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1 Preliminaries in complex analysis

In this section, we briefly review some definitions and basic facts from the theory of holomorphic
functions in one and several variables.

There are a few different (but equivalent) ways to define a holomorphic function. We start from
a definition that would naturally extend to almost complex geometry. Let

F : Ω⊂Cn → Cm

be a smooth function defined on an open domain Ω. Identifying C with R2 in the standard way,
we can think of F as a smooth function F : Ω⊂R2n → R2m. For every z∈Ω, let

DzF : TzR2n ∼= R2n −→ TF (z)R2m ∼= R2m

denote the 2m× 2n derivative (matrix) of F .

Definition 1.1. We say F is holomorphic if, at every point z∈Ω, DzF is complex-linear with
respect to the canonical complex structures on TzR2n ∼= Cn and TF (z)R2m ∼= Cm.
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In other words, writing

z= (z1, . . . , zn) = (x1+ iy1, . . . , xn + iyn),

we can think of the multiplication by i =
√
−1 on TzCn as the real linear map

iR2n =

[
0 −In
In 0

]
: T(x,y)R2n −→ T(x,y)R2n, with (x, y) = (x1, . . . , xn, y1, . . . , yn),

that sends ∂
∂xa

to ∂
∂ya

and ∂
∂ya

to − ∂
∂xa

, for all a = 1, . . . , n. Similarly, we can identify the
multiplication by i on TF (z)Cm with the real linear map

iR2m =

[
0 −Im
Im 0

]
: TR2m −→ TR2m.

Then, F is holomorphic if and only if the matrix identity

D(x,y)F ◦ iR2n = iR2m ◦D(x,y)F

holds at every point z=(x, y)∈Ω. If we write F = (f1, . . . , fm) with

fb : Ω−→C ∀ b = 1, . . . ,m,

then F is holomorphic if and only if each component fb of F is holomorphic. This reduces the
discussion to m=1.

For z ∈ C, define
∂

∂z
=

1

2

( ∂
∂x
− i

∂

∂y
) and

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y
).

These are C-valued tangent vectors that are dual to C-valued 1-forms

dz = dx+ idy and dz = dx− idy.

Note that we have

∂

∂z
z = dz(

∂

∂z
) =

∂

∂z
z = dz(

∂

∂z
) = 1 and

∂

∂z
z =

∂

∂z
z = 0.

Let f : Ω⊂Cn → C be a smooth function. Then, df can be decomposed into C-linear and anti
C-linear parts,

df = ∂f + ∂f, (1.1)

where

∂f ..=
n∑
a=1

∂f

∂za
dza and ∂̄f ..=

n∑
a=1

∂f

∂za
dza.

Thus, f is holomorphic if and only if ∂̄f ≡ 0. The equation ∂̄f ≡ 0 is a set of identities

∂

∂za
f =

1

2

( ∂

∂xa
f − i

∂

∂ya
f
)
≡ 0 ∀ a = 1, . . . , n.

that are known as the Cauchy-Riemann equation(s). It is straight-forward to check that

4∂∂̄f = ∆f ·
n∑
a=1

dxa ∧ dya ,
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where ∆ is the Laplace equation. Therefore, real and imaginary parts of every holomorphic
function, as well as its norm-square |f |2, are real harmonic functions. As a result, if f : Ω ⊂
Cn−→C is holomorphic, then |f | has no local minimum or maximum in Ω. If Ω is bounded and
f can be continuously extended to Ω, then |f | takes its maximal values on ∂Ω.

It is also straight-forward to check that a function f : Ω⊂Cn → C is holomorphic if and only if
it is holomorphic with respect to every variable at every point of its domain.

Example 1.2. Examples of holomorphic functions include polynomials, exponential functions,
and their inverses, compositions, and linear combinations (on a suitable domain). We will mainly
be concerned with polynomials.

HW 1.3. An invertible smooth map f : U ⊂R2 −→ V ⊂R2 between open subsets U and V is
called conformal if it preserves angles at every point. Via the standard identification C = R2,
show that conformal=biholomorphic.

Holomorphic functions are rigid in the sense that knowing their values on some subdomain of
a connected domain will uniquely specify their value elsewhere. Also, holomorphic functions
do not admit partition of unity. Here are some basic and important facts about holomorphic
functions of one and several variables:

• Cauchy integral formula. Suppose f : Ω⊂ C → C is a holomorphic function and U ⊂ Ω
is the interior region1 of a smooth embedded circle C ⊂Ω. Orient C in the counter-clock wise
direction (with respect to any point in U). Then, for every w∈U we have

f(w) =
1

2πi

∮
C

f(z)

z − w
dz. (1.2)

In particular, for any w ∈U , we can take U to be a sufficiently small disk around w to find a
formula for f(w) in terms of a line integral over a small circle around w.

HW 1.4. Use Green’s theorem to verify that the right-hand side of (1.2) is independent of the
choice of the curve C going around w counter-clock wise once.

For an arbitrary smooth function f : Ω −→ C, the Cauchy integral formula reads

f(w) =
1

2πi

∮
C

f(z)

z − w
dz +

1

2πi

∫∫
U

∂f

∂z̄

dz ∧ dz

z − w
. (1.3)

Note that
dz ∧ dz = −2idx ∧ dy.

Thus, the second component on the righthand side of (1.3) is the double integral

−1

π

∫∫
U

∂f

∂z̄

1

z − w
dxdy.

The proof of (1.3) is based on Stoke’s theorem for differential forms with singularities; see [?].
The identity (1.3) can be interpreted in the following way. The righthand side of (1.3) gives a
decomposition

f = h+ f̃

1Recall that by the Jordan Curve Theorem, every such curve C divides the plane into an “interior” and an
“exterior” region so that every continuous path connecting a point of one region to a point of the other intersects
with that loop somewhere. Moreover, the interior region is simply-connected
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such that h is holomorphic and ∂̄f̃ = ∂̄f . Furthermore, the ∂̄-Poincare lemma (in one variable)
states that given any smooth function g : U −→ C, the equation

f(w) =
1

2πi

∫∫
U
g(z)

dz ∧ dz

z − w
,

which comes from the second part of the righthand side in (1.3), defines a smooth function in
U such that ∂

∂zf = g; i.e. locally, the equation ∂
∂zf = g is solvable.

Note the right-hand side of (1.2) only depends on the values of f on the curve C. Not every
continuous function on C has a continous extension to a holomorphic function in interior U of C,
but if it exists then by (1.2) it is unique. The necessary and sufficient condition for the existence
of such an extension is the following. Given any continuous functions f : C −→ C such that∫

C
(z − w)nf(z)dz = 0 ∀ n ≥ 0 (1.4)

for some fixed w∈U , there exists a unique (and similarly denoted) continuous extension f : U →
C of f that is holomorphic on U . Otherwise, if one of the conditions in (1.4) is not satisfied, the
Cauchy integral formula defines a holomorphic function on U that does not continuously extend
to the given f on C; see HW 1.7 below.

HW 1.5. With notation as above, if f : Ω ⊂ C −→ C is holomorphic, use Green’s theorem to
show that ∫

C
(z − w)nf(z)dz = 0 ∀ n ≥ 0

HW 1.6. Let C be the circle of radius 1 in C and thus U be the open disk of radius 1. For

f : C −→ C, f(z) =
1

z
∀ z ∈ C,

what is the holomorphic function on U arising from the Cauchy integral formula (1.2).

HW 1.7. Let C be the circle of radius 1 in C and thus U be the open disk of radius 1. Every
smooth function

f : C −→ C

has a Fourier expansion

f(eiθ) =
∞∑

n=−∞
aneinθ,

where θ is the angle coordinate on C. What is the relation between the holomorphic function
on U arising from the Cauchy integral formula (1.2) and the Fourier expansion of f on C?

For holomorphic functions of more than one variable, the Cauchy integral formula is obtained
by repeating (1.2). For ε = (ε1, . . . , εn) ∈ Rn>0, let

Bε(w) ..= {(z1, . . . , zn) ∈ Cn : |zi − wi| < εi ∀ i = 1, . . . , n}

be the product of disks of radius εi around wi, and f : Bε(w)→ C be a continuous function that
is holomorphic on Bε(w). Then,

f(w) =
1

(2πi)n

∮
|zn−wn|=εn

· · ·
∮
|z1−w1|=ε1

f(z1, . . . , zn)

(z1 − w1) · · · (zn − wn)
dz1 · · · dzn. (1.5)
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• Holomorphic functions are analytic. It can be proved using the Cauchy integral formula
that a function f : Ω⊂Cn → C is holomorphic if and only if for every w ∈Ω and any ε∈Rn>0

such that Bε(w) ⊂ Ω, the restriction of f to Bε(w) can be written as a convergent power series

∞∑
i1,...,in=0

ai1···in(z1 − w1)i1 · · · (zn − wn)in (1.6)

with

ai1···in =
1

i1! · · · in!
· ∂

i1+···+inf

∂zi11 · · · ∂z
in
n

.

In the one variable case, this is simply

f(z) =
∞∑
i=0

ai(z − w)i, (1.7)

where

ai =
1

i!

∂if

∂zi
=

1

2πi

∫
|z−w|=ε

f(z)

(z − w)i+1
∀ i ≥ 0.

• Identity Principle. As we mentioned above, it follows from the harmonicity property that
if f, g : Ω ⊂ Cn −→ C are holomorphic, Ω is a connected open set, and f = g on a non-empty
open subset V ⊂ U , then f = g everywhere. In other words, the (discrete data of) coefficients
of the Taylor expansion at any point w∈Ω, uniquely determine f at every other point of a given
connected domain Ω.

• Riemann mapping theorem. Let U⊂C be a simply-connected proper open subset. Then U
is biholomorphic to the open unit disk B1(0); i.e. there is a holomorphic function f : U−→B1(0)
that is invertible (the inverse will be automatically holomorphic).

Remark 1.8. In the case of a simply connected-bounded domain with smooth boundary, the
Riemann mapping function and all its derivatives extend continuously to the closure of the
domain.

