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In this paper we introduce and study a model for electrical activity of cardiac
membrane which incorporates only an inward and an outward current. This model
is useful for three reasons: (1) Its simplicity, comparable to the FitzHugh—Nagumo
model, makes it useful in numerical simtitms, especially in two or three spatial
dimensions where numerical efficiency is so important. (2) It can be understood
analytically without recourse to numerical simulations. This allows us to determine
rather compliely how the parameters in theaael affect its behavior which in
turn provides insight into the effects of the many parameters in more realistic
models. (3) It naturally gives rise to a one-dimensional map which specifies the
action potential duration as a function of the previous diastolic interval. For certain
parameter values, this map exhibits @nmphenomenon—subcritical alternans—
that does not occur for the commonly used exponential map.

(© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Progress in treating heart disease, especially ventricular fibrillation, requires
understanding the electrical behavior of cardiac membrane. Early extensions of
the Hodgkin—Huxley equations to cardiac cells were introduced for the Purkinje
fiber [see, for examplé\oble (196Q 1962)]. Beeler and Reutdl977) introduced
the first model for the dynamics of a ventricular myocyte (myocardial fiber), also
based on the ideas of Hodgkin and Huxley. More complicated models [e.g.,
and Rudy(1991, 1994)], based on sophisticated experiments, including single-cell
and single-channel measurements, were developed later. In part of a larger study,
Fenbn and Karmg1998 attempted to extract a model of minimal complexity that
guantitatively reproduced the restitution behavior of more physiological models.
Their model contains three currents, loosely corresponding to sodium, calcium, and
potassium currents. Carrying their simplifications one step further, in this paper
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we introduce and study a model with just two currents that at least qualitatively
reproduces restitution behavior. The equations we derive may be obtained, after
various rescalings, as a special case of equations introducdroya(1994.

This model is useful for both pedagogical and scientific reasons. On the
pedagogical side: (i) The model provides a good introduction to membrane
dynamics for a reader more comfortable with mathematics than physiology.
(if) Even for experts in cardiology, our analysis may have interest as an illustration
of how asymptotic analysis can simplify complicated models for membrane
dynamics. [For example, ifolkachevaet al. (2009, a one-dimensional map to
approximate the response of the Fenton—Karma model (Fenton and Karma, 1993)
is derived with these techniques.] Because of our desire to foster interdisciplinary
communication, we give a more detailed discussion than the sophisticated reader
will need.

On the scientific side: (i) An explicit formula for the restitution curve can be
derived from the model; thus the response of the model can be described by an
iterated map. The restitution curve is qualitatively similar to the commonly used
exponential restitution curve. (ii) Because of its simplicity, the model can be
understood analytically without recourse to numerical simulations. This allows
one to determine rather completely how the various parameters in the model affect
its behavior (se&ection 5, thereby providing insight into more realistic models.

(i) The simplicity of the model may facilitate computation-intensive simulations
of spatially extended tissue. Incidentally, we find Section 5 that altenans can
occur in this modéleither supercritically [the usual form that occurs, for example,
with the exponential maplolasco and Dahle(l1968] or subcritically. We discuss
the implications that the latter form of alternans would have for experiments.

The renainder of this paper is organized as follows. The model, a system of two
ordinary differential equations, is introduced$action 2 In Section 3 gpplying
asymptotic analysis, we extract a restitution curve (more accurately, a restitution
function) from the ordinary differential equations. $action 4 following Guevara
et al. (19849, we formulate the response of the model to periodic stimulation as
a bifurcation problem. Finally, irSection 5we classify the bifurcation diagrams
that can occur in this model as a function of its parameters, whebiflmgation

TIn using he standard cardiology term ‘alternans’ we do not mean to imply that the model is an
accurate representation of this phenomenon in membrane dynamics. Rather, we believe that one
may learn from a slightly unrealistic model that is simple enough to analyze. For example, the model
has pointed to different behavior that may have gone undetected in more realistic models. It should
be pointed out that this paper studigsctrical alternans. Some authors [e.§uler (1999] hold
that alternans has a purely mechanical origin, that electrical alternans is a derivative phenomenon.
In support of the independence of electrical alternans, let us cite the following:

e In Banville and Gray(20032, two drugs that suppress muscular contraction and thus abolish
mechanical alternans are administered, but (electrical) alternans are still observed. The same
behavior is reported iRlall et al. (1999.

e Pukinje fibers undergo much less contractitran other heart tisgy but alternans is still
observed in these fibers [see for exam@lemouret al. (1997)].
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diagram we mean the graph of action-potential duration as a function of the period
of the stimuli. This classification is obtained with purely analytical means.

2. THE MODEL

The nodel contains two functions of time, the transmembrane potential or
voltage v(t) and a gating variablé(t), and tlese satisfy ordinary differential
equations. In the language of physiology, our model may be described as a
uniformly polarized membrane patch; it may be viewed as describing the dynamics
of a spatially clamped ventricular myocyte. The model may be obtained after
appropriate rescaling as a special casEarima(1994.

The wltage, which is dimensionless and scaled so that it ranges between zero
and oné is governed by the ODE

dv
a = Jn(v, N) + Jout(v) + Jstim(1), (l)
where thethree currentsl,, Jout, and Jsim have the following descriptions: (i) The
inward currentJ;,, a combimtion of all currents which raise the voltage across the
membrane (primarily sodium and calcium), is given by
hC(®v)
Jn(v, h) = : 2)

Tin

where thecubic functionC (v) = v?(1—v) describes the voltage dependence of the
inward current. This voltage dependence, taken in modified form from the Fenton—
Karma nodel, mimics the behavior of the fast acting gates in more complicated
models such akuo andRudy (1997). In our scaled variables, the strengthJpf
is specified by the time constamt,. The behavior ofh as a gate—open when
h = 1, closed wheitn = 0—may be seen froraquation(2). The evolution ot is
governed byequation(4) below. (ii) The outward curreni,, a comlination of the
currents which decrease the membrane voltage (primarily potassium), is given by
Jout = — = (3)
Tout

this current is ungated. (iii) The stimulus curred;n, is an extemal current
applied in brief pulses by the experimenter as specified below.

