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In this paper we introduce and study a model for electrical activity of cardiac
membrane which incorporates only an inward and an outward current. This model
is useful for three reasons: (1) Its simplicity, comparable to the FitzHugh–Nagumo
model, makes it useful in numerical simulations, especially in two or three spatial
dimensions where numerical efficiency is so important. (2) It can be understood
analytically without recourse to numerical simulations. This allows us to determine
rather completely how the parameters in the model affect its behavior which in
turn provides insight into the effects of the many parameters in more realistic
models. (3) It naturally gives rise to a one-dimensional map which specifies the
action potential duration as a function of the previous diastolic interval. For certain
parameter values, this map exhibits a new phenomenon—subcritical alternans—
that does not occur for the commonly used exponential map.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Progress in treating heart disease, especially ventricular fibrillation, requires
understanding the electrical behavior of cardiac membrane. Early extensions of
the Hodgkin–Huxley equations to cardiac cells were introduced for the Purkinje
fiber [see, for example,Noble(1960, 1962)]. Beeler and Reuter(1977) introduced
the first model for the dynamics of a ventricular myocyte (myocardial fiber), also
based on the ideas of Hodgkin and Huxley. More complicated models [e.g.,Luo
and Rudy(1991, 1994)], based on sophisticated experiments, including single-cell
and single-channel measurements, were developed later. In part of a larger study,
Fenton and Karma(1998) attempted to extract a model of minimal complexity that
quantitatively reproduced the restitution behavior of more physiological models.
Their model contains three currents, loosely corresponding to sodium, calcium, and
potassium currents. Carrying their simplifications one step further, in this paper
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we introduce and study a model with just two currents that at least qualitatively
reproduces restitution behavior. The equations we derive may be obtained, after
various rescalings, as a special case of equations introduced byKarma(1994).

This model is useful for both pedagogical and scientific reasons. On the
pedagogical side: (i) The model provides a good introduction to membrane
dynamics for a reader more comfortable with mathematics than physiology.
(ii) Even for experts in cardiology, our analysis may have interest as an illustration
of how asymptotic analysis can simplify complicated models for membrane
dynamics. [For example, inTolkachevaet al. (2002), a one-dimensional map to
approximate the response of the Fenton–Karma model (Fenton and Karma, 1993)
is derived with these techniques.] Because of our desire to foster interdisciplinary
communication, we give a more detailed discussion than the sophisticated reader
will need.

On the scientific side: (i) An explicit formula for the restitution curve can be
derived from the model; thus the response of the model can be described by an
iterated map. The restitution curve is qualitatively similar to the commonly used
exponential restitution curve. (ii) Because of its simplicity, the model can be
understood analytically without recourse to numerical simulations. This allows
one to determine rather completely how the various parameters in the model affect
its behavior (seeSection 5), thereby providing insight into more realistic models.
(iii) The simplicity of the model may facilitate computation-intensive simulations
of spatially extended tissue. Incidentally, we find (inSection 5) that alternans can
occur in this model† either supercritically [the usual form that occurs, for example,
with the exponential mapNolasco and Dahlen(1968)] or subcritically. We discuss
the implications that the latter form of alternans would have for experiments.

The remainder of this paper is organized as follows. The model, a system of two
ordinary differential equations, is introduced inSection 2. In Section 3, applying
asymptotic analysis, we extract a restitution curve (more accurately, a restitution
function) from the ordinary differential equations. InSection 4, following Guevara
et al. (1984), we formulate the response of the model to periodic stimulation as
a bifurcation problem. Finally, inSection 5we classify the bifurcation diagrams
that can occur in this model as a function of its parameters, where bybifurcation

†In using the standard cardiology term ‘alternans’ we do not mean to imply that the model is an
accurate representation of this phenomenon in membrane dynamics. Rather, we believe that one
may learn from a slightly unrealistic model that is simple enough to analyze. For example, the model
has pointed to different behavior that may have gone undetected in more realistic models. It should
be pointed out that this paper studieselectrical alternans. Some authors [e.g.,Euler (1999)] hold
that alternans has a purely mechanical origin, that electrical alternans is a derivative phenomenon.
In support of the independence of electrical alternans, let us cite the following:

• In Banville and Gray(2002), two drugs that suppress muscular contraction and thus abolish
mechanical alternans are administered, but (electrical) alternans are still observed. The same
behavior is reported inHall et al. (1999).

• Purkinje fibers undergo much less contraction than other heart tissue, but alternans is still
observed in these fibers [see for exampleGilmour et al. (1997)].
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diagram we mean the graph of action-potential duration as a function of the period
of the stimuli. This classification is obtained with purely analytical means.

2. THE MODEL

The model contains two functions of time, the transmembrane potential or
voltage v(t) and a gating variableh(t), and these satisfy ordinary differential
equations. In the language of physiology, our model may be described as a
uniformly polarized membrane patch; it may be viewed as describing the dynamics
of a spatially clamped ventricular myocyte. The model may be obtained after
appropriate rescaling as a special case ofKarma(1994).

The voltage, which is dimensionless and scaled so that it ranges between zero
and one‡ is governed by the ODE

dv

dt
= Jin(v, h) + Jout(v) + Jstim(t), (1)

where thethree currentsJin, Jout, andJstim have the following descriptions: (i) The
inward currentJin, a combination of all currents which raise the voltage across the
membrane (primarily sodium and calcium), is given by

Jin(v, h) = hC(v)

τin
, (2)

where thecubic functionC(v) = v2(1−v) describes the voltage dependence of the
inward current. This voltage dependence, taken in modified form from the Fenton–
Karma model, mimics the behavior of the fast acting gates in more complicated
models such asLuo andRudy (1991). In our scaled variables, the strength ofJin

is specified by the time constantτin. The behavior ofh as a gate—open when
h = 1, closed whenh = 0—may be seen fromequation(2). The evolution ofh is
governed byequation(4) below. (ii) The outward currentJout, a combination of the
currents which decrease the membrane voltage (primarily potassium), is given by

Jout = − v

τout
; (3)

this current is ungated. (iii) The stimulus current,Jstim, is an external current
applied in brief pulses by the experimenter as specified below.