Remark 1.9. (Prove that) The group of biholomorphisms (or automorphisms) of the upper-half
plane

H = {z ∈ C : Im(z) > 0} (1.8)

is isomorphic to PSL(2,R), where

PSL(2,R) = {A ∈M2×2(R) : det(A) = 1}/± I2×2,

and every

A =

[
a b
c d

]
acts on H by the so called mobius transformation

z −→ az + b

cz + d
.

By Riemann mapping theorem, the automorphism group of every other simply-connected domain
is conjugate to PSL(2,R).
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HW 1.10. Describe a biholomorphic function that maps a square to a disk. Hint: search Google
for Schwarz-Christoffel-Transformations.

• Liouville theorem. It can be proved using the Cauchy integral formula that every bounded
holomorphic function f : C −→ C is constant. This explains why U must be a proper domain
in the Riemann extension theorem.

• Residue theorem. Suppose w is a point in the open domain Ω ⊂ C and f : Ω−{w} −→ C is
a holomorphic function. Then, for every ε > 0 such that Bε(w) ⊂ Ω, restricted to Bε(w)−{w},
the function f admits a Laurent series expansion

f(z) =
∞∑

n=−∞
an(z − w)n+1

an =
1

2πi

∫
|z−w|=ε

f(z)

(z − w)n+1
dz ∀ n ∈ Z.

(1.9)

In the integral above we can replace the circle |z| = ε with any other loop in Ω around w that
has winding number 1. The coefficient a−1 is called the residue of the function f(z) (or the
holomorphic differential 1-form f(z)dz) at w. The function is f is said to have a pole of order
n > 0 at w if a−n 6= 0 and am = 0 for all m > n. The function is f is said to have an essential
singularity at w if the set

{n > 0: a−n 6= 0}

is unbounded.

The Laurent series formula (1.9) remains valid if f is only defined on an annulus

Aε,δ(w) ..= Bε(w)−Bδ(w)

for some δ < ε and the integral in (1.9) can be evaluated on any loop in Aε,δ(w) that has winding
number 1 around w.

Definition 1.11. A meromorphic function on an open domain Ω ⊂ C is a holomorphic function
f : Ω−S −→ C for some discrete subset S ⊂ Ω such that f has poles of finite order at the points
of S.

Remark 1.12. We will learn late that a meromorphic function f : Ω − S −→ C can be seen
as a holomorphic function f : Ω −→ C ∪ {∞} = CP1, where CP1 ∼= S2 is a closed holomorphic
manifold.

HW 1.13. Suppose f : Ω ⊂ C −→ C ∪ ∞ is a meromorphic function. Show that f ′/f is
meromorphic function with simple poles at zeros and poles of f . Furthermore, show that the
residue of f ′/f at any zero/pole of f is equal to the signed order of f at the point; i.e. the
residue of f ′/f at any zero of order d of f is d and the residue of f ′/f at any pole of order d
of f is −d. Use the formula for residue formula to prove that for any Jordan curve C ⊂ Ω, the
integral ∮

f ′(z)

f(z)
dz

is equal to sum of the (signed) orders of the zeros and poles of f inside C.
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• Hartog’s theorem. In the context of the Residue theorem, if we increase the dimension, we
will see a very much different behavior.

Theorem 1.14. Suppose n>1, w is a point in the open domain Ω⊂Cn, ε = (ε1, . . . , εn) ∈ Rn>0

such that Bε(w)⊂Ω and f: Ω − Bε(w)−→C is a holomorphic function. Then f has a unique
holomorphic extension to Ω.

Proof. Since Bε(w)⊂Ω, there exists a sufficiently small δ>0 such that

Bε+δ(w) ..= Bε1+δ,...,εn+δ(w)⊂Ω.

We restrict to the open subset

V1 = {(z1, . . . , zn) ∈ Bε+δ(w) : ε1< |z1|} ⊂ Bε+δ(w)−Bε(w)

V2 = {(z1, . . . , zn) ∈ Bε+δ(w) : ε2< |z2|} ⊂ Bε+δ(w)−Bε(w)

and V = V1 ∪ V2. Note that the image of the natural projection map

π : V −→ Cn−1, z = (z1, . . . , zn) −→ z′ = (z2, . . . , zn) (1.10)

is the full polydisk
Bε2+δ,...,εn+δ(w

′) ⊂ Cn−1, w′ = π(w),

and the fiber of π over any z′ contains the annulus Aε1+δ,ε(w1)⊂C. For each z′ = (z2, . . . , zn) ∈
Bε2+δ,...,εn+δ(w

′), define

fz′ : π
−1(z′) −→ C, fz′(z1) = f(z1, z2, . . . , zn)

to be the restriction of f to the fiber π−1(z′). Since π−1(z′) contains the annulus Aε1+δ,ε(w1),
by the Residue theorem (over an annulus), each fz′ has a Laurent series expansion

fz′(z1) =

∞∑
n=−∞

an(z′)zn1 .

By the (multivariable version of the) Cauchy integral formula, for each n ∈ Z, the coefficient
an(z′) itself is a holomorphic function of z′. On the other hand, if z′ belongs to the subdomain
π(V2) ⊂ Bε2+δ,...,εn+δ(w

′), then π−1(z′) is the entire disk Bε1+δ(w1). Therefore, for such z′,

an(z′) = 0 ∀ n < 0.

For n < 0, since an(z′) = 0 on a subdomain of the connected domain Bε2+δ,...,εn+δ(w
′), by the

Identity Principle, it vanishes for all z′ ∈ Bε2+δ,...,εn+δ(w
′). However, that implies that we can

define the holomorphic extension of f to Bε+δ(w) by the power series

∞∑
n=0

an(z′)zn1 .

The Taylor series converges uniformly since the coefficients an are holomorphic and achieve their
maximum absolute value at the boundary. Clearly, the holomorphic extension to Bε+δ(w) given
by this power series glues with f on Ω along the overlapping region Bε+δ(w) − Bε(w) to give
the desired holomorphic function.
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The main reason for the very different results in the Residue and Hartog’s theorems is topo-
logical. If n = 1, then C − Bε(w) is not simply connected, while if n > 1, then Cn − Bε(w) is
simply connected. In other words, Cauchy Integral Formula sees loops in non-simply-connected
domains of definition of a holomorphic 1-form. In order to extend the Residue theorem to higher
dimensions and state the Hartog’s theorem more generally, we first need to review Weierstrass
Theorem and define a few concepts.

Suppose Ω ⊂ Cn −→ C is an open domain and g : Ω −→ C is a holomorphic function. The zero
set

Z(g) ..= {z ∈ Ω: g(z) = 0}

is called the zero-divisor of g. If dg 6= 0 along Z(g), then Z(g) is a complex hypersurface (com-
plex codimension 1) sub-space of Ω (possibly empty). Otherwise, as Weierstrass Theorem 1.18
illustrates, Z(g) will still be a complex codimension 1 analytic subspace of Ω possibly with sin-
gularities. This is quite different from the real analysis where, for example, the zero set of the
function

Rn → R, (x1, . . . , xn) −→ x2
1 + . . .+ x2

n

is just a single point (i.e. has codimension n). Over complex numbers, the zero set of z2
1 +. . .+z2

n

is a complex codimension 1 “variety” that is singular only at the origin.

HW 1.15. Show that Z(z2
1 + z2

2) is a union of two complex lines.

In one variable, by factoring out the largest common factor of (z −w)i, we conclude that every
holomorphic function g has a unique local decomposition

g(z) = (z − w)du(z), u(w) 6= 0.

From this we conclude that the zero locus of g is discrete (countably many points) and every
zero of g has a well-defined multiplicity d> 0. Similarly, in higher dimensions, the Weierstrass
Preparation Theorem below gives a local decomposition of any holomorphic function, using
which we can study its zero divisor Z(g).

Definition 1.16. A Weierstrass polynomial of degree d in a neighborhood of w ∈ Cn, with
respect to the coordinate z1 in a coordinate system z = (z1, z2, . . . , zn), is a holomorphic function
of the form

p(z) = p(z1, z
′) = (z1 − w1)d + α1(z′)(z1 − w1)d−1 + . . .+ αd(z

′), z′ = (z2, . . . , zn),

such that the coefficients αi(z
′) are holomorphic function on some sufficiently small neighborhood

of w′ and they vanish at w′. In particular, we have p(w) = 0 and, restricted to the z1-axis at w,
the function p is simply (z1 − w1)d.

Example 1.17. The function
p(z1, z2) = z2

1 + z2
2 + z1z2

is a Weierstrass polynomial of degree 2 in a neighborhood of the origin with respect to both z1

and z2 in the standard coordinates. With respect to z1, we have

α1(z2) = z2 and α2(z2) = z2
2 .

Suppose f : Ω ⊂ Cn −→ C is holomorphic, f(w) = 0, and f does not vanish identically on the
z1-axis. The latter implies that the power series expansion (1.6) of f near w contains a term of
the form a(z1 − w1)d with a 6= 0 and d ≥ 1.
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Theorem 1.18. Suppose f : Ω ⊂ Cn −→ C is holomorphic, f(w) = 0, f does not vanish
identically on the z1-axis through w. Then, there exists a unique Weierstrass polynomial p of
degree d in a neighborhood of w ∈ Cn such that f = p · u on a sufficiently small neighborhood of
w for some holomorphic function u with u(w) 6= 0.

Proof. For each z′ = (z2, . . . , zn) ∈ Cn sufficiently close to w′ = (w2, . . . , wn) let

fz′ : Ω ∩
(
C× {z′}

)
−→ C, fz′(z1) ..= f(z1, z

′),

denote the restriction of f to fiber over z′ via the projection map (1.10). By assumption fw′ 6≡ 0,
fw′(w1) = 0, and the leading order term of the Taylor expansion of fw′ around w1 is a monomial
a(z1 − w1)d for some integer d > 0. Thus, there exist sufficiently small ε1, δ > 0 and ε′ =
(ε2, . . . , εn) ∈ Rn−1

>0 such that

(1) the only zero of fw′ in Bε1(w1) is w1;

(2) fw′(z1) ≥ δ whenever |z1 − w1| = ε1;

(3) and consequently, fz′(z1) ≥ δ/2 whenever |zi − wi| ≤ εi for i = 2, . . . , n and |z1 − w1| = ε1.