The gaing variableh, which is dimensionless and varies between 0 and 1,

satisfies the ODE

1-h :
dh - ifv<vwv
open gate (4)

dt — | =h if v > vgate

Tclose

The wltage may be scaled back to the original physiological values using the change of variables
U = Umin + v(Vmax — Umin) With, for exanple, vmin = —70 MV andvmax = 30 mV.
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wheretgose and ropen are the time constants with which the gate closes and opens
andvgae is the change-over voltage; throughout this paper we tgke = 0.13.
With appropriate definitions of step functiohs,(v) andz (v), equation(4) may
be written

% _ hoo (V) h' 5)

7(v)

In more physiologically based models [e.g0 and Rudy (1997)], all gating
variables satisfy equations of the form)( but h,.(v) and r(v) are typically
continuous functions of.

The two-current model is similar in spirit to the FitzHugh—Nagumo model
(FitzHugh, 196Q 1961), but we believe that the two-current model is more closely
related to the physiology of the heart for two reasons. A minor issue: the two-
current model does not exhibit voltage overshoot, a phenomenon observed in
neural but not cardiac tissue. More importantly, the two-current model contains
four time constants, which correspond to the four phases of the cardiac action
potential: initiation, plateau, decay, and recovery. By contrast, the FitzHugh—
Nagumo model has only two time constants. One of these constants is eliminated
in the asymptotic approximation and the other merely defines the time scale of
the action potentials; effectively, there are no dimensionless parameters in the
FitzHugh—-Nagumo model. However, in the two-current model, even after this
reduction in the number of parameters, two dimensionless parameters remain.
Different values of these parameters give rise to the various behaviors classified
in Section 5below.

3. AsyYMPTOTIC DERIVATION OF THE RESTITUTION CURVE

In this section we derive an explicit leading-order asymptotic approximation for
the restitution curve (this is definedSection 3.2elow), based on the assumpfion
that

Tin <K Tout K Topen Tclose (6)

According to 6), the time constants for the voltagguation(1) are muctsmaller
than those in the gating variabégjuation(4). Therefore, changes in the voltage
occur much faster than changes in the gating variable except possibly for points

8The @sumption thatroyt < Topen Tclose do€s not hold for all physiological models: i.e., in
many ionic models the time constants of a current may be comparable to the time constants of gates.
If Tout, Topen @ndrejgseare all comparable but much greater thgn onemay still apply asymptotic
analysis to derive a map from the ODE'’s, but the derivation is harder and the results are not as clean.
In keeping with the pedagogical godlitustrating the use ofsymptotic methods, we have restricted
our attention to the simplest case that produces an excitable medium.
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Figure 1. (a): Nullcline and trajectory of)and @) in theh, v plane. The four stages of

the action potential are labeled. (b): The voltage trace of the same action potential also
showing the four stagesgjose = 150 Ms,zopen= 120 mMs,tout = 6 Ms, 7jn = 0.3 ms,
andvstim = 0.1.

(v, h) near the nuliclines of the voltageguation(1): i.e., assuminglsim = 0, near
solutions of

_ hC(v) v @)

Tin Tout

0

Apart from the trivial case = 0, equation(7) expresses the condition that the
inward and outward currents are exactly balanced. Solving this equatibrafoa
function ofv yields

Tin U Tin 1

h= == ®)

o C(W)  Towv(L—v)

and forv as a function oh,

1 1o+
v=vah) =3+ Z—Tlnthfl. @)
ou

This ndicline is the dashed curve graphedHig. 1(a). Note thatv/dt is positive
if v_(h) < v < v, (h) and thatdv/dt is negative in the complementary range
v < v_(h) orv > vy (h). Defining hyi, as the minimum value fdn on this curve,
we see from eitherg) or (9) that

hmin = 43. (10)

Tout

3.1. Response to a single stimulus. Suppose that, starting from the stable
equilibrium of equations(1) and @) at (v, h) = (0, 1), a lrief stimulus current
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is applied to increase the voltage. If the duration of the stimulus is short compared
to 7in, then he voltage rises to the value

Ustim ~ / Jstim(t)dt, (11)
and the change ih may be redected. We assume that
Vstim > V- (1) (12)

where v_(h) is defined by 9): in words, that the statévgm, 1) immediately
following the stimulus current lies between the two branches of the nullcdiso(
thatdv/dt > 0. Such a stimulus leads to an extended rise in the voltage known
as anaction potential. The following description of an action potential, based on
assumption®), identifies four phases, labeled 1-4Hig. 1

(i) Following the stimulus,Ji, dominatesJ,,;, and the wltage rises quickly to
the nullclinev = v, (1). This occurs on a time scale of ordegf, and the
change irh during this time is negligible.

(i) As the gate closes according tequation (4), the voltage follows the
nulicline, keeping the inward and outward currents balanced; thas,=
vy (h(t)). This occurs on a time scale of ordgfyse

(iii) When the gating variable reachég,n,the soldion ‘falls off the nullcline’:
specifically, Jo,t dominatesJ;, and the voltage drops toward = 0. This
occurs on a time scale of ordey.

(iv) The voltage stays small and the gate slowly reopens. The recovery has time
constantrypen, and it ontinues until the next stimulus is applied.

Frequently the fine structure of the action potential is ignored and it is described
by only its duration. In this paper, we defirthe action potential duration (APD) to
be the time during which the voltage is greater thgf. The voltage exceedgae
during phase 2 and during parts of phases 1 and 3. However, phases 1 and 3 are very
brief—i.e., negligible in leading-order asymptotics—so the APD is approximately
equal to the length of phase 2; i.e., the time requirechftor decay from its initial
value ofh = 1 toh = hpj,. Sinceh ewlves according tequation(4), to leading
order the APD is

hmin

1
APDpax = Tgloseln ( ) . (13)

As the notation APDnax suggests, 13) specifies the longest possible action
potential duration.

