ε which we denotexk+1 ∨ xk+m−1 − ε (we will call these mins). We
can now write the integral over the firsti − m variables as follows:

h(xi−1, . . . , xi−m+1, ε) =
∫
Ω3

f (xi−m) · · ·f (x1) dx1 · · ·dxi−m

=
xi−1−ε∫
−∞

f (xi−m)

xi−m∨xi−2−ε∫
−∞

f (xi−m−1) · · ·

×
x2∨xm−ε∫
−∞

f (x1) dx1 · · ·dxi−m. (5)

The upper limit on the first integral is simplyxi−1 − ε sincexi−m+1 will be in [x − ε, x]
which implies thatxi−m+1∨xi−1−ε = xi−1−ε. The integral over the nextm−1 variables

is given by
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Ii(x) =
∫
Ω2

f (xi−1) · · ·f (xi−m+1)h(xi−1, . . . , xi−m+1, ε) dxi−m+1 · · ·dxi−1

=
x∫

x−ε

f (xi−1) · · ·
xi−m+2∫
x−ε

f (xi−m+1)h(xi−1, . . . , xi−m+1, ε) dxi−m+1 · · ·dxi−1.

(6)

Lastly, sinceIi(x) does not depend onxi +1, . . . , xn, it can be pulled out of the integra
(4) to give

f{Xi |Tε=Xi }(x) = 1

Pi

n!f (x)Ii(x)

∫
Ω1

f (xn) · · ·f (xi+1) dxi+1 · · ·dxn

= 1

Pi

n!f (x)Ii(x)
(1− F(x))n−i

(n − i)! , (7)

whereF(x) is the cumulative distribution function of theYis. Using (7) and multiplying the
numerator and denominator by the convenient factor(m−1)!

εm−1
(n−m)!

n! , formula (2) becomes

gε = f (x)
∑n

i=m(n − m)! (1−F(x))n−i

(n−i)!
(m−1)!
εm−1 Ii(x)

Pε

, (8)

where

Pε = (m − 1)!
εm−1

(n − m)!P(success)

= (m − 1)!
εm−1

(n − m)!
∫

f (x)

n∑
i=m

(1− F(x))n−i

(n − i)! Ii(x) dx.

By Lemma 1, it suffices to show convergence of the un-normalized functionsPεgε
L1−→ f m.

If we could replace(m−1)!
εm−1 Ii(x) with F(x)i−m

(i−m)! f (x)m−1 in Eq. (8), then the binomial the

orem would give us preciselyPεgε = f m. We therefore proceed to show that(m−1)!
εm−1 Ii(x)

is approximatelyF(x)i−m

(i−m)! f (x)m−1 for eachm � i � n and to obtain explicit bounds on th

errors. This is the heart of the proof since the integralsIi and the errors depend onn but
the limit does not.

The casei = m is simple,

(m − 1)!
εm−1

Im(x) = (m − 1)!
εm−1

x∫
x−ε

f (xi−1) · · ·
xi−m+2∫
x−ε

f (xi−m+1) dxi−m+1 · · ·dxi−1

= (F (x) − F(x − ε))m−1

εm−1
= (Jεf )(x)m−1,

whereJεf = 1
ε
(F (x) − F(x − ε)).

For i > m, we must find estimates ofh(xi−1, . . . , xi−m+1, ε). Since each of the
variablesxi−1, . . . , xi−m+1 in h is near x in the integralIi , we need to show tha
h(xi−1, . . . , xi−m+1, ε) is approximatelyh(x, . . . , x, ε). Subtracting the integrals and usi

the positivity off , for x − ε � xj � x we have
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∣∣h(xi−1, . . . , x, . . . , xi−m+1, ε) − h(xi−1, . . . , xj , . . . , xi−m+1, ε)
∣∣

�
xi−1−ε∫
−∞

f (xi−m) · · ·
xj−m+3∨xj+1−ε∫

−∞
f (xj−m+2)

×
xj−m+2∨x−ε∫

xj−m+2∨xj −ε

f (xj−m+1)
F (xj−m+1)

j−m

(j − m)!

�
xi−1−ε∫
−∞

f (xi−m) · · ·
xj−m+3∨xj+1−ε∫

−∞
f (xj−m+2)

F (xj−m+2)
j−m

(j − m)! ε(Jεf )(x − ε)

= ε(Jεf )(x − ε)
F (xi−1 − ε)i−m−1

(i − m − 1)! .