The gating variable h, which is dimensionless and varies between 0 and 1,
satisfies the ODE

dh

dt
=

{
1−h
τopen

if v < vgate

−h
τclose

if v > vgate
(4)

‡The voltage may be scaled back to the original physiological values using the change of variables
v̄ = vmin + v(vmax − vmin) with, for example,vmin = −70 mV andvmax = 30 mV.
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whereτclose andτopen are the time constants with which the gate closes and opens
andvgate is the change-over voltage; throughout this paper we takevgate = 0.13.
With appropriate definitions of step functionsh∞(v) andτ(v), equation(4) may
be written

dh

dt
= h∞(v) − h

τ(v)
. (5)

In more physiologically based models [e.g.,Luo and Rudy (1991)], all gating
variables satisfy equations of the form (5), but h∞(v) and τ(v) are typically
continuous functions ofv.

The two-current model is similar in spirit to the FitzHugh–Nagumo model
(FitzHugh, 1960, 1961), but we believe that the two-current model is more closely
related to the physiology of the heart for two reasons. A minor issue: the two-
current model does not exhibit voltage overshoot, a phenomenon observed in
neural but not cardiac tissue. More importantly, the two-current model contains
four time constants, which correspond to the four phases of the cardiac action
potential: initiation, plateau, decay, and recovery. By contrast, the FitzHugh–
Nagumo model has only two time constants. One of these constants is eliminated
in the asymptotic approximation and the other merely defines the time scale of
the action potentials; effectively, there are no dimensionless parameters in the
FitzHugh–Nagumo model. However, in the two-current model, even after this
reduction in the number of parameters, two dimensionless parameters remain.
Different values of these parameters give rise to the various behaviors classified
in Section 5below.

3. ASYMPTOTIC DERIVATION OF THE RESTITUTION CURVE

In this section we derive an explicit leading-order asymptotic approximation for
the restitution curve (this is defined inSection 3.2below), based on the assumption§

that

τin � τout � τopen, τclose. (6)

According to (6), the time constants for the voltageequation(1) are muchsmaller
than those in the gating variableequation(4). Therefore, changes in the voltage
occur much faster than changes in the gating variable except possibly for points

§The assumption thatτout � τopen, τclose does not hold for all physiological models: i.e., in
many ionic models the time constants of a current may be comparable to the time constants of gates.
If τout, τopen, andτcloseare all comparable but much greater thanτin, onemay still apply asymptotic
analysis to derive a map from the ODE’s, but the derivation is harder and the results are not as clean.
In keeping with the pedagogical goal of illustrating the use of asymptotic methods, we have restricted
our attention to the simplest case that produces an excitable medium.
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Figure 1. (a): Nullcline and trajectory of (1) and (4) in theh, v plane. The four stages of
the action potential are labeled. (b): The voltage trace of the same action potential also
showing the four stages.τclose = 150 ms,τopen = 120 ms,τout = 6 ms,τin = 0.3 ms,
andvstim = 0.1.

(v, h) near the nullclines of the voltageequation(1): i.e., assumingJstim = 0, near
solutions of

0 = hC(v)

τin
− v

τout
. (7)

Apart from the trivial casev = 0, equation(7) expresses the condition that the
inward and outward currents are exactly balanced. Solving this equation forh as a
function ofv yields

h = τin

τout

v

C(v)
= τin

τout

1

v(1 − v)
; (8)

and forv as a function ofh,

v = v±(h) = 1

2
±

√
1

4
− τin

τout
h−1. (9)

This nullcline is the dashed curve graphed inFig. 1(a). Note thatdv/dt is positive
if v−(h) < v < v+(h) and thatdv/dt is negative in the complementary range
v < v−(h) or v > v+(h). Defining hmin as the minimum value forh on this curve,
wesee from either (8) or (9) that

hmin = 4
τin

τout
. (10)

3.1. Response to a single stimulus. Suppose that, starting from the stable
equilibrium of equations(1) and (4) at (v, h) = (0, 1), a brief stimulus current
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is applied to increase the voltage. If the duration of the stimulus is short compared
to τin, then the voltage rises to the value

vstim ≈
∫

Jstim(t)dt, (11)

and the change inh may be neglected. We assume that

vstim > v−(1) (12)

where v−(h) is defined by (9): in words, that the state(vstim, 1) immediately
following the stimulus current lies between the two branches of the nullcline (9) so
that dv/dt > 0. Such a stimulus leads to an extended rise in the voltage known
as anaction potential. The following description of an action potential, based on
assumption (6), identifies four phases, labeled 1–4 inFig. 1.

(i) Following the stimulus,Jin dominatesJout, and the voltage rises quickly to
the nullclinev = v+(1). This occurs on a time scale of orderτin, and the
change inh during this time is negligible.

(ii) As the gate closes according toequation (4), the voltage follows the
nullcline, keeping the inward and outward currents balanced; thus,v(t) =
v+(h(t)). This occurs on a time scale of orderτclose.

(iii) When the gating variable reacheshmin,the solution ‘falls off the nullcline’:
specifically, Jout dominatesJin and the voltage drops towardv = 0. This
occurs on a time scale of orderτout.

(iv) The voltage stays small and the gate slowly reopens. The recovery has time
constantτopen, and it continues until the next stimulus is applied.

Frequently the fine structure of the action potential is ignored and it is described
by only its duration. In this paper, we define¶ the action potential duration (APD) to
be the time during which the voltage is greater thanvgate. The voltage exceedsvgate

during phase 2 and during parts of phases 1 and 3. However, phases 1 and 3 are very
brief—i.e., negligible in leading-order asymptotics—so the APD is approximately
equal to the length of phase 2; i.e., the time required forh to decay from its initial
value ofh = 1 to h = hmin. Sinceh evolves according toequation(4), to leading
order the APD is

APDmax = τcloseln

(
1

hmin

)
. (13)

As the notation APDmax suggests, (13) specifies the longest possible action
potential duration.