3.2. Multiple stimuli and the S1-S2 restitution curve. Next we will explore
the behavior of the model when, as illustratedrig. 2 it is simulated twice in

Min experimaits the APD is often defined as the time during which the voltage is more than 10% of
its maximum amplitude.
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Figure 2. \oltage trace and gating variable, frob) &nd @), as functons of time, in
response to two stimuli in sequence. Equation parameters are the sameigs Inand
S =400 ms.

sequence. Since we begin with fully recovered tissue {i.e:,0, h = 1), the first
stimulus produces an action potential identical to the one described above; thus,
its duration AP} = APDnax is given by (3). If the first stimulus arrives at time
t = 0 and tle second at timé = S, then he time interval between the end of
the first action potential and the arrival of the second stimulus, calledisislic
interval, is

Dl = S— APD;. (14)

Below, using @), we derive a functiorF (Dl), with the property that the second
action potential, in leading-order asymptotics, has duration

APD, ~ F(DI); (15)

specifically, see17). This function, or more properly its graph, is called the
restitution curve.

The response to the second stimulus differs from the first because the system
is not starting from equilibrium. Specifically, during phase 4 of the first action
potential, i.e., for

APD; <t < S,

v ~ 0 andh satisfies 4) with initial conditionh = hp,, att = APD;. Thus, at the
arrival of the second stimulus,

DI
h(9=1-@1- hmin)e_ fopen, (16)

Thesecond stimulus raisasto vgim Without changingh appreciably from 16).
If vsim IS large enough to generate a second action potential—1€pbddlow—
we may also decompose the second action potential into four phases. During
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Figure 3. The restitution curve {) derived from the 2-current model, including threshold
behavior. Parameters are the same d3dn 1, so thathyj, = 0.2.

phase 1, the voltage rises rapidly to meet the nullcline at the poirgth(S)), h(S))
while h remains essentially constant. During phas€i2h) decays along the
nulicline (9) from h(S) to hpin. Phases 3 and 4 are unchanged.

Now in leading-order asymptotics, ARDs the length of phase 2, i.e., the
time required forh to decay fromh(S) to hyin. Recalling (L6), we obtain that
APD, ~ F(DIl) where

DI
1- (1 - hmin)e_ Topen

F(DI) = Tgioseln (17)

hmin

which is gaphed inFig. 3. Incidentally, this restitution curve appearskarma
(1994. In the pedagogical spirit of this paper, we have deriviEf) {n defil.

For the second action potential to occur, the stimulus must raise the voltage
sufficiently to pass the nullcline given iequation(8). For a particular stimulus
strength there is a threshold value for the gate variable, hgay such bhat if
h(S) > hy then an action potential will be elicited andhfS) < hy, then the
voltage will simply decay back towards zero. Indebg; is exactly the value dfi
on the nulicline 8) for v = vggim: i.€.,

ho — Tin 1 _ Nmin
thr = — = .
Tout Ustim(1 — Vstim) Avstim(1 — vstim)
The time required, starting frorh,i,, for the soltion of (4) to reachhy, gives a
minimum value for DI

(18)

1— hpi
Dlinr = Topenln < 1_ h::) ; (19)

the associated minimum APD is

h
APDthr == tc|ose|n <ﬂ> . (20)

hmin
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Figure 4. A pair of S1-S2 experiments that demonstrate the phenomenon of a threshold
diastdic interval. The difference in DI in these two simulations is 0.01 m. For a DI

of 84.25 ms, APD = 20679 ms (dashed curve), whereas for a DI of 84.24 m, only a
subthreshhold response is produced (solid curve). (Before the second stimulus the two
curves coincide.) Parameters are the same BgjinlL

Therefore, in our asymptotic approximation, the restitution curve is given by
equation(17) for DI > Dlg, and is zero for DI< Dly,, adiscontinuous function,
as illustrated irFig. 3.

To justify our approximation of letting the restitution curve be discontinuous, we
show inFig. 4a pair of sinulations of the ODEY) and @) with diastolic intervals
near D},,. An adion potential is elicited with a DI of 84.25 ms but with a DI of
only 0.01 ms shorter, the voltage never rises significantly abgye We ignore
the latter response, called a subthreshhold response, because such a voltage pulse
would not propagate away from the stimulus site in a spatially extended model.

Remark. Our assumptions are intended to mimic the S1-S2 experimental
protocol Boyett am Fedida 1984 in which the heart is paced slowly for several
paces, allowing for full recovery, and then the APD following a premature stimulus
is recorded. Although we consider only one preparatory action potential, our model
is so simple that identical results would be obtained from multiple preparatory
action potentials. Experimental data from this protocol is often fitted with a
restitution function of the form [e.gNolasco and Dahleii1968, Guevaraget al.
(1984, Glass and Mackey1988]

F(DI) = a— be PVe, (21)

In the limit of large DI, our functionequation(17) assumes this form with
a = APDpyax b = tciose(1 — hmin), andc = topen This may be seen using the
approximation liil+z) ~ zfor smallz. However, (7) and @1) differ significantly
at smaller DI. InSection 4 we shalluse the mapping approximatioh?) to sudy
the effect of periodic stimulation on the model3 é&nd @).
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Figure 5. (a): S1-S2 restitution df)(and @) for severavalues ofe. Theparaméerszgigse
andropenhave the ame values as iRig. 1, and as varies, he rdio 7jp /7oyt is held fixed
at 0.05 (as irFig. 1). The curves onverge to the functionl(y) ase — 0. (b): Relative
error as a function of. This log—log plot has a slope of approximatel{82vhichconfirms
that the error in17) is of ordere2/3.