Applying the triangle inequality with each of the variablesxi−m+1, . . . , xi−1 in [x − ε, x]
gives the estimate

∣∣h(x, . . . , x, ε) − h(xi−1, . . . , xi−m+1, ε)
∣∣ � ε(m − 1)(Jεf )(x − ε)

F (x)i−m−1

(i − m − 1)! .
(9)

If m < i < 2m, then we can computeh(x, . . . , x, ε) explicitly:

h(x, . . . , x, ε) =
x−ε∫

−∞
f (xi−m) · · ·

x3∨x−ε∫
−∞

f (x2)

x2∨x−ε∫
−∞

f (x1) dx1 · · ·dxi−m

=
x−ε∫

−∞
f (xi−m) · · ·

x3∫
−∞

f (x2)

x2∫
−∞

f (x1) dx1 · · ·dxi−m

= F(x − ε)i−m

(i − m)! . (10)

If i � 2m, we shall show thath(x, . . . , x, ε) is approximatelyF(x−ε)i−m

(i−m)! . Above, we were
able to remove all of the mins from the limits of integration. In this case there are
thanm − 1 variables so only the lastm − 1 mins can be removed yielding

h(x, . . . , x, ε) =
x−ε∫

−∞
f (xi−m) · · ·

xi−2m+3∫
−∞

f (xi−2m+2)

xi−2m+2∨xi−m−ε∫
−∞

f (xi−2m+1)

· · ·
x2∨xm−ε∫

f (x1) dx1 · · ·dxi−m.
−∞
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Lemma 2 shows how to take an iterated integral with a min in the upper limit of the
variable and change it to a similar iterated integral without the min by subtracting an
term. Applying Lemma 2 repeatedly, we have

h(x, . . . , x, ε) = F(x − ε)i−m

(i − m)! −
i−2m∑
j=0

ej .

We must now estimate these error terms. In the formation of thej th error term, we have
used Lemma 2 withk = i − m − j andl = i − 2m − j + 2. Therefore, thej th error term
is given by

ej =
x−ε∫

−∞
f (xi−m) · · ·

xi−m−j+1∫
−∞

f (xi−m−j )

xi−m−j∫
xi−m−j −ε

f (xi−m−j−1)

· · ·
xi−2m+2−j∫

xi−m−j −ε

f (xi−2m+1−j )

xi−2m+1−j ∨xi−m−1−j −ε∫
−∞

f (xi−2m−j ) · · ·
x2∨xm−ε∫
−∞

f (x1).

Using the positivity off , and applying Lemma 3 which bounds
∫

f (Jεf )m−1 by ‖f ‖m
m,

we have

ej � F(x)i−2m−j

(i − 2m − j)!
εm−1

(m − 1)!
x−ε∫

−∞
f (xi−m) · · ·

xi−m−j+1∫
−∞

f (xi−m−j )(Jεf )(xi−m−j )
m−1

� F(x)i−2m−j

(i − 2m − j)!
εm−1

(m − 1)!
x−ε∫

−∞
f (xi−m) · · ·

∞∫
−∞

f (xi−m−j )(Jεf )(xi−m−j )
m−1

= F(x)i−2m

j !(i − 2m − j)!
εm−1

(m − 1)! ‖f ‖m
m.

Note that this estimate depends on the fact thatf ∈ Lm (by interpolation, sincef ∈
Lm+1 ∩ L1 [15]). Summing these estimates and using the binomial theorem, we hav
for i � 2m,

∣∣∣∣h(x, . . . , x, ε) − F(x − ε)i−m

(i − m)!
∣∣∣∣ =

i−2m∑
j=0

ej � εm−1

(m − 1)! ‖f ‖m
m

(2F(x))i−2m

(i − 2m)! . (11)

Now we can estimateIi(x). In the integral for Ii(x) given in (6) we replace
h(xi−1, . . . , xi−m+1, ε) with

F(x)i−m

(i − m)! + (
h(xi−1, . . . , xi−m+1, ε) − h(x, . . . , x, ε)

)

+
(

h(x, . . . , x, ε) − F(x − ε)i−m

(i − m)!
)

+
(

F(x − ε)i−m

(i − m)! − F(x)i−m

(i − m)!
)

,

giving rise to
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ma 3
t

(m − 1)!
εm−1

Ii(x) = F(x)i−m

(i − m)! (Jεf )(x)m−1 + E1 + E2 + E3. (12)

From (9),

|E1| � ε(m − 1)(Jεf )(x − ε)
F (x)i−m−1

(i − m − 1)! (Jεf )(x)m−1. (13)

If m < i < 2m, E2 = 0 by (10) and ifi � 2m, we use (11) to obtain

|E2| � εm−1

(m − 1)! ‖f ‖m
m

(2F(x))i−2m

(i − 2m)! (Jεf )(x)m−1. (14)

Finally, Lemma 4 shows that

|E3| = ε
(Jε(F

i−m−1f ))(x)

(i − m − 1)! (Jεf )(x)m−1 � ε
F (x)i−m−1

(i − m − 1)! (Jεf )(x)m. (15)

Summing (12) overi and using the binomial theorem yields

Pεgε(x) = f (x)

n∑
i=m

(n − m)! (1− F(x))n−i

(n − i)!