3.2. Multiple stimuli and the S1–S2 restitution curve. Next we will explore
the behavior of the model when, as illustrated inFig. 2, it is stimulated twice in

¶In experiments the APD is often defined as the time during which the voltage is more than 10% of
its maximum amplitude.
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Figure 2. Voltage trace and gating variable, from (1) and (4), as functions of time, in
response to two stimuli in sequence. Equation parameters are the same as inFig. 1, and
S = 400 ms.

sequence. Since we begin with fully recovered tissue (i.e.,v = 0, h = 1), the first
stimulus produces an action potential identical to the one described above; thus,
its duration APD1 = APDmax is given by (13). If the first stimulus arrives at time
t = 0 and the second at timet = S, then the time interval between the end of
the first action potential and the arrival of the second stimulus, called thediastolic
interval, is

DI = S − APD1. (14)

Below, using (6), we derive a functionF(DI), with the property that the second
action potential, in leading-order asymptotics, has duration

APD2 ≈ F(DI); (15)

specifically, see (17). This function, or more properly its graph, is called the
restitution curve.

The response to the second stimulus differs from the first because the system
is not starting from equilibrium. Specifically, during phase 4 of the first action
potential, i.e., for

APD1 < t < S,

v ≈ 0 andh satisfies (4) with initial conditionh = hmin at t = APD1. Thus, at the
arrival of the second stimulus,

h(S) = 1 − (1 − hmin)e
− DI

τopen. (16)

Thesecond stimulus raisesv to vstim without changingh appreciably from (16).
If vstim is large enough to generate a second action potential—see (19) below—

we may also decompose the second action potential into four phases. During
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Figure 3. The restitution curve (17) derived from the 2-current model, including threshold
behavior. Parameters are the same as inFig. 1, so thathmin = 0.2.

phase 1, the voltage rises rapidly to meet the nullcline at the point(v+(h(S)), h(S))

while h remains essentially constant. During phase 2,(v, h) decays along the
nullcline (9) from h(S) to hmin. Phases 3 and 4 are unchanged.

Now in leading-order asymptotics, APD2 is the length of phase 2, i.e., the
time required forh to decay fromh(S) to hmin. Recalling (16), we obtain that
APD2 ≈ F(DI) where

F(DI) = τcloseln


1 − (1 − hmin)e

− DI
τopen

hmin


 , (17)

which is graphed inFig. 3. Incidentally, this restitution curve appears inKarma
(1994). In the pedagogical spirit of this paper, we have derived (17) in detail.

For the second action potential to occur, the stimulus must raise the voltage
sufficiently to pass the nullcline given inequation(8). For a particular stimulus
strength there is a threshold value for the gate variable, sayh thr, such that if
h(S) > h thr then an action potential will be elicited and ifh(S) < h thr then the
voltage will simply decay back towards zero. Indeed,h thr is exactly the value ofh
on the nullcline (8) for v = vstim: i.e.,

h thr = τin

τout

1

vstim(1 − vstim)
= hmin

4vstim(1 − vstim)
. (18)

The time required, starting fromhmin, for the solution of (4) to reachh thr gives a
minimum value for DI

DIthr = τopenln

(
1 − hmin

1 − h thr

)
; (19)

the associated minimum APD is

APDthr = τcloseln

(
h thr

hmin

)
. (20)
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Figure 4. A pair of S1–S2 experiments that demonstrate the phenomenon of a threshold
diastolic interval. The difference in DI in these two simulations is 0.01 m. For a DI
of 84.25 ms, APD2 = 206.79 ms (dashed curve), whereas for a DI of 84.24 m, only a
subthreshhold response is produced (solid curve). (Before the second stimulus the two
curves coincide.) Parameters are the same as inFig. 1.

Therefore, in our asymptotic approximation, the restitution curve is given by
equation(17) for DI > DIthr and is zero for DI< DIthr, a discontinuous function,
as illustrated inFig. 3.

To justify our approximation of letting the restitution curve be discontinuous, we
show inFig. 4a pair of simulations of the ODE (1) and (4) with diastolic intervals
near DIthr. An action potential is elicited with a DI of 84.25 ms but with a DI of
only 0.01 ms shorter, the voltage never rises significantly abovevstim. We ignore
the latter response, called a subthreshhold response, because such a voltage pulse
would not propagate away from the stimulus site in a spatially extended model.

Remark. Our assumptions are intended to mimic the S1–S2 experimental
protocol (Boyett and Fedida, 1984) in which the heart is paced slowly for several
paces, allowing for full recovery, and then the APD following a premature stimulus
is recorded. Although we consider only one preparatory action potential, our model
is so simple that identical results would be obtained from multiple preparatory
action potentials. Experimental data from this protocol is often fitted with a
restitution function of the form [e.g.,Nolasco and Dahlen(1968), Guevaraet al.
(1984), Glass and Mackey(1988)]

F(DI) = a − be−DI/c. (21)

In the limit of large DI, our functionequation (17) assumes this form with
a = APDmax, b = τclose(1 − hmin), andc = τopen. This may be seen using the
approximation ln(1+z) ≈ z for smallz. However, (17) and (21) differ significantly
at smaller DI. InSection 4, we shalluse the mapping approximation (17) to study
the effect of periodic stimulation on the models (1) and (4).
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Figure 5. (a): S1–S2 restitution of (1) and (4) for several values ofε. Theparametersτclose
andτopenhave the same values as inFig. 1; and asε varies, the ratio τin/τout is held fixed
at 0.05 (as inFig. 1). The curves converge to the function (17) asε → 0. (b): Relative
error as a function ofε. This log–log plot has a slope of approximately 2/3 whichconfirms
that the error in (17) is of orderε2/3.

3.3. Accuracy of the asymptotic approximation. In deriving (17), we neglected
the time spent in phases 1 and 3 of the action potential. To discuss the accuracy of
this approximation, we introduce the parameter

ε = τout

τclose
, (22)

a measure of how much shorter phase 3 is compared to phase 2. (Remark: As
we shall see below, time spent in phase 1 is asymptotically negligible compared to
time spent in phase 3.)Equation(17) is the leading order term in an asymptotic
expansion asε → 0 of the restitution curve.Figure 5(a) shows the restitution
curves produced by solving the ODE (1) and (4) numerically in an S1–S2 protocol
for several values ofε. The computed restitution curves indeed approach the
mapping (17) asε → 0, including the location and height of the jump at DI=
DIthr. These graphs illustrate a common feature of asymptotics: the qualitative
prediction of asymptotic analysis usually remains correct far beyond the point
where quantitative agreement begins to deteriorate.