3.3.  Accuracy of the asymptotic approximation. In deriving (L7), we neglected
the time spent in phases 1 and 3 of the action potential. To discuss the accuracy of
this approximation, we introduce the parameter

€ — Tout (22)

9
Tclose

a measure of how much shorter phase 3 is compared to phase 2. (Remark: As
we shall see below, time spent in phase 1 is asymptotically negligible compared to
time spent in phase 3.kquation(17) is the keading order term in an asymptotic
expansion ax — 0 of the restitution curve.Figure Ha) shows the restitution
curves produced by solving the ODE) @nd @) numerically in an S1-S2 protocol

for several values oé. The computed restitution curves indeed approach the
magpping (L7) ase — 0, including the location and height of the jump at Bl

Dly. These graphs illustrate a common feature of asymptotics: the qualitative
prediction of asymptotic analysis usually remains correct far beyond the point
where quantitative agreement begins to deteriorate.

To understand the deviation ig. 5a) between X7) and the omputed resti-
tution curves fore > 0, it is necessary to examine higher-order terms in the
asymptotic expansion. At first glance, one might propose an expansion in integral
powers ofe. Howewer, the transition from phase 2 to 3—'falling off the slow
manifold'—is a singular phenomenon, and this may introduce fractional powers
in the expansion. Indeed, as illustrated by the log—log ghag.[ Sb)] the first
correction term has ordef/S.

We may derive this exponent by a scaling argument modeled on the treatment
(Bender and Orszagl978 of relaxation oscillations in Rayleigh’s equation.
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Following a stimulus at timé = S, equation(4) has the slution

t-s
h(t) = h(S)e7 Tclose (23)

whereh(S) is given by (6). Lett, be the time at whichZ3) givesh(t,) = hmin;

then we may rewriteZ3) as
t—ty

Substituting @4) into (1) we obtain a nonautonomous equation foffor t in a
neighborhood of,,

d _tt
_U — L (TLUthmine Tclosev(l — v) — 1) . (25)
dt Tout \ Tin

We donot knowv(t,) exadly but we know from 9) that, sinceh(t,) = hpin =
471, to leading order
v(t) ~ 3. (26)

To study the initial value problem2@) and @6) more carefully, let us introduce

scaled variables
1
v — 5 _
—= f=
eP
Note that we have nondimensionalized time withse We shalldetermine the
appropriate exponents andg by the principle of dominant balancBénder and

Orszag 1979 as follows. Substituting Z7) into (24), we obtain

eP dv 1 1 ar (1 1
— = (Z4ePi) (4T (Z+ePi) (S —€Pp) —1). (28
€947 ose dt 77out<2+6 U)( <2+6 U) <2 € U) ) ( )

Expanding the exponential ir28) and recalling thatt = 14/ Tc0se We 0Obtain,
modulo higher order terms (i.e=2, €P+9, or €°P),

dv 1
e”p*qd—? = —Eeqt — 2¢%Py2, (29)

To havedominant balance the three terms29) must allbe of the same order: i.e.,

t—1t,

€%7¢i0se

(27)

V=

1+p-q=q=2p

which hassolution p = 1/3, g = 2/3. Therefore, recalling2), we see that
the time required to cross the neighborhoodvot= 1/2—to fall off the slow
marifold—is of the ordere?/37¢pse
In more detail, foit < 0 the two terms ofhe right-hand side (r.h.s.) of
dv 1

&= —5t- 202 (30)
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Figure 6. Comparison of dynamic ad—S2 restitution curves fod) and @). The SI-S2
restitution is the solidine; the points on theynamic curve are the's. Paameters are the
same as iffrig. 1

approximately balance as discussed above for phase 2f BolO the sdution

of (30) blows upin finite time; i.e., the voltage evolves rapidly to the region
characterized above as phase 3. Following the treatm@wvo(kian and Cole
198] of Rayldgh’s equation, one could continue this analysis to estimate the
coefficientC in the series

APDopg = APDpyap+ Ce?/? (31)

[notation as inFig. 5(b)] but we have not pursued this rather tedious calculation.

4. DYNAMIC RESTITUTION

4.1. Phenomenology. Suppose that one stimulates a heart cell periodically,
waits until it settles into a stable periodic response, and then records the APD.
If the stimulation period is BCL (acronym fdmasic cycle length), then the diastolic
interval in the periodic solution is

DI = BCL — APD. (32)

With such a procedure one obtains a single p@#PD, DI) on the so-called
dynamic restitution curve.

To obtain the full dynamic restitution curve, one must perform this procedure
repeatedly for various values of BCL. Typically one starts with a relatively long
BCL and decreases BCL in small increment§igure 6 shows the dynamic
restitution curve foequationg1) and @) for one set of parameter values obtained
by simulating with this protocolx’s), along with the S1-S2 restitution curve (solid
line): the two curves essentially coincide. For a model as simplé@sttere is
no meaningful difference in behavior in S1-S2 and dynamic restitution. We make
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Figure 7. Dynamic restitution experiments wiflower plot) and vithout (upper plot)
aternans Hall et al., 1999.

the distinction purely as a pedagogical device. However, the distinction is very
significant for experiments and more sophisticated models.

Notethat thex’s in Fig. 6, points on the dynamic restitution curve, stop slightly
alove Dl This is because at small DI the periodic solution is not stable.
Exploration of this loss of stability is the main focus of this section. Incidentally,
it is believed Winfreg 1987 Karmg 1993 that this loss of stability is a precursor
to the onset of arrhythmia.

At large BCL, and in particular for the simulation data showrFig. 6, each
stimulus produces an action potential, which is called 1: 1 behavior. As the BCL
is decreased, this 1:1 behavior eventually becomes unstable. Possible behaviors
beyond this loss of stability are suggested-ig. 7, taken from the experiments
of Hall et al. (1999 on andl pieces of frog heart. For the animal illustrated in
the upper figure, when BCL was decreased below the stability boundary, the heart
evolved to what is called 2: 1 behavior: i.e., only every other stimulus produced
an action potential. In the figure the upper curve represents APD’s measured for
the 2:1 behavior. For the animal illustrated in the lower figure, 2: 1 behavior also
occurred for sufficiently small BCL, but what is called 2 : 2 behavioelternans
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occurred before 2:1 behavior; this term means that every stimulus produced an
action potential but the action potentials alternated between short and long in a
periodic state of period 2 BCL. In the figure, alternans appear where the lower
curve becomes double valued.