First, it follows from the Item 3 above and the last statement of HW 1.13 that, for each z′ ∈
Bε′(w

′), fz′ has exactly d zeros, say ζ1(z′), . . . , ζd(z
′), in the disk |z1 − w1| = ε1, counted with

multiplicities. For each z′ ∈ Bε′(w′), consider the degree d polynomial

pz′(z1) =

d∏
i=1

(z1 − ζi(z′)).

We show that these polynomials deform homomorphically with z′; i.e. the overall function

p : Bε(w) −→ C, p(z) = p(z1, z
′) = pz′(z1) ∀ z = (z1, z

′) ∈ Bε(w) (1.11)

where ε = (ε1, ε
′), is holomorphic. In order to prove this statement, note that, for each z′ ∈

Bε′(w
′), we have

pz′(z1) = (z1 − w1)d + α1(z′)(z1 − w1)d−1 + · · ·+ αd(z
′),

where each αm is a symmetric polynomial in ζ1(z′), . . . , ζd(z
′). It is known that every such

symmetric polynomial can be written (via a universal polynomial formula) in terms of the
elementary symmetric polynomials

ζ1(z′)b + . . .+ ζd(z
′)b, b ∈ N.

On the other hand, it can be shown as in HW 1.13 that

ζ1(z′)b + . . .+ ζd(z
′)b =

1

2πi

∮
|z1−w1|=ε1

zb1(∂fz′/∂z1)(z1, z
′)

f(z1, z′)
dz1;

see the HW below. The righthand side is the integral of a holomorphic function with respect to
z1. Thus, it defines a holomorphic function of z′. In conclusion, the functions α1(z′), . . . , αd(z

′)
are holomorphic. This hows that the function p defined in (1.11) is a holomorphic function on
Bε(w). Finally, the quotient

u(z1, z
′) =

p(z1, z
′)

f(z1, z′)

has removable singularities at ζ1, . . . , ζd. Thus, it is defined on the entire Bε(w) and is non-zero
on it.
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The so-called Weierstrass Preparation Theorem above shows that, unlike for smooth real-valued
functions, locally in a suitable coordinate system, the zero set of a non-trivial holomorphic func-
tion on an open set of Cn is a finite-sheeted branched cover of Cn−1. The branch loci is the
discriminant locus of the corresponding Weierstrass polynomial!

HW 1.19. Confirm the following statement used in the proof above. Suppose f : Ω ⊂ C −→ C
is a holomorphic function. Let C be a Jordan curve in Ω. Suppose f |C is non-zero and ζ1, . . . , ζd
are the zeros of f inside C, counted with multiplicity. Then, for each b ∈ N, we have

ζb1 + . . .+ ζbd =
1

2πi

∮
C

zbf ′(z)

f(z)
dz.

In the one variable case, we observed that a holomorphic function defined on the complement
of a point w ∈ Ω ⊂ C either has a pole at w or has a holomorphic extension to w. The latter
happens if and only if f is bounded near w. In light of Hartog’s theorem, we realized that points
in C generalize to complex hypersurfaces in higher dimensions. Therefore, it is natural to have
the following result known as the Riemann Extension Theorem.

Theorem 1.20. Suppose g : Ω ⊂ Cn −→ C is a holomorphic function. If f : Ω \ Z(g) −→ C is
holomorphic and locally bounded near Z(g), then f uniquely extends to a holomorphic function
on the entire Ω.

Proof. Around every point w ∈ Z(g), we can choose a suitable coordinate system (z1, . . . , zn)
such that the z1-axis through w is not contained in Z(g); see Remark 1.22 below. As in the
proof above, we can find ε1, δ > 0 and ε′ = (ε2, . . . , εn) such that f(z1, w

′) ≥ δ on |z1−w1| = ε1

and fz′(z1) ≥ δ/2 for z′ ∈ Bε′(w′) and |z1 − w1| = ε1. By the one-variable Riemann Extension
Theorem and the boundedness assumption, on each slide Bε1(w1) × {z′}, we can extend fz′ to
a similarly denoted holomorphic function. As before, by Cauchy Integral Formula, we have

f(z1, z
′) =

1

2πi

∮
|z1−w1|=ε1

f(z1, z
′)

z1 − w1
dz1

which shows that the extended function depends homomorphically on z′ as well.

Remark 1.21. As in the one-variable case, the result remains true if we replace Z(g) with a
sufficiently small neighborhood of that in the statement of Theorem 1.20.

Remark 1.22. Just as in Calculus of real functions, we have some flexibilities in choosing a
good coordinate system around points. Suppose w ∈ U ⊂ Cn and F : U −→ Cn is a holomorphic
function. Then the complex Jacobian of F is the complex linear matrix

dzF : TzCn ∼= Cn −→ TF (z)Cn ∼= Cn.

If dzF is full-rank, then restricted to a sufficiently small neighborhood V of w, F |U is a bi-
holomorphic map onto its image V ′ = F (V ) (Inverse Function Theorem). Therefore, (z′1, . . . , z

′
n) =

F (z) can be used as a new coordinate system around z. Similarly, by Implicit Function Theorem,
if

F : U ⊂ Cn −→ Cm

is holomorphic, n ≥ m, and dzF is full-rank, then there exists

• sufficiently small neighborhoods V1 ⊃ z and V2 ⊃ F (z),
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• local coordinates (z1, . . . , zn) on V1,

• and local coordinates (x1, . . . , xm) on V2,

such that f(z1, . . . , zn) = (z1, . . . , zm).

Remark 1.23. In the world of smooth real functions, bijectivity of a function does not imply
its regularity. For example x −→ x3 is a bijective map from R to R but its derivative is zero
at x = 0 and thus does not admit a smooth inverse. Contrary to the real world, a holomorphic
function is bi-holomorphic if and only if it is bijective.

Before stating the last results of this section, we need to recall some elementary definitions from
commutative algebra. Let R be ring, then we say

• R is an integral domain if u, v ∈ R and uv = 0 implies u = 0 or v = 0;

• An element u ∈ R is a unit if there exists v ∈ R such that uv = 1;

• u ∈ R is irreducible (prime) if u = vw implies one of v or w is a unit;

• R is Unique Factorization Domain (UFD) every u can be uniquely written as a product of
irreducible (up to taking product with unit elements).

Some of the main results are

(1) if R is UFD then so is the polynomial ring R[t];

(2) if R is UFD and p, q ∈ R[t] are relatively prime, then there exists relatively prime elements
α, β ∈ R[t] and 0 6= γ ∈ R (called resultant of p and q) such that

αp+ βq = γ.

Let OCn denote the sheaf of holomorphic functions on Cn; c.f. my Lecture notes from Math
6410 for the definition of sheaf. Briefly, a sheaf F on a topological space X is a way of assigning
a set F(U) to each open set U ⊂ X such that

• if V ⊂ U , then there is a restriction map rU,V : F(U) −→ F(V );

• if U ⊃ V ⊃W , then rV,W ◦ rU,V = rU,W ;

• if {sα ∈ F(Uα)}α∈I is a collection of local “sections” of F such that

sα|Uα∩Uβ = sβ|Uα∩Uβ ∀ α, β ∈ I,

then we can uniquely glue them to obtain a section

s ∈ F(U), U =
⋃
α∈I

Uα,

such that s|Uα = sα for all α ∈ I.

11



Here, OCn is the sheaf that assigns to each open set U ⊂ Cn the ring OCn(U) of holomorphic
functions on U .

Formally, the stalk of a sheaf F at a point x ∈ X, denoted by Fx, is the direct limit of F(U)
over all open sets U such that x ∈ U ; i.e.

Fx = lim−→
x∈U
F(U).

In other words, an element in Fx is simply the germ of a section around x. If x ∈ U , every
section s ∈ F(U) defines an element [s] of Fx. Furthermore, if x ∈ U1 ∩ U2, then s1 ∈ F(U1)
and s2 ∈ F(U2) define the same element [s1] = [s2] ∈ Fx iff they agree on possibly smaller
neighborhood x ∈ V ⊂ U1 ⊂ U2. For the sheaf holomorphic functions, by the Identity Principle,
the values of f ∈ OCn(U) in an arbitrary small neighborhood of any point x ∈ U will uniquely
determine its values on U . Therefore, it is safe to denote the element in OCn,x corresponding to
f by f (and not [f ]).

An important consequence of the Weierstrass Preparation Theorem is the following result. Each
OCn,z is an integral domain by the Identity Principle. Moreover, it is a local ring (i.e. it has a
unique maximal ideal) whose maximal ideal is the set of locally-defined holomorphic functions
vanishing at z. The unit elements of OCn,z correspond to locally-defined holomorphic functions
f such that f(z) 6= 0.

Theorem 1.24. The local ring OCn,0 (and thus any other OCn,z) is a UFD.

Proof. We prove this statement by induction on n ∈ N. For n = 0, OC0,0 = C which is UFD.
Assume OCn−1,0 is UFD. Let f be a holomorphic function on a sufficiently small neighborhood of
0 defining an element in OCn,0. Just as in the arguments above, by choosing a suitable coordinate
system around 0, we may assume that the z1-axis is not contained in Z(f). By Weierstrass
Preparation Theorem, we can write f = p · u where u is a unit in OCn,0 and p ∈ OCn−1,0[z1]. By
Property (1) in Page 11 (known as Gauss Lemma) and the induction assumption, OCn−1,0[z1] is
a UFD. Therefore, after possibly shrinking the domain of f , we have

f = p1 · · · pm · u

such that pi ∈ OCn−1,0[z1] are irreducible and are uniquely determined from p up to multiplication
by units and permutation. It is only left to show that each irreducible factor pi is also irreducible
as an element of OCn,0. That would follow from the uniqueness statement of Theorem 1.18 and
that every Weierstrass has a finite positive degree.