×
(

F(x)i−m

(i − m)! (Jεf )(x)m−1 + E1 + E2 + E3

)

= f (x)(Jεf )(x)m−1 + Ẽ1 + Ẽ2 + Ẽ3, (16)

where

|Ẽ1| � ε(n − m)f (x)(m − 1)(Jεf )(x)m−1(Jεf )(x − ε),

|Ẽ2| � f (x)
εm−1

(m − 1)! (Jεf )(x)m−1‖f ‖m
m(n − m)! (2)n−2m

(n − 2m)! ,

|Ẽ3| � ε(n − m)f (x)(Jεf )(x)m. (17)

We can now estimate∫ ∣∣Pεgε(x) − f (x)m
∣∣

�
∫

f (x)
∣∣(Jεf )(x)m−1 − f (x)m−1

∣∣ + ‖Ẽ1‖1 + ‖Ẽ2‖1 + ‖Ẽ3‖1

� (m − 1)‖Jεf − f ‖m‖f ‖m−1
m + εm(n − m)‖f ‖m+1

m+1

+ εm−1

(m − 1)! (n − m)! 2n−2m

(n − 2m)! ‖f ‖2m
m , (18)

where we have used Lemma 3 and Hölder’s inequality to bound the first term and Lem
to bound the error terms. By Lemma 5,Jεf → f in Lm. Therefore, Eq. (18) implies tha

m 1
Pεgε(x) → f (x) in L and the result follows from Lemma 1.�
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4. Other types of convergence

In Section 3, we proved that the densitygm,n,ε,f of the random variableTm,n,ε,f con-

verges inL1 to the limiting density f m∫
f m . In this section we extend Lemma 1 to inclu

other types of convergence and state additional hypotheses onf required to obtain othe
forms of convergence of the densities. We then discuss convergence of the standar
tion σm,n,ε,f .

Lemma 6. Let B be a Banach space of measurable functions. Let ‖.‖ denote the norm on
B . Let {fε} be a parametrized family of non-negative functions in L1 ∩B with non-zero L1

norm. Suppose that fε → f as ε → 0 in L1 and in the norm ‖.‖ and that ‖f ‖ < ∞ and
‖f ‖1 > 0. Then,

fε∫
fε

→ f∫
f

as ε → 0 in L1 and in the norm ‖.‖.

Proof. Given γ > 0, we can pickδ � γ (
∫

f )2

(1+γ )
∫

f +‖f ‖ . Then chooseα1 so that | ∫ f −∫
fε1| � δ for all ε1 � α1 and chooseα2 so that‖f − fε2‖ � δ for all ε2 � α2. Let

α = min(α1, α2). Then, using the same trick as in Lemma 1, for allε � α,∥∥∥∥fε(x)∫
fε

− f (x)∫
f

∥∥∥∥ � δ∫
f

(
1+ ‖f ‖ + δ∫

f − δ

)
� γ. �

Corollary 1. If, in addition to the hypothesis of Theorem 1, f is left-continuous, then

gm,n,ε,f −→ f m∫
f m

pointwise as ε → 0.

Proof. Sincef is left-continuous, Lemma 5(b) states thatJεf → f pointwise. Therefore
Eqs. (16) and (17) imply thatPεgm,n,ε(x) → f (x)m pointwise. For eachx we let‖f ‖x =
|f (x)| be a norm on the set of equivalence classes of left-continuousL1 functions where
f is equivalent tog if f (x) = g(x). Then Lemma 6 implies that for eachx, gm,n,ε,f (x) →
f m(x)∫

f m . �
Corollary 2. If, in addition to the hypothesis of Theorem 1, f is uniformly continuous, then

gm,n,ε,f −→ f m∫
f m

uniformly as ε → 0.