Following a sequence of experiments in which BCL was gradually decreased,
Hall et al. (1999 then gradually increased BCL. In this way, they observed the
hysteresis shown in the figures: i.e., for some values of BCL, both 1: 1 (or possibly
alternans) and 2:1 responses are possible, and which occurs depends on prior
history.

4.2. Mathematical formulation. Graphs of APD vs. BCL, such as kig. 7, are
called bifurcation diagrams. In this subsection we formulate equations that specify
the bifurcation diagrams for our model, as described by the approximédtign (
Bifurcation diagrams for the model, as compared to experiment, contain additional
information in that unstable solutions may be included along with stable ones.
In particular, we shall see that in situations where the model exhibits alternans
(as in the lower plot ofig. 7), a 1:1 solution branch continues beyond the point
where the 1:1 response loses stability.

Let us aonsider the procedure for determining a point on the dynamic restitution
curve in the context of the modelT). Suppose that, starting from equilibrium,
stimuli are applied with period BCL, generating a sequence of action potentials of
duration APDQ, APD,, APDs, ... . (For the moment we assume that every stimulus
does generate an action potential.) From our discussion of the restitution curve in
Section 3 we see that all the history before a given DI does not matter and that each
new APD is determined by only the valueloft the time of stimulation, which in
turn is determined by the length of DI: in symbols,

APDny1 = F(Dly), (33)

where D}, denotes the diastolic interval following ARDSinceBCL is specified,

we can replace Q| in equation(33) with BCL — APD,, so we have APR.;

expressed as a function of ARD Calling this function ® and recalling the
definition (L7) of F, we may write

—BCL+APDy
1- (1 - hmin)e fopen

hmin

APDp, 1 = ®(APD,) = TelosdN

(34)

In other words, the sequence of action potential durations is determined by
iterations of the mag defined by 84).

As discussed as, for example, Sirogatz(1994), a fixed point of 84), by which
we mean a solution of

& (APD,) = APD,,
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| F(2BCL-APD,)

/ F(BCL-APD,)

APD,,  BCL-Dly, APD,

Figure 8. Graphical representation of fixed points of the mapBdp(édid curve) and of
(40) (dotted curve). Equation paraters are the same ashig. 1, andBCL = 450 ms.

represents a possible limit of the sequefsBD,}. The sdid curve inFig. 8shows

a grph of ® for BCL = 450 ms. [Although the notatio® (APD,) does not
indicate it, the mapping to be iterated depends on BCL. When clarity requires, we
shall write ® (APD,,, BCL).] The intersection of this graph with the diagonal line
APD, ;1 = APD, is of course a fixed point ob. It is shown inStrogatz(19949

that a fixed point APD of the mapping® is stable if and only if

|&'(APD,)| < 1. (35)

A fixed point of ® is associated with a 1:1 response. An alternans response
corresponds to a period-2 sequence of iterates, or equivalently a fixed point of the
composed ma@ o &, which isdefined by® o ®(APD) = ®(®(APD)). The
equation for such fixed points may be written

W(APD,BCL) =0 (36)

whereV is defined by
W(A, B) = ®(P(A, B), B) — A. (37)
A brief calculation shows that a solution (APD, BCL) 86} is stablefandonly if
D;W(APD, BCL) < 0, (38)

where D1W denotes the partial derivative with respect to its first argument.
Of course a fixed point ob is also a fixed point ofb o ® and hence a solution of
(36). Moreover, the stabilityd8) condition reduces to3p) in this case. Thus the
single equation(36), a bifurcation problem of the type studied Goluhitsky and
Schaeffer(1989, characterizes all 1: 1 and 2 : 2 responses of our model. Moreover,

IMore accurately, the fixed point is unstabledf (APD,)| > 1; and if|®’ (APDy)| = 1, stability
is determined by higher-order terms. Despite such subtleties, we shall describe conditions analogous
to (35), as necessary and sufficient for stability.
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this bifurcation problem has a reflectional @ symmetry: if (APD, BCL)
satisfies 86), then so does® (APD), BCL). We sh#l see inSection 5that the
transition from 1:1 to 2: 2 behavior may be understood as a pitchfork bifurcation
(Goluhtsky and Schaefferl985 of (36).

To describe 2:1 responses, we need to relax our assumption that every stimulus
produces an action potential. The issues here are related to the fact gt B
we havegraphed 84) (the dark curve) only on the interval ARP < APD, <
BCL — Dly,. The lower limit simply represents the shortest possible action
potential, but if the upper limit is violated, then the first stimulus after ARDI
arrive too soon to produce an action potential. In this case, assuming BCL is not
excessively short, the next action potential will be produced by the second stimulus
after AP, with diastolic interval [se€&uevareaet al. (1984)]

DI = 2BCL — APD,. (39)

Thus inFig. 8 we have contiued the graph in the range ARD BCL — DIy, by
plotting (dashed line)

F(2BCL — APDy). (40)

Intersections of this dashed curve with the diagonal correspond to a 2: 1 response
of the model. The equation for such intersections is

F(2BCL — APD) — APD = 0. (41)
As in (35), a solution(APD, BCL) of equation(41) will be stable if and only if
|F'(2BCL — APD)| < 1. (42)

In conclusion, what we are calling a bifurcation diagram in this paper, the set
of points (BCL, APD) that arise as 1:1, 2:2, or 2:1 responses of the model,
is a mathematical hybrid: i.e., a graph of the solutions of b88%) &énd @1) on
one set of axes, along with indications of stability. Moreover, the discontinuity
associated with the threshold 84) at DI = Dly,, gives rise to another nonstandard
[compared tdGolukitsky and Schaeffefl985] feature of the bifurcation diagrams
considered here: because of it, a solution branch may terminate without any kind
of bifurcation occurring, not even a limit point.