Proposition 1.25. Suppose f ∈ OCn,0 and p ∈ OCn−1,0[z1] is a Weierstrass polynomial of degree
d. Then, there exist r ∈ OCn−1,0[z1] of degree less than d and h ∈ OCn,0 such that f = ph + r.
The functions h and r are uniquely determined.

The result can be used to show that OCn,0 is a Noetherian ring meaning that every ideal in
OCn,0 is finitely generated.

Proposition 1.26. The local UFD OCn,0 is Noetherian.

Corollary 1.27. (Weak Nullstellensatz) Suppose g ∈ OCn,0 is irreducible and f ∈ OCn,0. If f
vanishes on Z(g), then g divides f .
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Instead of going through the proofs of these statements, we explain the geometric meaning
of them. The main purpose of these results is to characterize the local properties of analytic
subvarieties in Cn.

Definition 1.28. Suppose Ω ⊂ Cn is an open domain. We say X ⊂ Ω is an analytic variety if,
for every w ∈ X, there exists a sufficiently small neighborhood U 3 w such that X ∩ U is the
common zero locus of a finite collection of holomorphic functions f1, . . . , fk on U . In particular,
we say X is an analytic divisor/hypersurface if it is locally the zero set of just one holomorphic
function.

Remark 1.29. Since the definition is local, it will readily extends to arbitrary complex manifolds
defined in Section 2.

Remark 1.30. An Analytic variety X ⊂ Cn can be singular. We denote the set of singular
points by Xsing. Away from Xsing, (each component of) X is a complex submanifold of Cn
and the number of local defining equations will be exactly the codimension (this can vary from
component to component).

Example 1.31. Let Xλ ⊂ C2 be the analytic hypersurface defined by

fλ(z1, z2) = z2
1 + z3

2 − λ = 0.

Since
dfλ = 2z1dz1 + 3z2

2dz3,

the only possible singular point is the origin (0, 0). Therefore, for λ 6= 0, Xλ is non-singular (it
is an open Riemann surface diffeomorphic to T 2 − point), and for λ = 0 it has a so-called cusp
singularity at the origin.

Definition 1.32. An analytic subvariety X ⊂ Ω ⊂ Cn is called irreducible if it is not a union
of two or more analytic subvarieties. It is called to be locally irreducible at w ∈ X, if for every
sufficiently small open set w ∈ U ⊂ Cn, the intersection X ∩ U is irreducible.

Lemma 1.33. Let X ⊂ Ω ⊂ Cn be an analytic hypersurface given by the single equation f ≡ 0.
Then, for every w ∈ X, X is locally irreducible at w if and only if f ∈ OCn,w is irreducible.

Proof. (⇐) Suppose f ∈ OCn,w is irreducible but in a sufficiently small neighborhood U of w,
X∩U = V1∪V2, with V1, V2 6= X∩U being analytic subvarieties of U . By definition and the last
assumption, there are f1, f2 ∈ OCn,w such that fi vanishes identically on Vi but not on the other
component. Since f1f2 vanishes on X around w, by Corollary 1.27, f divides f1f2 in OCn,w.
Since f is irreducible, it must divide one of f1 or f2.

(⇒) This direction is obvious.

More generally, by Theorem 1.24, we have the following lemma.

Lemma 1.34. Let X ⊂ Ω ⊂ Cn be an analytic hypersurface given by the single equation f ≡ 0.
Then, for every w ∈ X, restricted to a sufficiently small neighborhood U of w we have a unique
decomposition

X ∩ U = V1 ∪ . . . ∪ Vk
such that Vi is irreducible.
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As Definition 1.28 shows, for every open set U ⊂ Cn, there is a correspondence between the
analytic subvarieties of U and ideals of the ring OCn(U). Similarly, by taking limit, there is
a relation between the the germs of analytic subvarieties of Cn around any point w ∈ Cn and
ideals of the local ring OCn,w. More precisely, to an analytic subvariety X of U we assign the
ideal

I(X) = {f ∈ OCn(U) : X ⊂ f−1(0)},

and associated with every ideal of I ⊂ OCn(U) we define its support or zero set to be

Z(I) = {w ∈ U : f(w) = 0 ∀ f ∈ I}.

By Proposition 1.26, Z(I) is locally defined by a finite set of equations. This correspondence
allows us to obtain an algebraic interpretation of certain geometric properties of X. For example,
complex dimension or smoothness of X can be read purely algebraically from I(X). That is
what algebraic geometry is about: to use methods of algebra to define and study geometric
objects. For example, taking union X ∪Y between two varieties X and Y corresponds to taking
product between the corresponding ideals I(X) · I(Y ). If X ⊂ Y then I(Y ) ⊂ I(X).

HW 1.35. What does taking intersection correspond to?

We have Z(I(X)) = X but the assignment I → Z(I) is not one-to-one. For instance, both
f(z1, z2) = z1 and g = (z1, z2) = z2

1 have the same zero set while the ideal generated by the later
is a sub-ideal of the ideal generated by the former in C[z1, z2]. Therefore, we usually consider
the largest ideal that defines the same variety X. For every ideal I in a commutative ring R,
the radical of I, denoted by

√
I, is defined as

√
I = {r ∈ R : rn ∈ I for some n ∈ Z>0}.

A semi-prime or radical ideal is an ideal I for which
√
I = I. So, in the correspondence between

varieties and ideals, we can effectively restrict to radical ideals of OCn(U) and OCn,w. In other
words, I(Z(I)) =

√
I.

An proper ideal P of a commutative ring R is called prime if for every a, b ∈ R such that their
product ab is an element of P , then either a ∈ P or b ∈ P . This definition generalizes the
following property of prime numbers in N: p is a prime number if whenever p divides a prod-
uct ab of two integers, then p divides a or p divides b. Every prime ideal is obviously radical.
Furthermore, every radical ideal I ⊂ R is the intersection of all the prime ideals P of R that
contain I. In the dictionary above, prime ideals of OCn(U) and OCn,w correspond to irreducible
subvarieties and the prime factorization of an ideal corresponds to decomposing a variety into a
union of irreducible components.

For hypersurfaces, the Weierstrass Preparation Theorem shows that they are locally a finite-
sheeted branched cover of a polydisk in Cn−1. More or less, the following statement is a gener-
alization of this statement to higher codimension.

Theorem 1.36. Let X ⊂ Cn be an irreducible variety. Then, locally around every point of X
there exists an open set U with a coordinate system (z1, . . . , zn) such that the natural projection
map

π : Cn −→ Cd, (z1, . . . , zn) −→ (z1, . . . , zm)

maps U ∩X surjectively to a polydisk ∆ ⊂ Cm and realizes X ∩U as a finite-sheeted cover of ∆
branched over an analytic hypersurface of ∆.
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The integer m is the dimension of X. Algebraically, if X ∩ U corresponds to the prime ideal
P ⊂ OCn,0, then the statement above means that the induced ring homomorphism

π∗ : OCd,0 −→ OCn,0/P

is finite integral ring extension.

The proof of Theorem 1.36 is rather technical. Thus, we only discuss a special case where X is
locally the zero locus of just two functions.
Suppose 0 ∈ X and, in a neighborhood of 0, X is the zero of set of two holomorphic functions
f, g ∈ OCn,0. We may assume X contains no analytic hypersurface through 0; otherwise, f
and g will have a common factor. We may also assume that the zero set of f and g does not
contain the z1-axis, and hence that f and g are Weierstrass polynomials in z1. Since f and g are
relatively prime, by Theorem 1.24 and Item (1) in Page 11, there are Weierstrass polynomials
α, β ∈ OCn−1,0[z1] and 0 6= γ ∈ OCn−1,0 such that

αf + βg = γ.

HW 1.37. Use Proposition 1.25 to show that the image of X under the projection map

π : Cn −→ Cn−1, (z1, z
′) −→ z′,

is Z(γ).

We conclude that π(X) is a hypersurface in Cn−1 around the origin. But then we know that Z(γ)
is a finite-branched cover of a polydisk ∆ in Cn−2 around the origin. The covering X −→ Z(γ) is
also a finite-sheeted covering map. Therefore, in a neighborhood of the origin, the composition
X → Cn−2 is a finite-sheeted covering of a polydisk.

So far, we have been studying local (thus non-compact) complex varieties. In the next section,
we learn about arbitrary complex varieties and we will be mainly work with closed (=compact)
ones. It follows from the Liouville Theorem that if X is a compact analytic variety, the only
holomorphic functions defined on the entire X are the constant functions. Therefore, it is
necessary to consider meromorphic functions. Recall that in the one-variable case, we can view
a meromorphic function as a function from X to P1 = C∪ {∞}. As we explain below, the same
is not quite true in higher dimensions. One needs to pass to a so-called blowup space to define
a function to P1.

Definition 1.38. Let Ω ⊂ Cn be an open subset. A meromorphic function f on U is a
holomorphic function defined on the complement of a nowhere dense subset S ⊂ Ω with the
following property: locally near every point of S, there exists an open neighborhood U and
holomorphic functions h, g : U −→ C such that f = h

g on U .

More explicitly, the set S in the definition above is a divisor. Moreover, if S is locally the zero set
of a holomorphic function g : U −→ C, and g = g1 · · · gk is a decomposition of g into irreducible
factors (with distinct zero sets), then

f =
h

gm1
1 · · · gmkk

(1.12)
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such the h and gi are relatively prime. The integer mi > 0 is the polar-order of f along the
irreducible divisor Si = Z(gi). The formal sum

k∑
i=1

miZ(gi)

is called the polar-divisor of f . Similarly, just like holomorphic functions, the zero set Z(f) of
a meromorphic function f is locally defined to be the zero set of the numerator, i.e. Z(h). If
h = h1 · · ·h` is the decomposition of h into irreducible factors, then the formal sum

∑̀
i=1

Z(hi)

is called the zero-divisor of f . Note that, for a reason that will be explained later, we are
replacing the union of Z(hi) with a weighted formal sum.