To understand the deviation inFig. 5(a) between (17) and the computed resti-
tution curves forε > 0, it is necessary to examine higher-order terms in the
asymptotic expansion. At first glance, one might propose an expansion in integral
powers ofε. However, the transition from phase 2 to 3—‘falling off the slow
manifold’—is a singular phenomenon, and this may introduce fractional powers
in the expansion. Indeed, as illustrated by the log–log plot [Fig. 5(b)] the first
correction term has orderε2/3.

We may derive this exponent by a scaling argument modeled on the treatment
(Bender and Orszag, 1978) of relaxation oscillations in Rayleigh’s equation.
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Following a stimulus at timet = S, equation(4) has the solution

h(t) = h(S)e
− t−S

τclose (23)

whereh(S) is given by (16). Let t∗ be the time at which (23) givesh(t∗) = hmin;
then we may rewrite (23) as

h(t) = hmine
− t−t∗

τclose. (24)

Substituting (24) into (1) we obtain a nonautonomous equation forv for t in a
neighborhood oft∗,

dv

dt
= v

τout

(
τout

τin
hmine

− t−t∗
τclosev(1 − v) − 1

)
. (25)

We donot knowv(t∗) exactly but we know from (9) that, sinceh(t∗) = hmin =
4 τin

τout
, to leading order

v(t∗) ≈ 1
2. (26)

To study the initial value problem (24) and (26) more carefully, let us introduce
scaled variables

v̄ = v − 1
2

ε p
, t̄ = t − t∗

εqτclose
. (27)

Note that we have nondimensionalized time withτclose. We shalldetermine the
appropriate exponentsp andq by the principle of dominant balance (Bender and
Orszag, 1978) as follows. Substituting (27) into (24), we obtain

ε p

εqτclose

dv̄

dt̄
= 1

τout

(
1

2
+ ε pv̄

)(
4e−εq t̄

(
1

2
+ ε pv̄

) (
1

2
− ε pv̄

)
− 1

)
. (28)

Expanding the exponential in (28) and recalling thatε = τout/τclose, we obtain,
modulo higher order terms (i.e.,ε2q, ε p+q , or ε3p),

ε1+p−q dv̄

dt̄
= −1

2
εq t̄ − 2ε2pv̄2. (29)

To havedominant balance the three terms in (29) must allbe of the same order: i.e.,

1 + p − q = q = 2p

which hassolution p = 1/3, q = 2/3. Therefore, recalling (27), we see that
the time required to cross the neighborhood ofv = 1/2—to fall off the slow
manifold—is of the orderε2/3τclose.

In more detail, for̄t < 0 the two terms ofthe right-hand side (r.h.s.) of

dv̄

dt̄
= −1

2
t̄ − 2v̄2 (30)
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Figure 6. Comparison of dynamic andS1–S2 restitution curves for (1) and (4). The S1–S2
restitution is the solidline; the points on thedynamic curve are thex ’s. Parameters are the
same as inFig. 1.

approximately balance as discussed above for phase 2. Fort̄ > 0 the solution
of (30) blows up in finite time; i.e., the voltage evolves rapidly to the region
characterized above as phase 3. Following the treatment (Kevorkian and Cole,
1981) of Rayleigh’s equation, one could continue this analysis to estimate the
coefficientC in the series

APDODE = APDmap+ Cε2/3 (31)

[notation as inFig. 5(b)] but we have not pursued this rather tedious calculation.

4. DYNAMIC RESTITUTION

4.1. Phenomenology. Suppose that one stimulates a heart cell periodically,
waits until it settles into a stable periodic response, and then records the APD.
If the stimulation period is BCL (acronym forbasic cycle length), then the diastolic
interval in the periodic solution is

DI = BCL − APD. (32)

With such a procedure one obtains a single point(APD, DI) on the so-called
dynamic restitution curve.

To obtain the full dynamic restitution curve, one must perform this procedure
repeatedly for various values of BCL. Typically one starts with a relatively long
BCL and decreases BCL in small increments.Figure 6 shows the dynamic
restitution curve forequations(1) and (4) for one set of parameter values obtained
by simulating with this protocol (x ’s), along with the S1–S2 restitution curve (solid
line): the two curves essentially coincide. For a model as simple as (17), there is
no meaningful difference in behavior in S1–S2 and dynamic restitution. We make
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Figure 7. Dynamic restitution experiments with(lower plot) and without (upper plot)
alternans (Hall et al., 1999).

the distinction purely as a pedagogical device. However, the distinction is very
significant for experiments and more sophisticated models.

Notethat thex ’s in Fig. 6, points on the dynamic restitution curve, stop slightly
above DIthr. This is because at small DI the periodic solution is not stable.
Exploration of this loss of stability is the main focus of this section. Incidentally,
it is believed (Winfree, 1987; Karma, 1993) that this loss of stability is a precursor
to the onset of arrhythmia.

At large BCL, and in particular for the simulation data shown inFig. 6, each
stimulus produces an action potential, which is called 1 : 1 behavior. As the BCL
is decreased, this 1 : 1 behavior eventually becomes unstable. Possible behaviors
beyond this loss of stability are suggested inFig. 7, taken from the experiments
of Hall et al. (1999) on small pieces of frog heart. For the animal illustrated in
the upper figure, when BCL was decreased below the stability boundary, the heart
evolved to what is called 2 : 1 behavior: i.e., only every other stimulus produced
an action potential. In the figure the upper curve represents APD’s measured for
the 2 : 1 behavior. For the animal illustrated in the lower figure, 2 : 1 behavior also
occurred for sufficiently small BCL, but what is called 2 : 2 behavior oralternans
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occurred before 2 : 1 behavior; this term means that every stimulus produced an
action potential but the action potentials alternated between short and long in a
periodic state of period 2∗ BCL. In the figure, alternans appear where the lower
curve becomes double valued.