5. CLASSIFICATION OF BIFURCATION DIAGRAMS

5.1. Formulation of results. In this section we classify the qualitatively differ-
ent* bifurcation diagrams that may arise from the systéjrad @) for different

**The phrasequalitatively different is defired carefully inGolubitsky and Schaeffgf1985, but
intuitive ideas about this concept, developed below, are quite sufficient for the present paper.
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values of the parameters. [More accurately, we classify bifurcation diagrams that
may arise from the asymptotic restitution curve7j. Through the application of

the stability " results ofGolulkitsky and Schaeffef1985, one can then extend the
classification to ) and @), providede is sufficiently small.] We derive this infor-
mation by purely analytical means, without recourse to simulations.

In presenting the classification, it is economical to combine the parameters in the
model to form dimensionless parameters. The four time constantSout, Topen
andrggseCcan be combined to form three dimensionless ratios. Two such ratios have
already been introducedt,,,, defined inequation(10), is proportional tori, / Tout
ande, defined inequation(22), equalsroyyut/ teiose AS the thrd, let us define

r = fopen (43)
Tclose

The nodel contains two additional parametergyein (4) andvs;im defined by 11).
The degndence omg.e is neither sensitive nor interesting, so we shall ignore this
parameter. It is convenient to replacgm by hy,, which is the canbinaion of vggim
andhp, defined inequation(18). By passage to the leading-order asymptotic limit
(17), we have effectively removed This leaves, hy,, andhn,, as the essential
dimensionless parameters, and in fagt, plays only a secondary role. Note that
r maylie anywhere in0, co) while hy,, andhp,, are constrained to satisfy

0 < hmin < hypr < L. (44)

For different parameter values, three qualitatively different bifurcation diagrams
can arise in our model. The three cases, labele@, andy, are illustrated in
Fig. 9 stable slution branches are shown as solid curves, unstable branches as
dashed. The important features of these bifurcation diagrams are summarized
in the two points below. To associate these bifurcation diagrams with specific
parameter values, we refer to the three regions, labelesl, y, of ther, hy,-
plane identified irFig. 10. We shallshow thatfor all values of (r, hy,) in one of
these regions, the bifurcation diagramis qualitatively similar to the corresponding
diagramiillustrated in Fig. 9. In the proof we shall also show that the lower edge

of Regiona has the equation
1

e = = (45)
and the boundary between Regighandy has the equation
r=1, 0 < hinr < 3. (46)
To articulate the first point, let us define
BCLthr = APDinr + Dltr, (47)

TThis is a different notion of stability from stability of an equilibrium as characterized, for example,
by (35); it has to do with the structural stability efjuation(36). SeeGolubitsky and Schaeff¢1985
for furtherdiscussion.
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Figure 9. Three qualitatively different bifurcation diagrams. In all casggse = 150

andhmin = 0.2. «: The 1:1 solution ceases to exist due to the thresholes 1.2 and

hiny = 0.5. B: The 1:1 solution loses stability thugh a subcritical rcation. The
unstable 1:1 and alternans solutions are shown by dotted lines1.1 andhy,, = 0.4.

B’ Blow-up of the bifurcation region, showing that the bifurcation is subcritigal The

1:1 solution undergoes a supeitizal bifurcation esulting in stable lgernans solutions
and a (dated line) unstable 1:1 solutiom. = 0.2 andhy,, = 0.6. y’: Blow-up of the

bifurcation region.

where APLQ, and Dy, are given by 19) and 0), respectively. BCly, is the short-
est BCL at which it is possible for every stimulus to produce an action potential.
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1

thr

Figure 10. Regions in parameter space in which the different bifurcation diagraigs &f
occur.

Point 1. (a) In Casex, the 1:1 response is stable for all BCL BCLy,, while
for Cases8 andy the 1: 1 response loses stability through a pitchfork bifurcation
of (36) at BCL = BCLyj, whae BCLy > BCLyy,, at whichalternans (or 2:2)
solutions appear.Hguation(55) below gives adrmula for BCly.] (b) In Casep
the bifurcating 2 : 2 solutions are unstable, while in Caghey are stable.

Adapting the usual terminology that is derived from fluid mechanics, we
will call the bifurcation diagram illustrated in Cage subcritical; in Casey,
supercritical.

Implications for experiment. The dmple exponential ma@(@) exhibits only the
behavior of Casea andy. These two cases are familiar from the literature—as
BCL is decreased, either the response jumps abruptly from 1:1to 2:1 (ixGase
or such a jump occurs following an interval of alternans (CaseCasef is new:
the transition from 1:1to 2:1 occurs as a result of a bifurcation rather than of DI
falling below a threshold. This different mechanism has two consequences:

e In Caseg, the ewlution to 2:1 behavior involves a long transient during
which the APD alternates between slightly shorter and slightly longer APD’s
than the 1:1 response, while in Casgthe 2: 1 behavioestablishes itself
immediately.

e In Caseg, the location of the 1:1-to-2:1 transition would not be affected
by stimulus strength. By contrast, at least in our mode},,[@lepends on
stimulus strength, so that in Cageone may extend the range of the 1:1
response by increasing the stimulus strength.

It would be interesting to examine more detailed ionic models and experimental
data for either of these signs of the behavior of Case

To articulate the second point, let us define Bfle as the longest basic cycle
length such that the 2:1 solution exists. Similarly, we define BfiLas the
shortest basic cycle length such that either a 1:1 or 2:2 response exists and is
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stablé*. In Casea, BCLyini = BCLy; in Casef, BCLmini = BCLyi; and in
Casey, BCLnin1 is characterized by the property that the shorter of the diastolic
intervals in the 2: 2 response equalshpl

Point 2. The 2:1 soltion exists and is stable in an interval that contains
BCLminz. In symbols,

and the 2: 1 response is stable for Bl < BCL < BCLaxe

Implications for experiment. As regads experiments, Point 2 implies that in all
three cases there is hysteresis in the bifurcation diagram. The 2:1 solution does
lose stability at sufficiently small BCL, but, according to Point 2, this occurs for
BCL below BCLjn:.