Example 1.39. The function

f =
ez1+z2

z1z2
2

: C2 −→ C

is a meromorphic function with a pole of order 2 along C× {0} = (z2 ≡ 0) and a pole of order
1 along {0} × C = (z1 ≡ 0).

The assignment U to

K(U) = the set of meromorphic functions on U

is a sheaf of fields (if U is connected). It is the field of fractions of the ring O(U).

Remark 1.40. If f : Ω ⊂ Cn −→ C is a meromorphic and n > 1, the zero and polar divisors of
f have complex codimension 1 and can intersect along a complex codimension 2 variety Y ⊂ Ω.
Outside Y ⊂ Ω, the meromorphic function f can be seen as a holomorphic function to CP1.
However, along Y we have 0

0 situation in (1.12). For every p ∈ Y , the limit limz−→p f(z) depends
on the direction of approaching p. For this reason, in order to think of f as a function to CP1,
we will replace Ω with a larger space that instead of Y has a larger subvariety parametrizing all
the directions normal to Y .

2 Complex manifolds and vector bundles

Roughly speaking, a manifold is a (topological) space that locally resembles Euclidean space,
and globally, it is obtained by attaching countably many such local pieces (known as charts).
Globally most manifolds are not homeomorphic to Euclidean space or an open subset of that.
For example, the sphere is not homeomorphic to the plane. In the following section, we will
learn about complex manifolds/varieties, complex submanifolds/subvarieties, and holomorphic
vector bundles. In particular, we will be interested in complex subvarieties of dimension one
(=complex curves) and codimension one (=divisors), and holomorphic line bundles.

Remark 2.1. Recall from the previous section that the terminology “variety” refers to complex
analytic spaces that can be singular. A variety that is not singular is a complex manifold.
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Definition 2.2. A complex manifold X is a topological manifold admitting an atlas

A = {ϕα : Uα −→ Cn}α∈I

such that the change of coordinate maps ϕβ ◦ϕ−1
α are holomorphic. A function f : U ⊂ X −→ C

is holomorphic if f ◦ ϕ−1
α is holomorphic for all α ∈ I. A coordinate system (z1, . . . , zn) on

U ⊂ X refers to the coordinate values of a chart ϕ : U −→ X (in the maximal atlas containing
A). A map F : X −→ Y between two complex manifolds is holomorphic if for every two charts
ϕ : U ⊂ X −→ Cn and ψ : V ⊂ Y −→ Cm, the composition ψ ◦ F ◦ ϕ−1 is holomorphic. We say
X ⊂ Y is a holomorphic submanifold if X is the image of a holomorphic embedding in Y .

Note that, in our definition, complex manifolds do not have boundary. So compact=closed.
Complex manifolds with boundary can be defined by including charts with boundary. We will
explicitly mention that if we ever need to work with manifolds with boundary. By Implicit
Function Theorem (c.f. Remark 1.22), if X ⊂ Y is a holomorphic submanifold of C-dimension
n, locally around every point of N there are coordinates (z1, . . . , zm) on X such that Y is the
transverse intersection of zero sets (zn+1 ≡ 0) ∩ · · · ∩ (zm ≡ 0).

Remark 2.3. Many other important concepts such as transversality are defined similarly in the
complex category.

Similarly to the previous section, associated to every complex manifold we have the sheaves OX
and KX . The first associates to each open set U the ring OX(U) consisting of the holomorphic
functions on U . The second one associates to each connected open set U the field KX(U)
consisting of the meromorphic functions on U . The latter is the field of fractions of the former.
The stalks of these sheaves are defined locally as before. As we stated before, if X is closed
(compact), the vector space Γ(X,OX) = OX(X) consisting of the global sections of OX (i.e.
holomorphic functions defined on the entire X) is isomorphic to C. However, (assuming X is
connected),

K(X) ..= Γ(X,K)

is called the function field of X and is quite large. Note that K(X) is a field-extension of C.

Proposition 2.4. Let X be a compact complex manifold of dimension n. Then

trdegCK(X) ≤ n.

The function field K(X) and its transcendence degree trdegCK(X) play a major role in classifi-
cation of X.

In addition to pasting local charts, there are two major global methods for constructing mani-
folds: either as the zero set of a set of equations or as the quotient of some easier manifolds. To
define quotient complex manifolds, we consider the holomorphic action of a discrete or complex
Lie group G on a complex manifold X in the following sense. Suppose X is a complex manifold
and G is a discrete group (probably finite). By a holomoprhic (right-) action of G on X we
mean a function

ϕ : X ×G −→ X, (x, g) −→ x · g ..= ϕ(x, g) ∈ X
such that ϕ(−, g) : X −→X is holomorphic for all g ∈G and ϕ(−, g1g2) = (ϕ(−, g1), g2) for all
g1, g2 ∈ G. In particular, by the second property, each ϕ(−, g) is a biholomorphic map. Let

X/ϕ ≡ X/G ..= X/
(
x ∼ x · g : ∀ x ∈ X, g ∈ G)

denote the quotient space with the quotient topology.
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Theorem 2.5. With notation as above, suppose G is a discrete group that acts freely and
properly on X in the following sense:

• (freely means) for every point x ∈ X the stabilizer subgroup Gx = {g ∈ G : x · g= x} is the
trivial subgroup;

• (properly means) for every compact subset K⊂X, the subset GK = {g ∈ G : (K · g)∩K 6= ∅}
is finite.

Then the holomorphic manifold structure on X induces a unique holomorphic manifold structure
on X/G.

Example 2.6. For every τ ∈ C with Im(τ) > 0, the action of Z2 on C by

C× Z2 −→ C, z × (m,n) −→ z +m+ nτ,

is holomorphic, free, and proper. The quotient manifold Tτ = C/Z2 is the 2-dimensional torus
T2 with a complex structure that depends on τ . The complex tori T2

τ and T2
τ ′ are biholomorphic

if and only if

τ ′ = A · τ =
aτ + b

cτ + d
(2.1)

for some

A =

[
a b
c d

]
∈ PSL(2,Z) = {A ∈M2×2(Z) : det(A) = 1}/± I2×2.

Therefore, the space parametrizing complex tori up to biholomorphism is itself the quotient
space

H/PSL(2,Z),

where H is the upper-half plane (1.8). The action of PSL(2,Z) on H is proper but not free. The
quotient space H/PSL(2,Z) is thus a singular variety (an orbifold) and not a manifold.

A complex Lie group G is a complex manifold with a group structure such that the product
map

G×G −→ G

is holomorphic. Examples of Lie groups include C∗ and GL(N,C).

Theorem 2.7. Suppose G is a complex Lie group that acts freely and properly on a holomorphic
manifold X in the following sense:

• (freely) for every point x ∈ X the stabilizer subgroup Gx = {g ∈ G : x · g = x} is the trivial
subgroup;

• (properly) for every compact subset K ⊂X, the subset GK = {g ∈ G : (K · g) ∩ K 6= ∅} is
compact.

Then the manifold structure on X induces a unique holomorphic manifold structure on X/G
such that the quotient map π : X −→ X/G is a holomorphic submersion.

HW 2.8. Prove that every compact, connected, complex Lie group is a torus.

The most important example of a complex manifold that can be obtained as a Lie group quotient
space is the example of the complex projective space. This example generalizes in different ways
to Grassmannians and Toric varieties. They all fit into the framework of GIT quotients.
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Example 2.9. The n-dimensional complex projective space CPn is the set of lines through
origin in Cn+1. If V is an abstract complex vector space, we use the notation P(V ) to denote
the set of lines through origin in V . Therefore, CPn = P(Cn+1). We have

P(V ) = V − {0}/C∗

where λ ∈ C∗ acts by
v → λv.

For CPn, the xis in the equivalence class [x0, . . . , xn] ∈ CPn of (x0, . . . , xn) ∈ Cn+1 − {0} are
called the homogenous or projective coordinates of CPn. They are not coordinates in the usual
sense, but they have a geometric meaning that we will learn about below. The open sets

Ui = {[x0, . . . , xn] ∈ CPn : xi 6= 0}, i = 0, . . . , n,

cover CPn. For each i = 0, . . . , n, the map

ϕ : Ui −→ Cn, [x0, . . . , xn] −→
(
z0, . . . ẑi . . . , zn

)
=
(x0

xi
, . . .

x̂i
xi
. . . ,

xn
xi

)
is a holomorphic chart onto Cn. The collection {ϕi : Ui −→ Cn}ni=0 is a holomorphic atlas on
CPn. Every embedding W ⊂ V of complex linear spaces gives rise to an embedding of complex
manifolds P(W ) ⊂ P (V ). For instance, the complement Hi of each open set Ui is a complex
hypersurface Hi

∼= CPn−1 ⊂ CPn that corresponds to the C-codimension 1 subspace

(xi ≡ 0) ⊂ Cn+1.

A 1-dimensional complex manifold has real dimension 2 and is called a Riemann surface or a
complex curve. As we will briefly explaine in Remark 2.19 below, every orientable 2-manifold
can be given the structure of a Riemann surface. Usually, this can be done in more than one
way and we get a family of non-equivalent complex structures on the underlying topological
manifold. This family is often a complex variety itself and is called a “moduli space”.

For n = 1 in Example 2.9, CP1 = S2 is obtained by gluing two copies of C, say with coordinates
z = x1

x0
and w = x0

x1
, along C∗ ⊂ C via the gluing map

w =
1

z
.

Topologically, CP1 is the one-point compactification of C that adds the point z = ∞ ∼ w = 0.
There is a unique way to equip S2 with a holomorphic structure.