Following a sequence of experiments in which BCL was gradually decreased,
Hall et al. (1999) then gradually increased BCL. In this way, they observed the
hysteresis shown in the figures: i.e., for some values of BCL, both 1 : 1 (or possibly
alternans) and 2 : 1 responses are possible, and which occurs depends on prior
history.

4.2. Mathematical formulation. Graphs of APD vs. BCL, such as inFig. 7, are
called bifurcation diagrams. In this subsection we formulate equations that specify
the bifurcation diagrams for our model, as described by the approximation (17).
Bifurcation diagrams for the model, as compared to experiment, contain additional
information in that unstable solutions may be included along with stable ones.
In particular, we shall see that in situations where the model exhibits alternans
(as in the lower plot ofFig. 7), a 1 : 1 solution branch continues beyond the point
where the 1 : 1 response loses stability.

Let us consider the procedure for determining a point on the dynamic restitution
curve in the context of the model (17). Suppose that, starting from equilibrium,
stimuli are applied with period BCL, generating a sequence of action potentials of
duration APD1, APD2, APD3, . . . . (For the moment we assume that every stimulus
does generate an action potential.) From our discussion of the restitution curve in
Section 3, wesee that all the history before a given DI does not matter and that each
new APD is determined by only the value ofh at the time of stimulation, which in
turn is determined by the length of DI: in symbols,

APDn+1 = F(DIn), (33)

where DIn denotes the diastolic interval following APDn. SinceBCL is specified,
we can replace DIn in equation(33) with BCL − APDn, so we have APDn+1

expressed as a function of APDn. Calling this function � and recalling the
definition (17) of F , we may write

APDn+1 = �(APDn) = τcloseln


1 − (1 − hmin)e

−BCL+APDn
τopen

hmin


 . (34)

In other words, the sequence of action potential durations is determined by
iterations of the map� defined by (34).

As discussed as, for example, inStrogatz(1994), a fixed point of (34), by which
we mean a solution of

�(APD∗) = APD∗,
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Figure 8. Graphical representation of fixed points of the mapping (34) (solid curve) and of
(40) (dotted curve). Equation parameters are the same as inFig. 1, andBCL = 450 ms.

represents a possible limit of the sequence{APDn}. The solid curve inFig. 8shows
a graph of � for BCL = 450 ms. [Although the notation�(APDn) does not
indicate it, the mapping to be iterated depends on BCL. When clarity requires, we
shall write�(APDn, BCL).] The intersection of this graph with the diagonal line
APDn+1 = APDn is of course a fixed point of�. It is shown inStrogatz(1994)
that a fixed point APD∗ of the mapping� is stable if and only if‖

|�′(APD∗)| < 1. (35)

A fixed point of � is associated with a 1 : 1 response. An alternans response
corresponds to a period-2 sequence of iterates, or equivalently a fixed point of the
composed map� ◦ �, which is defined by� ◦ �(APD) = �(�(APD)). The
equation for such fixed points may be written

�(APD, BCL) = 0 (36)

where� is defined by

�(A, B) = �(�(A, B), B) − A. (37)

A brief calculation shows that a solution (APD, BCL) of (36) is stable if andonly if

D1�(APD, BCL) < 0, (38)

where D1� denotes the partial derivative with respect to its first argument.
Of course a fixed point of� is also a fixed point of� ◦ � and hence a solution of
(36). Moreover, the stability (38) condition reduces to (35) in this case. Thus the
singleequation(36), a bifurcation problem of the type studied inGolubitsky and
Schaeffer(1985), characterizes all 1 : 1 and 2 : 2 responses of our model. Moreover,

‖More accurately, the fixed point is unstable if|�′(APD∗)| > 1; and if |�′(APD∗)| = 1, stability
is determined by higher-order terms. Despite such subtleties, we shall describe conditions analogous
to (35), as necessary and sufficient for stability.
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this bifurcation problem has a reflectional orZ2 symmetry: if (APD, BCL)

satisfies (36), then so does(�(APD), BCL). We shall see inSection 5that the
transition from 1 : 1 to 2 : 2 behavior may be understood as a pitchfork bifurcation
(Golubitsky and Schaeffer, 1985) of (36).

To describe 2 : 1 responses, we need to relax our assumption that every stimulus
produces an action potential. The issues here are related to the fact that inFig. 8
we havegraphed (34) (the dark curve) only on the interval APDthr < APDn <

BCL − DIthr. The lower limit simply represents the shortest possible action
potential, but if the upper limit is violated, then the first stimulus after APDn will
arrive too soon to produce an action potential. In this case, assuming BCL is not
excessively short, the next action potential will be produced by the second stimulus
after APDn, with diastolic interval [seeGuevaraet al. (1984)]

DI = 2BCL − APDn. (39)

Thus inFig. 8, we have continued the graph in the range APDn > BCL − DIthr by
plotting (dashed line)

F(2BCL − APDn). (40)

Intersections of this dashed curve with the diagonal correspond to a 2 : 1 response
of the model. The equation for such intersections is

F(2BCL − APD) − APD = 0. (41)

As in (35), a solution(APD, BCL) of equation(41) will be stable if and only if

|F ′(2BCL − APD)| < 1. (42)

In conclusion, what we are calling a bifurcation diagram in this paper, the set
of points (BCL, APD) that arise as 1 : 1, 2 : 2, or 2 : 1 responses of the model,
is a mathematical hybrid: i.e., a graph of the solutions of both (36) and (41) on
one set of axes, along with indications of stability. Moreover, the discontinuity
associated with the threshold of (34) at DI = DIthr gives rise to another nonstandard
[compared toGolubitsky and Schaeffer(1985)] feature of the bifurcation diagrams
considered here: because of it, a solution branch may terminate without any kind
of bifurcation occurring, not even a limit point.

5. CLASSIFICATION OF BIFURCATION DIAGRAMS

5.1. Formulation of results. In this section we classify the qualitatively differ-
ent∗∗ bifurcation diagrams that may arise from the system (1) and (4) for different

∗∗The phrasequalitatively different is defined carefully inGolubitsky and Schaeffer(1985), but
intuitive ideas about this concept, developed below, are quite sufficient for the present paper.
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values of the parameters. [More accurately, we classify bifurcation diagrams that
may arise from the asymptotic restitution curve (17). Through the application of
the stability†† results ofGolubitsky and Schaeffer(1985), one can then extend the
classification to (1) and (4), providedε is sufficiently small.] We derive this infor-
mation by purely analytical means, without recourse to simulations.