Incidentally, although we do not prove it here, a further distinction in behavior
arises in Casg. It may hgpen that the 2: 1 solution branch ends at a value of BCL
greater than the bifurcation point, where the 1: 1 branch is still stable; in symbols

BCLpit < BCLmaxz- (49)

However, the reverse inequality is also possible. Experimentally, this distinction
would manifest itself during the upsweep of BCL when the 2:1 response loses
stability, specifically in whether the system falls back to a 1:1 response ora 2:2
response. To be precisel9j holds for a parameter choidge, hy,,) belonging to
Regon y if and only if

1
() 1-rc+Dr '<hp and (50)
(i) hmin is sufficiently small

5.2. Proofs of the above two claims.

Proof of point 1a. The 1:1 soltion bifurcates when3pb) is violated. Let us
write Dlyjs for the diastolic interval associated with the first violation 8b)(
Differentiatingequation(34) and setting the absolute value of the derivative equal
to one gives the relation

1 (1 — hmin)e*mbif/fopen
=7 =1 51
@] r 1 — (1 — hppin)e D!bit/Topen (51)

*such sinificant values for BCL can be estimated using the formulas that appear in the proofs
below. Although we show that thgualitative form of the bifurcation is the same for al| hiy in

a given rgion of Fig. 10, quantitatively the numerical values of these parameters vary considerably
over the rgion. Using the formulas for these parameters, one could address questions such as ‘What
parameter values in a region maximize the interval in which stable 1:1 and 2: 1 responses overlap?’
Despite the interestf@uchquestions, we do not pursue them here.
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We write hys for the denominator iny1),
hpit = 1 — (1 — hpyjn)e Dot/ 7open, (52)

since this is the value to whidirecovers during the time ). ReexpressingHl)
in terms ofhy;t, we obtain

1 — hyit
=1 53
I it 3)
which may besolved forhy; to give
1
hpit = . 54
bif r+ 1 ( )

For the solution to remain stable until it ceases to exist atMIy,, (as claimed
for Regiona), we musthave Dl < Dly,. This equation may be reexpressed
in terms ofh ashy; < hy. Recalling 64), we see that such behavior occurs if
1/r +1) < hy. Conversely, if the reverse inequality holds, then the solution
loses stability before it ceases to exist (as claimed for Regibasd y). The
boundary between these two behaviors is the cutgg (hich completes the proof
of Point la.

Remark. At the bifurcation point,

hiit 1 — hmin
BCLyir = n—- n ,
bif = Tclosd . + Toper’ 1— hyp

(55)
wherehy;; is given by 64).

Proof of point 1b. To strt, we want to determine the parameter values at which
the bifurcation changes from supercritical to subcritical. Without much calculation,
one can see that such a transition takes place ferl, as follows. Ifr = 1, then
by (54), hpir = 1/2; and by §5),

1 — hp
BCLbif = r*ln < mm)

min

wherer, denotes the common value @fose aNd Topen Substituting into 84) we
obtain, for BCL= BCLbif,

1 — hyin@?P0n/
APD,,1 = 7.In ( mn ) :

hmin

and this may be rewritten in the symmetric form

hmineAPDrH—l/T* + hm|neAPDn/T* = 1-

Applying this form twice we see that AR, = APD,, or ® o @ is the identity.
In other words, whem = 1, all the bifurcating solutions are contained in the
‘vertical’ line
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{(APD, BCL) : BCL = BClLyj},

a kifurcation that is neither subcritical nor supercritical. Incidentally, since
(® o @) (APD,) = 1, (56)

all these 2: 2 solutions are neutrally stable.
During alternans, every other action potential has the same duration; thus we
defire APDygq and APQenand rewrite 86) as thesystem

Q(APDodd, BCL) - APDeven: 0

q)(APDeverb BCL) - APDodd == 0. (57)

To examine the transition from subcritical to supercritical more closely, we apply
the Liapunov—Schmidt reductioiplubitsky and Schaefferl985 to the system
(57). Specifically, we define the variable = APDgyen — APDyyq and reduce the
system §7) to a shgle equation

g(x,BCL) =0 (58)

with one unknownx and the parameter BCL. (In calculating derivatives below
we stall abbreviate BCL tdB.) Notethat, since %7) is invariant under exchange

of APDygq and APRQ.en the raluced functiong is odd inx: i.e., g(—x, B) =

—g(x, B). In particular,x = 0 is a soltion of (58) for all B; these ‘trivial’
solutions correspond to a 1:1 response. The solutions corresponding to a 2:2
response bifurcate from the trivial solution at a point where the derivativB8f (
vanistes; in symbolg, = 0. Whether the bifurcation is subcritical or supercritical

is determined by the sign of the produgkxgxs. Usingequation (3.23) on page 33

of Goluhtsky and Schaeffef1985 we can compute that, at the bifurcation point,

Oxx = 2F” (Dlif) — 3(F” (Dlyif))? (59)
and
Oxs = F"(Dlpif). (60)
SinceF is concave downward)cg < 0. A straightforward calculation gives
y r+1
F”(Dlpit) = — (61)
Topen
and 2r +1)(r +1)
F”(Dlpj) = ——M——= (62)

2
Topen

where we have substituted fbig;; using equation(54). Pluggingequations(61)
and 62) into (59) and simplifying we have

r2—1
Oxxx = - (63)
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Figure 11. A construction in the proof of Point 1b. In this figurg,pl< Dljarge Which
corresponds to Cage

If r > 1, thenguxxOxe < 0, so the bifurcating solutions exist for BCL BCLyj,
as illustrated irFig. 98. Similarly, a bifurcation diagram of the form illustrated in
Fig. 9y arises ifr < 1.