HW 2.10. Show the the manifolds Mλ obtained by gluing the two charts above via

w = λ/z

are all biholomorphic for different values of λ ∈ C∗.
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Closed Riemann surfaces are topologically/smoothly classified by their genus g ∈ N or equiva-
lently their Euler characteristic χ = 2 − 2g. Starting with g = 0, we have S2 which is simply
connected and admits a unique complex structure CP1. The automorphism (biholomorphisms)
group of CP1 is PSL(2,C), acting on C ∪∞ as in (2.1).
Next in the list, we have the 2-torus with g = 1 and H1(T2,Z) = Z ⊕ Z. As we explained
in Example 2.6, the universal cover of T2 is C and there is complex one-dimensional space of
complex structures on T2. The automorphism group of generic T2

τ is T2
τ × Z2, where the first

component corresponds to translations and the second corresponds to z −→ −z on C.
The universal cover of every closed Riemann surface Σ with the genus g > 1 is the upper-half
plane H, and

S = H/Γ

where Γ is a finite-index subgroup of PSL(2,R). Here, PSL(2,R) acts on H as in (2.1). The
moduli space of holomorphic structures on Σ is (3g − 3)-dimensional and is denoted by Mg

(called the Deligne-Mumford space).

For every Riemann surface X, a meromorphic function f : X − S −→ C is equivalent to a
holomorphic function f : X −→ CP1 such that f−1(∞) is the polar divisor of f . More precisely,
for every p ∈ S, in any local coordinate x around p (p corresponds to x = 0), f has the form

CP1 3 z(f(x)) = a−nx
−n + a−n+1x

−n+1 + · · · = x−nh(x)

such that h(0) 6= 0. In the coordinate w = z−1 around ∞ ∈ CP1, we have

w(f(x)) = xn
1

h(x)
.

Therefore, f(p) = ∞ with multiplicity n. In general, if f : X −→ Y is a holomorphic between
two Riemann surfaces, q ∈ X, x is a local coordinate near q, and y is a local coordinate near
f(q), then f locally has the form

f(z) = zdh(z)

such that h(0) 6= 0. The number d = multq(f) ∈ Z>0 called the multiplicity of f at q and is
independent of the choice of local coordinates.

HW 2.11. Show that the function field of CP1 is C(z) = C(w), the field of polynomial fractions
in one variable; i.e. show that every holomorphic functions CP1 −→ CP1 is the quotient of
two polynomials. Similarly, show that the function field of CPn is C(z1, . . . , zn), the field of
polynomial fractions in n variables.

HW 2.12. Let f(z) = p(z)/q(z) be a holomorphic function given by the quotient of two degree
m and n polynomials p(z) and q(z), respectively. Let d = max(m,n). Show that f is generically
a d : 1-covering map. Describe the set of branched points, i.e. the points p in the target where
the size of f−1(p) is smaller than d. Describe the zero and polar divisors of f . The former is
the formal linear sum ∑

q∈f−1(0)

multq(f) · q

and the later is the formal linear sum ∑
q∈f−1(∞)

multq(f) · q.
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HW 2.13. With notation as in Example 2.6, note the action of Z2 on C by z −→ −z descends
to a Z2 action on each T 2

τ with exactly 4 fixed points: [0], [1/2], [τ/2], [(1 + τ)/2]. Even though
the action is not free, show that the quotient space Y = T 2

τ /Z2 has the structure of a smooth
Riemann surface. Prove that Y = CP1. Conclude that there is a holomorphic map

π : T 2
τ −→ CP1

that is generically 2 : 1 and is ramified at 4 points. Can you use π to find the find the function
field of a torus?

The (local) definition of analytic varieties in Cn (Definition 1.28) extends to a similar definition
for arbitrary ambient space in the following way.

Definition 2.14. Suppose Y is a complex manifold. We say X ⊂ Y is an analytic subvariety
of Y if, for every w ∈ X, there exists a sufficiently small neighborhood U 3 w such that X ∩ U
is the common zero locus of a finite collection of holomorphic functions f1, . . . , fk on U . In
particular, we say X is a complex projective manifold/variety if it can be embedded in CPn.

One may ask which analytic manifolds/varieties are projective? At the end of this section, we
will learn about the Kodaira Embedding Theorem that answers this question.

Example 2.15. The complex manifold

X =
C2 − {0}
z ∼ 2z

is topologically an S1-bundle over S3 and is known as Hopf (complex) surface. We will learn
later that X is not projective.

While the definition of an analytic subvariety X ⊂M locally describes X as the zero set of finite
set of functions, it is desirable to describe a subvariety by a set of globally defined equations.
However, if M is closed, because OM (M) = C, the only globally defined holomorphic functions
are the constant functions. We do not want to consider meromorphic functions either because
they have poles. For example, each hyperplane Hi ⊂ CPn in Example 2.9 is described by a
single equation xi ≡ 0, but xi is not a function on CPn. The idea to resolve this issue and makes
sense of xi as some sort of function is to consider sections of holomorphic vector bundles.

Definition 2.16. A holomorphic vector bundle E −→M on a complex manifold M is a C-rank
r complex vector bundle admiting local trivializations{

Φα : E|Uα ∼= Uα × Cr
}
α∈I

such that the change of trivialization maps

Φβ ◦ Φ−1
α : Uα ∩ Uβ −→ GL(r)

are holomorphic.

Remark 2.17. Some complex vector bundles may not admit any holomorphic structure, and
whenever they do, they may admit several non-isomorphic holomorphic structures. There are
cohomological groups/relations that determine whether a complex vector bundle admits any
holomorphic structure and in how many ways. We will learn about these later.
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Example 2.18. The tangent and cotangent bundles of every complex manifold admit natural
holomorphic structures. The relation with the smooth tangent and cotangent bundle structures
is as follows. Suppose M is a holomorphic manifold of complex dimension n. We can think of
M as a smooth manifold of real dimension 2n. The linearization of the complex structure on M
can be seen as a real endomorphism

J : TM −→ TM (2.2)

satisfying J2 = −id. Let TM denote the smooth tangent bundle of M . The complexifiation

TM ⊗R C

of TM is C-vector bundle of rank 2n. It admits a decomposition

TM ⊗R C ∼= T 1,0M ⊕ T 0,1M ≡ TM ⊕ TM

such that J acts on T 1,0M = TM complex linearly and on T 0,1M = TM anti-compex linearly.
In terms of local coordinates (z1 = x1 + iy1, . . . , zn = xn + iyn) on M , TM is generated by

∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn
,

J acts by J ∂
∂xa

= ∂
∂ya

and J ∂
∂ya

= − ∂
∂xa

, TM is generated by

∂

∂z1
. . .

∂

∂zn
,

and TM is generated by their complex conjugates. The case of cotangent bundle is similar.

Remark 2.19. An almost complex structure on a real 2n-dimensional smooth manifold M is an
endomorphism J : TM −→ TM covering the identity map on M such that J2 = −id. A natural
question is whether given an almost complex structure J on M , there is a holomorphic structure
on M whose first order action is J? A theorem of Newlander-Nirenberg provides an explicit
if-and-only-if answer to this question. For example, given a Riemannian metric g on a Riemann
surface Σ, the rotation by π/2 defines an almost complex structure J on TΣ. Furthermore, it
follows from the theorem of Newlander and Nirenberg that every almost complex structure in
real dimension 2 is integrable to a holomorphic structure. Therefore, every orientable Riemann
surface admits a holomorphic structure.

Example 2.20. Consider the complex projective spaces P(V ) in Example 2.9. The so called
tautological line bundle γ −→ P(V ) is the complex line bundle whose fiber over the point
[v] ∈ P(V ) is the complex line C · v ⊂ V . By definition, γ is a complex subline bundle of the
trivial bundle P(V ) × V . For CPn, with respect to the atlas in Example 2.9, γ is given by
transition maps

Φj ◦ Φ−1
i : Ui ∩ Uj −→ GL(1) = C∗, Φj ◦ Φ−1

i (z0, . . . ẑi . . . zn) = zj . (2.3)

Therefore, γ is a holomorphic line bundle. The facts is that every complex line bundle on P(V )
admits a unique holomorphic structure and is isomorphic to a tensor power γ⊗m of γ for some
m ∈ Z. The line bundle γ is often denoted by O(−1) or OP(V )(−1). Its dual

OP(V )(1) = γ−1 = γ∗

and its higher powers OP(V )(m) = γ⊗−m play a major role in the study of complex projective
varieties.

22



Suppose L −→M is a holomorphic line bundle. The assignment

U −→ Γ(U,L|U )

for every open set U ⊂ M defines a sheaf of complex vector spaces on M . We will mainly be
interested in the group Γ(M,L) of global holomorphic sections of L.

HW 2.21. Following Example 2.20, show that, for m < 0, Γ(CPn,O(m)) = 0. For m ≥ 0,
show that Γ(CPn,O(m)) can be identified with the C-vector space of homogenous polynomials
of degree m in the projective coordinates x0, . . . , xn. In particular, x0, . . . , xn can be seen
as the global holomorphic sections of O(1). We conclude that, for m > 0, the line bundle
O(m) has plenty of sections. For instance, for every two points p, q ∈ CPn, there is a section
s ∈ Γ(CPn,O(m)) such that s(p) = 0 and s(q) 6= 0.

HW 2.22. Suppose E −→ M is a holomorphic vector bundle and s1, . . . , sk ∈ Γ(M,L) are k
holomorphic sections. Show that

X =

k⋂
i=1

s−1
i (0) = {p ∈M : si(p) = 0 ∀i = 1, . . . , k}

is an analytic subvariety.

The construction above gives a recipe for constructing plenty of analytic subvarieties from sec-
tions of holomorphic vector bundle. We will be interested in bundles that have plenty of sections.
By HW 2.21, in Example 2.9, Hi is the zero set of the section xi ∈ Γ(CPn,O(1)).