In presenting the classification, it is economical to combine the parameters in the
model to form dimensionless parameters. The four time constants,τin, τout, τopen,
andτclosecan be combined to form three dimensionless ratios. Two such ratios have
already been introduced:hmin, defined inequation(10), is proportional toτin/τout

andε, defined inequation(22), equalsτout/τclose. As the third, let us define

r = τopen

τclose
. (43)

The model contains two additional parameters,vgatein (4) andvstim defined by (11).
The dependence onvgate is neither sensitive nor interesting, so we shall ignore this
parameter. It is convenient to replacevstim by h thr which is the combination of vstim

andhmin defined inequation(18). By passage to the leading-order asymptotic limit
(17), we have effectively removedε. This leavesr , h thr, andhmin as the essential
dimensionless parameters, and in facthmin plays only a secondary role. Note that
r maylie anywhere in(0,∞) while h thr andhmin are constrained to satisfy

0 < hmin < h thr < 1. (44)

For different parameter values, three qualitatively different bifurcation diagrams
can arise in our model. The three cases, labeledα, β, andγ , are illustrated in
Fig. 9; stable solution branches are shown as solid curves, unstable branches as
dashed. The important features of these bifurcation diagrams are summarized
in the two points below. To associate these bifurcation diagrams with specific
parameter values, we refer to the three regions, labeledα, β, γ , of the r , h thr-
plane identified inFig. 10. We shallshow thatfor all values of (r, h thr) in one of
these regions, the bifurcation diagram is qualitatively similar to the corresponding
diagram illustrated in Fig. 9. In theproof we shall also show that the lower edge
of Regionα has the equation

h thr = 1

r + 1
, (45)

and the boundary between Regionsβ andγ has the equation

r = 1, 0 < h thr < 1
2. (46)

To articulate the first point, let us define

BCLthr = APDthr + DIthr, (47)

††This is a different notion of stability from stability of an equilibrium as characterized, for example,
by (35); it has to do with the structural stability ofequation(36). SeeGolubitsky and Schaeffer(1985)
for furtherdiscussion.
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Figure 9. Three qualitatively different bifurcation diagrams. In all cases,τclose = 150
andhmin = 0.2. α: The 1 : 1 solution ceases to exist due to the threshold.r = 1.2 and
hthr = 0.5. β: The 1 : 1 solution loses stability through a subcritical bifurcation. The
unstable 1 : 1 and alternans solutions are shown by dotted lines.r = 1.1 andhthr = 0.4.
β′: Blow-up of the bifurcation region, showing that the bifurcation is subcritical.γ : The
1 :1 solution undergoes a supercritical bifurcation resulting in stable alternans solutions
and an (dotted line) unstable 1 : 1 solution.r = 0.2 andhthr = 0.6. γ ′: Blow-up of the
bifurcation region.

where APDthr and DIthr are given by (19) and (20), respectively. BCLthr is the short-
est BCL at which it is possible for every stimulus to produce an action potential.
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Figure 10. Regions in parameter space in which the different bifurcation diagrams ofFig. 9
occur.

Point 1. (a) In Caseα, the 1 : 1 response is stable for all BCL> BCLthr, while
for Casesβ andγ the 1 : 1 response loses stability through a pitchfork bifurcation
of (36) at BCL = BCLbif , where BCLbif > BCLthr, at whichalternans (or 2 : 2)
solutions appear. [Equation(55) below gives a formula for BCLbif .] (b) In Caseβ

the bifurcating 2 : 2 solutions are unstable, while in Caseγ they are stable.
Adapting the usual terminology that is derived from fluid mechanics, we

will call the bifurcation diagram illustrated in Caseβ subcritical; in Caseγ ,
supercritical.

Implications for experiment. The simple exponential map (21) exhibits only the
behavior of Casesα andγ . These two cases are familiar from the literature—as
BCL is decreased, either the response jumps abruptly from 1 : 1 to 2 : 1 (in Caseα)
or such a jump occurs following an interval of alternans (Caseγ ). Caseβ is new:
the transition from 1 : 1 to 2 : 1 occurs as a result of a bifurcation rather than of DI
falling below a threshold. This different mechanism has two consequences:

• In Caseβ, the evolution to 2 : 1 behavior involves a long transient during
which the APD alternates between slightly shorter and slightly longer APD’s
than the 1 : 1 response, while in Caseα, the 2 : 1 behaviorestablishes itself
immediately.

• In Caseβ, the location of the 1 : 1-to-2 : 1 transition would not be affected
by stimulus strength. By contrast, at least in our model, DIthr depends on
stimulus strength, so that in Caseα one may extend the range of the 1 : 1
response by increasing the stimulus strength.

It would be interesting to examine more detailed ionic models and experimental
data for either of these signs of the behavior of Caseβ.

To articulate the second point, let us define BCLmax2 as the longest basic cycle
length such that the 2 : 1 solution exists. Similarly, we define BCLmin1 as the
shortest basic cycle length such that either a 1 : 1 or 2 : 2 response exists and is
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stable‡‡. In Caseα, BCLmin1 = BCLthr; in Caseβ, BCLmin1 = BCLbif; and in
Caseγ , BCLmin1 is characterized by the property that the shorter of the diastolic
intervals in the 2 : 2 response equals DIthr.

Point 2. The 2 : 1 solution exists and is stable in an interval that contains
BCLmin1. In symbols,

BCLmin1 < BCLmax2, (48)

and the 2 : 1 response is stable for BCLmin1 < BCL < BCLmax2.

Implications for experiment. As regards experiments, Point 2 implies that in all
three cases there is hysteresis in the bifurcation diagram. The 2 : 1 solution does
lose stability at sufficiently small BCL, but, according to Point 2, this occurs for
BCL below BCLmin1.