Proof. Since f is uniformly continuous Lemma 5(c) states thatJεf → f uniformly.
Therefore, Eqs. (16) and (17) imply thatPεgm,n,ε(x) → f (x)m uniformly. One can easily
show that iff is uniformly continuous and integrable, thenf is bounded and the hypoth

ses of Lemma 6 are satisfied. Therefore the convergence ofgm,n,ε,f is also uniform. �
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of the
We now turn our attention to the convergence of the standard deviation. Iff and f m∫
f m

have finite standard deviation we wish to show that the standard deviation ofTm,n,ε,f

converges to the standard deviation off m∫
f m . We use the weightedLp spaces,Lp,k , where

f ∈ Lp,k if and only if

‖f ‖p,k ≡
(∫ (

1+ x2)k∣∣f (x)
∣∣p dx

)1/p

< ∞.

We begin with three lemmas. The first states that in order to have convergence
standard deviations we need only show convergence inL1,1 . The second shows thatJε is

a bounded operator onLp,1. And the third shows thatJεf
Lp,1−→ f .

Lemma 7. Let f be a density in L1,1 and let {fn} be a sequence of densities such that
fn → f in L1,1. Then the standard deviations of the fns converge to the standard deviation
of f .

The proof of Lemma 7 is elementary and is omitted.

Lemma 8. Jε is a bounded linear operator on Lp,1, 1� p < ∞, with ‖Jε‖ � (1+ ε)2/p .

Proof. Let f ∈ Lp,1 and letfy(x) = f (x − y). Then, using the definition ofJε and
Hölder’s inequality,

‖Jεf ‖p

p,1 =
∫ (

1+ x2)(Jεf )(x)p dx �
∫

jε(y)‖Jεf ‖p−1
p,1 ‖fy‖p,1 dy. (19)

Where we can estimate‖fy‖p,1, using the change of variablest = x − y, as follows:

‖fy‖p

p,1 =
∫ (

1+ t2)∣∣f (t)
∣∣p dt +

∫
2ty

∣∣f (t)
∣∣p dt +

∫
y2

∣∣f (t)
∣∣p dt

� (1+ y)2‖f ‖p

p,1. (20)

Plugging back into Eq. (19) gives

‖Jεf ‖p

p,1 � ‖Jεf ‖p−1
p,1 ‖f ‖p,1

∫
(1+ y)2/pjε(y) dy � ‖Jεf ‖p−1

p,1 ‖f ‖p,1(1+ ε)2/p

and therefore‖Jεf ‖p,1 � (1+ ε)2/p‖f ‖p,1. �
Lemma 9. If f ∈ Lp,1, then Jεf

Lp,1−−→ f .

Proof. Let fn(x) = f (x) if |x| � n and 0 otherwise. Sincef ∈ Lp,1, we can pickn so
that‖f − fn‖p,1 is arbitrarily small and it is sufficient to show that‖Jεfn − fn‖p,1 → 0
asε → 0,

‖Jεfn − fn‖p

p,1 =
∫ (

1+ x2)|Jεfn − fn|p �
(
1+ (n + ε)2)‖Jεf − f ‖p

p,
which can be made arbitrarily small by Lemma 5(a).�
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Theorem 2. If, in addition to the hypotheses of Theorem 1, we require that f ∈ Lm+1,1,
then the standard deviation of Tε , converges to the standard deviation of f m∫

f m as ε → 0.

Proof. By Lemmas 6 and 7, it is sufficient to show thatPεgε → f m in L1,1. By (16),∥∥Pεgm,n,ε,f − f m
∥∥

1,1 �
∥∥f (Jεf )m−1 − f m

∥∥
1,1 + ‖Ẽ1‖1,1 + ‖Ẽ2‖1,1 + ‖Ẽ3‖1,1.

We estimate the first term using Hölder’s inequality and the bound onJε proven in
Lemma 8,

∥∥f (Jεf )m−1 − f m
∥∥

1,1 � ‖f ‖m,1‖Jεf − f ‖m,1
(‖Jεf ‖m−2

m,1 + ‖Jεf ‖m−3
m,1 ‖f ‖m,1

+ · · · + ‖f ‖m−2
m,1

)
� (1+ ε)2(m − 1)‖f ‖m−1

m,1 ‖Jεf − f ‖m,1.

Sincef ∈ Lm,1 by interpolation, Lemma 9 applies and‖Jεf − f ‖m,1 → 0. Lastly we es-
timate‖Ẽ1‖1,1, ‖Ẽ2‖1,1, and‖Ẽ3‖1,1 using the bounds on these error terms from Eq. (
and the bound onJε proven in Lemma 8. For̃E1 we must also use Eq. (20) withy = ε,

‖Ẽ1‖1,1 � ε(n − m)(m − 1)‖f ‖m+1,1‖Jεf ‖m−1
m+1,1

∥∥(Jεf )(x − ε)
∥∥

m+1,1

� ε(n − m)(m − 1)(1+ ε)2‖f ‖m+1
m+1,1,

‖Ẽ2‖1,1 � εm−1

(m − 1)! (n − m)! 2n−2m

(n − 2m)! (1+ ε)2‖f ‖m
m‖f ‖m

m,1,

‖Ẽ3‖1,1 � ε(n − m)(1+ ε)2‖f ‖m+1
m+1,1.