Remark 2.23. Suppose π : E −→ M is a holomorphic vector bundle and s : M −→ E is a
holomorphic section of that. A priori, the C-derivative of s is a linear map

ds : TM −→ T E

where T E denotes the complex tangent space of the total space of E. The projection map π
gives rise to a short-exact sequence of complex vector bundles

0 −→ π∗E −→ T E dπ−→ π∗TM.

A complex linear connection ∇ on E gives a splitting

T E ∼= π∗E ⊕ π∗TM

of this exact sequence and thus allows us to extract the non-trivial vertical component

d∇x s : TxM −→ Ex, ∀ x ∈M,

of ds at every point x ∈ M . However, recall from differential topology that, along the zero set
of s (i.e. if s(x) = 0), d∇x s is independent of the choice of ∇ and we can simply denote it by d⊥x s.
Then, a section s is called transverse if dxs is full rank at every x ∈ s−1(0). If s is transverse,
then s−1(0) is a complex submanifold of C-codimension equal to the C-rank of E.

For example, if M = CP2 and E = O(d) for some d > 0, then a section s of O(d) is a homogenous
polynomial of degree d

s =
∑

i0+i1+i2=d

xi00 x
i1
1 x

i2
2 .
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We have

ds =
∂

∂x0
dx0 +

∂

∂x1
dx1 +

∂

∂x2
dx2,

and s is transverse if the only common zero of the degree d − 1 homogenous polynomials ∂
∂x0

,
∂
∂x1

, and ∂
∂x2

, is (0, 0, 0) (which does not define a point in CP2!). Generic s is transverse (why?!)
and (we will learn that) the zero set of that is a closed Riemann surface of genus

(d− 1)(d− 2)

2
.

Furthermore, every complex submanifold of dimension 1 in CP2 is the zero set of such a section
(we will learn this later).

The set of isomorphism classes of holomorphic (and smooth complex) line bundles L on a complex
manifold M is a group where product structure comes from taking the tensor product and
L−1 = L∗. This is called the Picard group and is denoted by Pic(X). Those holomorphic lines
bundles that are smoothly trivial form a subgroup that is denoted by Pic0(X). If f : X −→ Y
is a holomorphic map, then the pull-back under f defines a group of homomorphism

f∗ : Pic(Y ) −→ Pic(X).

In the next section, we will use sheaf theory and some cohomological arguments to understand
holomorphic line bundles on X and thus Pic(X).

HW 2.24. Suppose X is a compact complex manifold. Show the complex vector space Γ(X,L)
of the holomorphic sections of any holomorphic vector bundle L −→ X is finite dimensional.

Suppose L −→ X is a holomorphic line bundle such that:
(?) for every p ∈ X there exists s ∈ Γ(X,L) such that s(p) 6= 0; i.e., the C-linear homomor-

phism
Γ(X,L) −→ L|p ∼= C, s −→ s(p),

is surjective.

Let s0, . . . , sN be a basis for the complex vector space Γ(X,L). For each p ∈ X and i, j =
0, . . . , N , the ratio si(p)/sj(p) ∈ C ∪∞ is defined. Therefore, by (?), the point

[s0(p), . . . , sN (p)] ∈ CPN

is defined. If L|U ∼= U ×C is a local trivialization of L, then the restriction of each section to U
is given by a similarly denoted holomorphic function

si : U −→ C.

This shows that the map

ιL : X −→ CPN , p −→ [s0(p), . . . , sN (p)], (2.4)

is holomorphic. In conclusion, if we can find a holomorphic line bundle with lots of sections, we
can use these sections to map X into CPN . Suppose further that
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(??,i) for every p 6= q ∈ X there exists s ∈ Γ(X,L) such that s(p) = 0 and s(q) 6= 0; i.e.,
the C-linear homomorphism

Γ(X,L) −→ L|p ⊕ L|p ∼= C2, s −→ s(p)⊕ s(q),

is surjective; and
(??, ii) for every p∈X and v∈TpX there exists s∈Γ(X,L) such that s(p)=0 and d⊥s(p) = v.

If (??,i) holds, then % will be one-to-one. If (??,ii) holds, then % will be an immersion. Note
that (??,ii) can be thought of as the limit of (??,i) when q converges to p in the direction of
v. There is a notion of positivity for holomorphic line bundles that ensures the properties (?),
(??,i) (??,ii) hold. In conclusion, we have the following result.

Theorem 2.25. (Kodaira’s Embedding Theorem) Let X be a compact complex manifold and L
be a positive line bundle. Then there exists k0 > 0 such that for every k ≥ k0, the map ιL⊗k
corresponding to the line bundle L⊗k is an embedding. Therefore, X is a complex projective
variety if and only if it admits a positive line bundle.

We will learn about the notion of positivity in the coming sections. A positive line bundle is
also called ample. Then a line bundle L for which ιL is an embedding is called very ample. So
a sufficiently high tensor power of any ample line bundle is very ample. As an example, the line
bundle O(1) over CPn is very ample. It gives rise to the trivial embedding of CPn into itself.
However, for m > 1, we get an emebdding

ιO(m) : CPn −→ CP(n+mn )−1

For example, the line bundle O(2) over P1 gives rise to the embedding

ιO(2) : CP1 −→ CP2, [x0, x1] −→ [y0, y1, y2] = [x2
0, x0x1, x

2
1].

Clearly, the image of ιO(2) is the degree 2 curve/hypersurface

(y2
1 − y0y2 = 0) ⊂ CP2.

The map
ιO(m) : CP1 −→ CPm

is called the Veronese map.

3 Some cohomological results

For any manifold X, let Λr(X,R) and Λr(X,C) denote the spaces of smooth R-valued and C-
valued r-forms on X. Recall that the de Rham cohomology H∗dR(X,R) is the cohomology of the
cochain complex

0 −→ Λ0(X,R)
d−→ Λ1(X,R)

d−→ · · · ;

the C-valued de Rham cohomology groups are defined similarly and

H∗dR(X,C) = H∗dR(X,R)⊗R C.
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Over complex manifolds, Λr(X,C) further decomposes as

Λr(X,C) =
⊕
r=p+q

Λp,q(X,C),

where Λp,q(X,C) is the space smooth differential forms of type (p, q) in the sense that it every
η ∈ Λp,q(X,C) locally has the form

η =
∑

|I|=p,|J |=q

aI;JdzI ∧ dzJ =
∑

ai1,...,ip;j1,...,jqdzi1 ∧ · · · ∧ dzip ∧ dzi1 ∧ · · · ∧ dziq .

As in (1.1), the exterior derivative operator d decomposes as d = ∂ + ∂ such that

∂ : Λp,q(X,C) −→ Λp+1,q(X,C) and ∂ : Λp,q(X,C) −→ Λp,q+1(X,C).

The decomposition above into (p, q)-types is preserved under holomorphic maps; in particular,

∂̄-operator commutes with pull back by holomorphic maps. Also, we have ∂2 = 0 and ∂
2

= 0.
Therefore, for each p ≥ 0,

0 −→ Λp,0(X,C)
∂−→ Λp,1(X,C)

∂̄−→ · · · ;

is a co-chain complex. The cohomology groups of this sequence are denoted by Hp,q

∂̄
(X,C) and

are called the Dolbeaut cohomology groups of X. The ordinary Poincare lemma states that
every closed form of positive degree on (a contractible domain in) Rn is exact. It shows us
that the positive degree de Rham cohomology groups are locally trivial and H∗dR(X,C) indeed
captures the global topology of X. Similarly, the ∂̄-Poincare lemma states that, for every
polydisk ∆ ⊂ Cn,

Hp,q

∂̄
(∆,C) = 0 ∀ q > 0;

i.e. every (p, q)-form η that satisfies ∂̄η = 0 and q > 0 is locally ∂̄ of some (p, q − 1)-form. The
proof relies on Cauchy Integral formula. The ∂̄-Poincare lemma would also enable us to show
that the Dolbeaut cohomology groups of X coincide with sheaf cohomology groups of Ωp

X , where
Ωp
X is the sheaf of holomorphic p-forms on X; see below.

Example 3.1. We will learn that, on every genus g Riemann surface X, the non-trivial Dolbeaut
cohomology groups are

H0,0

∂̄
(X,C) = C,

H1,0

∂̄
(X,C) = Cg, H0,1

∂̄
(X,C) ∼= H1,0

∂̄
(X,C) = Cg,

H1,1

∂̄
(X,C) = C.

The C-vector space H1,0

∂̄
(X,C) is the space of holomorphic 1-forms on X; i.e. 1-forms that are

locally of the form f(z)dz for some holomorphic function z.

Suppose E −→ X is a holomorphic vector bundle. For each p, q ≥ 0, let Λp,q(X,E) denote the
space of (p, q)-forms with values in E; i.e. Λp,q(X,E) is the tensor product of Λp,q(X,C) and
the space of smooth sections of E.

HW 3.2. Prove that the ∂̄-operator on differential forms natural extends to a well-defined
∂̄-operator

Λp,q(X,E)
∂−→ Λp,q+1(X,E)

satisfying ∂̄2 = 0. Explain why the same does not hold for ∂.
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By the homework above, for each p ≥ 0,

0 −→ Λp,0(X,E)
∂−→ Λp,1(X,E)

∂̄−→ · · · ;

is a co-chain complex. The cohomology groups of this sequence are denoted by Hp,q

∂̄
(X,E) and

are called the Dolbeaut cohomology groups of E. For example, H0,0

∂̄
(X,E) is precisely the vector

space Γ(X,E) of the holomorphic sections of E.

Example 3.3. Suppose X is a compact Riemann surface of genus g and E −→ X is a holomor-
phic vector bundle. For dimensional reasons, the only non-trivial (0, q) Dolbeaut cohomology
groups of E are

H0,0

∂̄
(X,E) and H0,1

∂̄
(X,E).

The famous Riemann-Roch theorem, that we will learn later, states that

dimH0,0

∂̄
(X,E)− dimH0,1

∂̄
(X,E) = deg(E) + rank(E)(1− g).