Incidentally, although we do not prove it here, a further distinction in behavior
arises in Caseγ . It may happen that the 2 : 1 solution branch ends at a value of BCL
greater than the bifurcation point, where the 1 : 1 branch is still stable; in symbols

BCLbif < BCLmax2. (49)

However, the reverse inequality is also possible. Experimentally, this distinction
would manifest itself during the upsweep of BCL when the 2 : 1 response loses
stability, specifically in whether the system falls back to a 1 : 1 response or a 2 : 2
response. To be precise, (49) holds for a parameter choice(r, h thr) belonging to
Regionγ if and only if

(i) 1 − r(r + 1)
1
r −1

< h thr and
(ii) hmin is sufficiently small.

(50)

5.2. Proofs of the above two claims.

Proof of point 1a. The 1 : 1 solution bifurcates when (35) is violated. Let us
write DIbif for the diastolic interval associated with the first violation of (35).
Differentiatingequation(34) and setting the absolute value of the derivative equal
to one gives the relation

|�′| = 1

r

(1 − hmin)e−DIbif/τopen

1 − (1 − hmin)e−DIbif/τopen
= 1. (51)

‡‡Such significant values for BCL can be estimated using the formulas that appear in the proofs
below. Although we show that thequalitative form of the bifurcation is the same for allr , hthr in
a given region of Fig. 10, quantitatively the numerical values of these parameters vary considerably
over the region. Using the formulas for these parameters, one could address questions such as ‘What
parameter values in a region maximize the interval in which stable 1 : 1 and 2 : 1 responses overlap?’
Despite the interest of suchquestions, we do not pursue them here.
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Wewrite hbif for the denominator in (51),

hbif = 1 − (1 − hmin)e
−DIbif/τopen, (52)

since this is the value to whichh recovers during the time DIbif. Reexpressing (51)
in terms ofhbif, weobtain

1 − hbif

rhbif
= 1, (53)

which may besolved forhbif to give

hbif = 1

r + 1
. (54)

For the solution to remain stable until it ceases to exist at DI= DIthr (as claimed
for Regionα), we musthave DIbif < DIthr. This equation may be reexpressed
in terms ofh ashbif < h thr. Recalling (54), we see that such behavior occurs if
1/(r + 1) < h thr. Conversely, if the reverse inequality holds, then the solution
loses stability before it ceases to exist (as claimed for Regionsβ and γ ). The
boundary between these two behaviors is the curve (45), which completes the proof
of Point 1a.

Remark. At the bifurcation point,

BCLbif = τcloseln
hbif

hmin
+ τopenln

1 − hmin

1 − hbif
, (55)

wherehbif is given by (54).

Proof of point 1b. To start, we want to determine the parameter values at which
the bifurcation changes from supercritical to subcritical. Without much calculation,
one can see that such a transition takes place forr = 1, as follows. Ifr = 1, then
by (54), hbif = 1/2; and by (55),

BCLbif = τ∗ln

(
1 − hmin

hmin

)

whereτ∗ denotes the common value ofτclose andτopen. Substituting into (34) we
obtain, for BCL= BCLbif ,

APDn+1 = τ∗ln

(
1 − hmineAPDn/τ∗

hmin

)
,

and this may be rewritten in the symmetric form

hmineAPDn+1/τ∗ + hmineAPDn/τ∗ = 1.

Applying this form twice we see that APDn+2 = APDn, or � ◦ � is the identity.
In other words, whenr = 1, all the bifurcating solutions are contained in the
‘vertical’ line
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{(APD, BCL) : BCL = BCLbif},
a bifurcation that is neither subcritical nor supercritical. Incidentally, since

(� ◦ �)′(APDn) = 1, (56)

all these 2 : 2 solutions are neutrally stable.
During alternans, every other action potential has the same duration; thus we

define APDodd and APDevenand rewrite (36) as thesystem

�(APDodd, BCL) − APDeven= 0
�(APDeven, BCL) − APDodd = 0.

(57)

To examine the transition from subcritical to supercritical more closely, we apply
the Liapunov–Schmidt reduction (Golubitsky and Schaeffer, 1985) to thesystem
(57). Specifically, we define the variablex = APDeven− APDodd and reduce the
system (57) to a single equation

g(x, BCL) = 0 (58)

with one unknownx and the parameter BCL. (In calculating derivatives below
we shall abbreviate BCL toB.) Notethat, since (57) is invariant under exchange
of APDodd and APDeven, the reduced functiong is odd in x : i.e., g(−x, B) =
−g(x, B). In particular, x = 0 is a solution of (58) for all B; these ‘trivial’
solutions correspond to a 1 : 1 response. The solutions corresponding to a 2 : 2
response bifurcate from the trivial solution at a point where the derivative of (58)
vanishes; in symbolsgx = 0. Whether the bifurcation is subcritical or supercritical
is determined by the sign of the productgx x x gx B. Usingequation (3.23) on page 33
of Golubitsky and Schaeffer(1985) wecan compute that, at the bifurcation point,

gx x x = 2F ′′′(DIbif) − 3(F ′′(DIbif))
2 (59)

and
gx B = F ′′(DIbif). (60)

SinceF is concave downward,gx B < 0. A straightforward calculation gives

F ′′(DIbif) = −r + 1

τopen
(61)

and

F ′′′(DIbif) = (2r + 1)(r + 1)

τ 2
open

(62)

where we have substituted forhbif usingequation(54). Pluggingequations(61)
and (62) into (59) and simplifying we have

gx x x = r2 − 1

τ 2
open

. (63)
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Figure 11. A construction in the proof of Point 1b. In this figure DIinv < DIlarge, which
corresponds to Caseγ .

If r > 1, thengx x x gx B < 0, so the bifurcating solutions exist for BCL> BCLbif,
as illustrated inFig. 9β. Similarly, a bifurcation diagram of the form illustrated in
Fig. 9γ arises ifr < 1.