By exchange of stability [se&olulitsky and Schaeffef1985], we deduce that
near the bifurcation point, the 2:2 slutions are unstable in Cag® stable in
Casey. We will complete the proof by showing thany 2: 2 soltion in Cases
is unstable, an@ny 2:2 soltion in Casey is stable. Consider a 2:2 solution
in which long and short action potentials alternate. Lej,iand Dlage be the
shorter and longer diastolic intervals, respectively. This 2: 2 solution will be stable
if and only if F'(Dlsman) F'(Dliarge) < 1, Or equivalently,

F'(Dliarge) < 1/F'(Dlsman. (64)
If we define DJ,y, (‘inv’ for inverse) in terms of the r.h.s. ob@),
F'(Dliny) = 1/F'(Dlsman, (65)
then @4) is equivalent to
F'(Dliarge) < F'(Dliny), (66)

which in turn is equivalent to an inequality on the slopes of the two chords passing
through(Dlgmar, F (Dlsman) (seeFig. 11)

F(Dllargp) - F(Dlsmall) F(Dlinv) - I:(DlsmaID

< 67
Dllarge_ Dlsmall DIinv - DIs,mall ( )

Now
Dllarge+ I:(DlsmaID = +D|small+ I:(Dllarge)

(since both sides equal BCL), and it follows that the slope on the left-hand side of
equation(67) equals 1. Let
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Dlsmall Dlinv

hsmall =1-(1- hmin)e_ fopen | hipy =1 — 1- hmin)e_ Topen ;

thenequation(67), with the left-hand side replaced by unity, can be rewritten

hinv ) (1 - hs,mall)
TelosdN > ToperdN [ ——— | . 68
cIostJ (hsmall ope 1_ hinv ( )

Recalling the definition of O}y,

/ / 1— hgmarl — h;
Hmmmmew:rhfﬂrhw=L (69)
smal nv

we can solve folh;,, as a function ofgma

1- hsmall
1- hsmall(:L - r2) .
Substituting equation(70) into (68), exponentiating and simplifying gives the
condition for stability

hinv =

(70)

Nsmall 1

2r <m)

Ao — 12y~ & ()

We claim that {71) is sdisfied if (hy,, r) belongs to Regiow, and isviolated if
(hihr, 1) belongs to Regio. First note fromFig. 11 that Dl < Dlgman < Dlpit,
and it follows thathy,y < hsman < hpis. Thus, recalling 45) and 64), we see that
(hsmar, ') belongs to Regiorg if and only if (hy,, r) belongs to RegioB, and
likewise for Regiony. Let us write I.h.s. for the left-hand side afl). Observe
that I.h.s. equals unity if either = 1 or if hgma = Hil = hyir; i.e., l.h.s.= 1 for
(hsman, 1) on the boundaries of Regiofisandy. To edimate |.hs. for (hgman, ')
in the interior of these regions, we move away from the bountigry = %
by decreasing hgmay While holdingr fixed. Onecan show by a straightforward
calculation that the derivative of I.h.s. with respechtg, is a positive quantity
times(r — 1). Therdore, in Regiony, wherer < 1, l.h.s.>1 and tke soltion is
stable; similarly the solution is unstable in Regjén

r

Proof of point 2. In the proof we shall use the inequality that for a 1: 1 solution
BCL — APD > Dl (72)

this holds because, i7@) were vidated, the following diastolic interval would be

so short that the next stimulus could not generate an action potential. Fora 2:2
solution, both the shorter and longer action potentials must sa@igfyfora 2: 1
solution, similar reasoning leads to the conclusion that

BCL — APD < Dl (73)

Webegin by characterizing the maximum 2 : 1 solution as follows: In the limiting
case of BCL= BCLaxo, inequality 73) degenerates into the equality
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F(BCL+DI, ) BC'-—D'\hr
F(BCL-APD, )

|
DI APDthr+D|thr BCL,

balt BCLmaxZ

Figure 12. Graphical solution afquations(74) and (5). The ndependent variable is
BCL.

BCL — APD = Dly.

Since APD= F (DI), where DI= 2BCL — APD = BCL+ Dly,, we may earrange
terms in the displayed equation to conclude

BCl—maxZ_ Dlthr = I:(BCLmaXZ‘{‘ Dlthr)- (74)

The upper curve irfFig. 12illustrates a graphical solution of this equation.
An analogous characterization of Bk, depends on which region of thehy,-
plane the parameters lie in, so we consider the three cases separately. tn Case

BCl—minl - DIthr = BCl—thr - DIthr = APDthn

and the observation th& (BCLmax2 + Dliy) > APDy, implies that 48) is
satisfied.

In Cases3 andy, let BCLy, be the BCL at which the difference between even
and odd action potential durations is maximal: i.e., leendary of the interval
of BCL's in which the alternans response exists. Then, passing to the limit of a
rearranged version of2), we conclude that

BCLpait — Dlthr = F(BCLpait — APDiny). (75)

The lowercurve inFig. 12 illustrates a graphical solution o7%), and it may be
seen from the figure that BGlt < BCLmaxe- In Casey, BCLpat = BCLing SO
(48) holds; in Cases, we have

BCLmin1 < BCLpait < BCLmax2,

which veifies (48) in dl cases.
Now we show hat for any BCL such that the 2 : 1 solution exists and eithera 2: 2
or 1:1 solution is stable, the 2:1 solution is also stable. If we are dealing with a
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stable 1:1 solution, let Rland DL be the diastolic intervals of the 1:1 and 2:1
solutions, respectivelfequations(72) and (73) can be rewritten

F(Dl1) < BCL — Dl

and
F(Dl5) > BCL — Dl

respectively and we conclude that, sirfeés monotone increasing,
Dl; < Dls.
SinceF’(Dl) is monotone decreasing, it follows that
F'(Dl,) < F'(Dly) < 1,

the latter inequality because the 1: 1 solution was assumed to be stable. Hence, the
2:1 soltion is also stable. If we are dealing with a stable 2 : 2 solution, we replace
Dl by Dljarge the longer of the two diastolic intervals, and we repeat the preceding
argument with a minor elaboration at the last step: we argueRH@tljaqe) < 1
because by stabilitf’ (Dljarge) F' (Dlsman) < 1 and by monotonicityF’(Dljage) <
F/(Dlsmall)-
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