ThereforePεgm,n,ε,f → f m in L1,1. Lemma 6 implies that the normalized densit
also converge inL1,1, so Lemma 7 applies and the standard deviations converge.�

Note that the convergence of the standard deviation required a special type of c
gence of the density functions and does not imply convergence in mean or in mean
of the underlying random variables. We have only discussed the convergence of th
sities because each of the random variables,Tm,n,ε,f is on a different probability space
Since the outputs are conditioned on the target cell firing, the sample space ofTm,n,ε,f is
the set of input firing times which will elicit a response. If we think of the input firing tim
as a vector inRn, then the sample space is the subset ofRn with at leastm of the entries
within ε of each other. Therefore, although we have given conditions for several typ
convergence of the densities, we have not claimed any type of convergence of the r
variables. In fact, it only makes sense to talk about the convergence of the random va
in distribution which follows easily from Theorem 1.

5. Discussion

The limiting behavior forε small is important because it gives a simple expres

for the output densitygm,n,ε,f in terms of the input densityf . However, asε → 0 the
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probability that the target cell will fire also goes to 0. This means that the actual n
system can not operate atε = 0. If ε is small, however, we can estimategm,n,ε,f and
σm,n,ε,f by gm,n,0,f andσm,n,0,f and the error can be bounded using the explicit bou
given. We can also compute the first asymptotic correction inε for both the densitygm,n,ε,f

and its standard deviationσm,n,ε,f [11].
As an example, we will comparegε and its smallε limit in the special casen = 3,m = 2

and the input densityf is exponential. In this case we can compute the densitygε and the
standard deviationσε explicitly. Using Eq. (8), we have

Pεgε =




0, for x < 0,
6
ε
e−2x(1− e−x), 0� x < ε,

6
ε

(1
2e−εe−x − e−2x + e−3x

(3
2eε − 1

))
, ε � x < 2ε,

6
ε

(
e−2x(eε − 1) + e−3x

(3
2eε − 1− 1

2e3ε
))

, x � 2ε.

Integrating this expression gives the value ofPε,

Pε = e3ε − 1

εe3ε
.

We can divide both sides of the equation byPε to get an explicit formula for the densit
gε(x). Note that this value ofPε corresponds to a probability of success of(1 − e−3ε).
Figure 2 shows this density for several values ofε. One can see that asε decreases, th
densities approach the limiting density.

We can further compute the mean and standard deviation in the standard way

µε = 1

(e3ε − 1)

[
5

6
e3ε + eε − 11

6
− 2ε

]

and

Fig. 2. The densitygε for several values ofε. One can see the densities approaching the limiting density 2e−2x
(labeled asε = 0).
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Fig. 3. The standard deviationσε as a function ofε. The curve labeled “approximation” is the first asympto
correction to the limit.

σ 2
ε = 1

(e3ε − 1)2

[
13

36
e6ε + e4ε(2+ 2ε) + e3ε

(
−49

18
− 4ε − 4ε2

)

− e2ε + 2εeε + 49

36

]
. (21)

Taking a square root gives the standard deviationσε. One can see that although expli
calculation of the density and standard deviation are possible in this simple case, it
rather tedious. This is one reason that understanding the limits is important for cases
computing the density is either impossible or impractical. Figure 3 shows the sta
deviation as a function ofε. In addition we have included the first asymptotic correctio

σε = 1

2
+ 1

9
ε + O

(
ε2),

which can be computed either from the formula given in [11] or from Eq. (21).
In [14], four example input densities were used: uniform, normal, exponential an

(an upside down v with the peak at zero). All four of these densities satisfy the cond
for convergence inL1 and for convergence of their standard deviations asε → 0. In ad-
dition, the four densities can all be made left-continuous to give pointwise converg
However, only the normal and the hat are uniformly continuous and so only their den
converge uniformly.

Much work remains to be done in the mathematical question formulated in the
duction. We would like to prove theorems about the qualitative behavior ofσm,n,ε,f as
a function ofm andε. For biological applications (in whichn andm are often large), i
would be useful to explore the limitn → ∞, m → ∞, with the ratiom/n fixed. Finally, it

is also important to consider independent but non-identically distributed inputs.
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