By exchange of stability [seeGolubitsky and Schaeffer(1985)], we deduce that
near the bifurcation point, the 2 : 2 solutions are unstable in Caseβ, stable in
Caseγ . We will complete the proof by showing thatany 2 : 2 solution in Caseβ
is unstable, andany 2 : 2 solution in Caseγ is stable. Consider a 2 : 2 solution
in which long and short action potentials alternate. Let DIsmall and DIlarge be the
shorter and longer diastolic intervals, respectively. This 2 : 2 solution will be stable
if and only if F ′(DIsmall)F ′(DIlarge) < 1, or equivalently,

F ′(DIlarge) < 1/F ′(DIsmall). (64)

If we define DIinv (‘inv’ for inverse) in terms of the r.h.s. of (64),

F ′(DIinv) = 1/F ′(DIsmall), (65)

then (64) is equivalent to

F ′(DIlarge) < F ′(DIinv), (66)

which in turn is equivalent to an inequality on the slopes of the two chords passing
through(DIsmall, F(DIsmall)) (seeFig. 11)

F(DIlarge) − F(DIsmall)

DIlarge− DIsmall
<

F(DIinv) − F(DIsmall)

DIinv − DIsmall
. (67)

Now
DIlarge+ F(DIsmall) = +DIsmall + F(DIlarge)

(since both sides equal BCL), and it follows that the slope on the left-hand side of
equation(67) equals 1. Let
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hsmall = 1 − (1 − hmin)e
− DIsmall

τopen , h inv = 1 − (1 − hmin)e
− DIinv

τopen;
thenequation(67), with the left-hand side replaced by unity, can be rewritten

τcloseln

(
h inv

hsmall

)
> τopenln

(
1 − hsmall

1 − h inv

)
. (68)

Recalling the definition of DIinv,

F ′(DIsmall)F ′(DIinv) = 1 − hsmall

rhsmall

1 − h inv

rh inv
= 1, (69)

wecan solve forh inv as a function ofhsmall

h inv = 1 − hsmall

1 − hsmall(1 − r2)
. (70)

Substituting equation(70) into (68), exponentiating and simplifying gives the
condition for stability

r2r

(
hsmall

1−hsmall

)r−1

(1 − hsmall(1 − r2))r+1
> 1. (71)

We claim that (71) is satisfied if (h thr, r) belongs to Regionγ , and isviolated if
(h thr, r) belongs to Regionβ. First note fromFig. 11 that DIthr < DIsmall < DIbif,
and it follows thath thr < hsmall < hbif. Thus, recalling (45) and (54), we see that
(hsmall, r) belongs to Regionβ if and only if (h thr, r) belongs to Regionβ, and
likewise for Regionγ . Let us write l.h.s. for the left-hand side of (71). Observe
that l.h.s. equals unity if eitherr = 1 or if hsmall = 1

r+1 = hbif; i.e., l.h.s.= 1 for
(hsmall, r) on the boundaries of Regionsβ andγ . To estimate l.h.s. for (hsmall, r)

in the interior of these regions, we move away from the boundaryhsmall = 1
r+1

by decreasing hsmall while holding r fixed. Onecan show by a straightforward
calculation that the derivative of l.h.s. with respect tohsmall is a positive quantity
times(r − 1). Therefore, in Regionγ , wherer < 1, l.h.s.>1 and the solution is
stable; similarly the solution is unstable in Regionβ.

Proof of point 2. In the proof we shall use the inequality that for a 1 : 1 solution

BCL − APD > DIthr; (72)

this holds because, if (72) were violated, the following diastolic interval would be
so short that the next stimulus could not generate an action potential. For a 2 : 2
solution, both the shorter and longer action potentials must satisfy (72). For a 2 : 1
solution, similar reasoning leads to the conclusion that

BCL − APD < DIthr. (73)

Webegin by characterizing the maximum 2 : 1 solution as follows: In the limiting
case of BCL= BCLmax2, inequality (73) degenerates into the equality
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Figure 12. Graphical solution ofequations(74) and (75). The independent variable is
BCL.

BCL − APD = DIthr.

Since APD= F(DI), where DI= 2BCL−APD = BCL+DIthr, we may rearrange
terms in the displayed equation to conclude

BCLmax2− DIthr = F(BCLmax2+ DIthr). (74)

Theupper curve inFig. 12 illustrates a graphical solution of this equation.
An analogous characterization of BCLmin1 depends on which region of ther , h thr-

plane the parameters lie in, so we consider the three cases separately. In Caseα,

BCLmin1 − DIthr = BCLthr − DIthr = APDthr,

and the observation thatF(BCLmax2 + DIthr) > APDthr implies that (48) is
satisfied.

In Casesβ andγ , let BCLbalt be the BCL at which the difference between even
and odd action potential durations is maximal: i.e., theboundary of the interval
of BCL’s in which the alternans response exists. Then, passing to the limit of a
rearranged version of (72), we conclude that

BCLbalt − DIthr = F(BCLbalt − APDthr). (75)

The lowercurve inFig. 12 illustrates a graphical solution of (75), and it may be
seen from the figure that BCLbalt < BCLmax2. In Caseγ , BCLbalt = BCLmin1 so
(48) holds; in Caseβ, we have

BCLmin1 < BCLbalt < BCLmax2,

which verifies (48) in all cases.
Now we show that for any BCL such that the 2 : 1 solution exists and either a 2 : 2

or 1 : 1 solution is stable, the 2 : 1 solution is also stable. If we are dealing with a
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stable 1 : 1 solution, let DI1 and DI2 be the diastolic intervals of the 1 : 1 and 2 : 1
solutions, respectively.Equations(72) and (73) can be rewritten

F(DI1) < BCL − DIthr

and

F(DI2) > BCL − DIthr

respectively and we conclude that, sinceF is monotone increasing,

DI1 < DI2.

SinceF ′(DI) is monotone decreasing, it follows that

F ′(DI2) < F ′(DI1) < 1,

the latter inequality because the 1 : 1 solution was assumed to be stable. Hence, the
2 : 1 solution is also stable. If we are dealing with a stable 2 : 2 solution, we replace
DI1 by DIlarge, the longer of the two diastolic intervals, and we repeat the preceding
argument with a minor elaboration at the last step: we argue thatF ′(DIlarge) < 1
because by stabilityF ′(DIlarge)F ′(DIsmall) < 1 and by monotonicityF ′(DIlarge) <

F ′(DIsmall).
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