Here,
deg(E) = c1(E) ∈ H2(X,Z) ∼= Z

is given by the first Chern class c1(E). For instance, if X = P1 and E = O(m) with m ≥ 0,
then g = 0, rank(E) = 1, and

dimH0,0

∂̄
(P1,O(m))− dimH0,1

∂̄
(P1,O(m)) = m+ 1.

From HW 2.21, we conclude

H0,0

∂̄
(P1,O(m)) = Cm+1 and H0,1

∂̄
(P1,O(m)) = 0.

Similarly, if m = −n < 0, we get

H0,0

∂̄
(P1,O(m)) = 0 and H0,1

∂̄
(P1,O(m)) = C−1−m = Cn−1.

The case m = −1, i.e. E = γ = O(−1) is special in the sense that

H0,0

∂̄
(P1, γ) = 0 and H0,1

∂̄
(P1, γ) = 0.

The calculations above show that there is a symmetry around m = −1 in the sense that
H0,0

∂̄
(P1,O(m)) coincides with H0,1

∂̄
(P1,O(2 − m)) and vice versa. This is a special case of

Serre duality that we will learn later.

Next, we will review sheaf theory and cech cohomology. Suppose F is a sheaf on X and A =
{Uα}α∈I is an open covering of X. Define

UI =
⋂
α∈I

Uα ∀ I ⊂ I,

Cq(A,F) =
⊕

I⊂I, |I|=q+1

F(UI).

It will be convenient to write an element η ∈ Cq(A,F) as

η =
⊕

i0,...,iq∈I
ηi0i1...iq
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with the convention that
ηi0i1...iq = (−1)ε(σ)ηiσ(0)iσ(1)...iσ(q)

for every permutation σ of (i0, . . . , iq). In particular, just like differential forms,

ηi0i1...iq = 0

whenever ia = ib for some a 6= b; otherwise,

ηi0i1...iq ∈ F(Ui0i1...iq).

The co-boundary map ∂ : Cq−1(A,F) −→ Cq(A,F) is defined by restriction in the following
way (

∂η
)
i0i1...iq

=

q∑
a=0

(−1)a ηi0...ia−1ia+1...iq |Ui0...iq .

Note that when the group structure on F is indeed multiplicative, the summation above should
be replaced by product. It is easy to check that ∂2 = 0 (again, remember that 0 means the trivial
homomorphism of the category in the question. If the group structure is a product, this will
be the trivial homomorphism the maps everything to 1). Therefore

(
C•(A,F), ∂

)
is a cochain

complex. The cech cohomology groups of F with respect to A are the cohomology groups of
this complex:

Ȟk(A,F) =
Ker

(
Ck(A,F)

∂−→ Ck+1(A,F)
)

Image
(
Ck−1(A,F)

∂−→ Ck(A,F)
) . (3.1)

The covering-independent cech cohomology groups Ȟk(X,F) are defined to be the direct limit
of Ȟk(A,F) under refinements of A. In most examples, the limit is achieved on a sufficiently
refined A in the sense that all UI are sufficiently small polydisks.

We say that a sequence of sheaf maps

0 −→ F f−→ G g−→ E −→ 0

is exact if F is Ker(g) and E is the sheafification of Coker(f). In this situation, we also say F
is a sub-sheaf of G and E is a quotient of G. The exactness essentially means that, (only) for
sufficiently small U , the sequence

0 −→ F(U)
fU−→ G(U)

gU−→ E(U) −→ 0

is exact. This may not be true for larger and more complicated open sets, especially U = X.
More generally, we say

· · · −→ Fk−1
fk−1−−−→ Fk

fk−→ Fk+1 −→ · · ·
is exact if Ker(fk) is equal to the sheafification of Coker(fk−1). The main result is the following.

Theorem 3.4. Corresponding to every short exact sequence of sheaves

0 −→ F f−→ G g−→ E −→ 0

on X, there is a long exact sequence of cech cohomology groups

0 −→ Ȟ0(X,F)
f∗−→ Ȟ0(X,G)

g∗−→ Ȟ0(X, E)

δ∗−→ Ȟ1(X,F)
f∗−→ Ȟ1(X,G)

g∗−→ Ȟ1(X, E)

−→ · · · .
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The following examples and facts will be the most relevant ones to our discussion of complex
manifolds.

• The zero-th cech cohomology group Ȟ0(X,F) is the space of global sections F(X).

• To every holomorphic vector bundle E −→ X, we associate its sheaf of holomorphic sections

U −→ Γ(U,E).

The sheaf of sections of the trivial holomorphic line bundle X ×C is the sheaf of holomorphic
functions on X. It is denoted by OX and is called the structure sheaf of X. For every other
holomorphic vector bundle E, Γ(U,E) is a free OX(U)-module. There are other sheaves of
OX -modules that are important but every sheaf of OX -modules that is locally free is the sheaf
of sections of a holomorphic vector bundle.

• If X is a complex manifold, let O∗X denote the sheaf of C∗-valued (nowhere-zero) holomorphic
functions. Here, the group structure is the multiplication and the unit is 1. Suppose A = {Uα}
is a sufficiently refined holomorphic atlas on X. By definition, a 1-cocycle

ϕ ∈ C1(A,O∗X)

is a collection of holomorphic functions

ϕαβ : Uαβ = Uα ∩ Uβ −→ C∗

such that
(∂ϕ)αβγ = ϕβγϕ

−1
αγϕαβ|Uαβγ = 1.

Note that this is the multiplicative version of the definition of the cochain map of the cech
cohomology. So ∂φ is trivial if and only if

ϕαγ(z) = ϕβγ(z)ϕαβ(z) ∀ z ∈ Uαβγ .

This is exactly the cocycle condition of the transition maps

(Uα × C)|Uαβ −→ (Uβ × C)|Uαβ , (z, v) −→ (z, ϕαβ(z)v)

of a holomorphic line bundle L −→ X. Conversely, if L −→ X is a holomorphic line bundle
such that LUα ∼= Uα × C, the transition maps {ϕαβ : Uαβ −→ End(C) = C∗} define a cech
1-coccyle ϕ. Two cech 1-cocyles ϕ = {ϕαβ} and ϕ′ = {ϕ′αβ} define the same cohomology
group if and only if they differ by a coboundary; i.e. if

ϕ′αβϕ
−1
αβ = (∂θ)αβ = θβθ

−1
α (3.2)

for some
θ = (θα)α∈I ∈ C0(A,O∗X)

Let L and L′ denote the holomorphic line bundles corresponding to ϕ and ϕ′, respectively.
By (3.2), the following diagram commutes

(Uα × C)|Uαβ
θα //

ϕαβ

��

(Uα × C)|Uαβ
ϕ′αβ
��

(Uβ × C)|Uαβ
θβ // (Uβ × C)|Uαβ .
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Which means the local isomorphisms

L|Uα ∼= Uα × C −→ L′|Uα ∼= Uα × C, (z, v) −→ (z, θα(z)v)

are compatible on the overlaps and define a global holomorphic isomorphism L θ−→ L′. We
conclude that there is a one-to-one correspondence between the elements of the cech coho-
mology group Ȟ1(A,O∗X) and the isomorphism classes of holomorphic complex line bundles
on X; i.e.,

Pic(X) ∼= Ȟ1(A,O∗X). (3.3)

• For any topological space X, let ZX , RX , and CX denote the sheaves of locally constant
functions taking values in Z, R, and C, respectively. If X is a complex manifold, let Ωp

X

denote the sheaf of holomorphic p-forms on X. Then, we have

Ȟ∗(X,Z) ∼= H∗sing(X,Z),

Ȟ∗(X,R) ∼= H∗sing(X,R) ∼= H∗dR(X,R),

Ȟ∗(X,C) ∼= H∗sing(X,C) ∼= H∗dR(X,C),

Ȟ∗(X,Ωp
X) ∼= Hp,∗

∂̄
(X,C).

(3.4)

The proof of Ȟ∗ ∼= H∗dR above uses Poincare lemma; see Proposition 3.42 in my lecture notes
for MATH6410. Similalrly, if Λp,qX denotes the sheaf of smooth (p, q)-forms on a complex
manifold X (note that Λp,q(X,C) = Λp,qX (X) is the space of global sections of Λp,qX ), then by
∂̄-Poincare Lemma, the sequence

0 −→ Ωp
X

ι−→ Λp,0X
∂̄−→ Λp,1X

∂̄−→ Λp,2X −→ . . .

is exact and a similar proof yields the last isomorphism. The isomorphism Ȟ∗ ∼= H∗sing is
Theorem 3.65 in my lecture notes for MATH6410. It uses an open covering derived from a
triangulation of X.

Example 3.5. For X = CPn, we have

Ȟq(X,Ωp
X) ∼= Hp,q

∂̄
(X,C) =

{
C if 0 ≤ p = q ≤ n;

0 otherwise.

• If X is a complex manifold, the sequence

0 −→ ZX −→ OX −→ O∗X −→ 0,

where the first map is the inclusion map and the second map is the exponential map

f(z) −→ e2πif(z),

is a short exact sequence of sheaf. The associated long exact sequence of cech cohomology
classes in Theorem 3.4 reads

0 −→ Ȟ0(X,ZX) −→ Ȟ0(X,OX) −→ Ȟ0(X,O∗X)

δ1−→ Ȟ1(X,ZX) −→ Ȟ1(X,OX) −→ Ȟ1(X,O∗X)

δ2−→ Ȟ2(X,ZX) −→ Ȟ2(X,OX) −→ Ȟ2(X,O∗X)

−→ · · · .
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By the isomorphisms above, this sequence can be re-written as

0 −→ Z −→ C −→ C∗ −→ 0

0 −→ H1
sing(X,Z) −→ H0,1

∂̄
(X,C) −→ Pic(X)

δ2−→ H2
sing(X,Z) −→ H0,2

∂̄
(X,C) −→ Ȟ2(X,O∗X)

−→ · · · .

For any holomorphic line bundle L ∈ Pic(X), δ2(L) ∈ H2
sing(X,Z) is precisely the first Chern

class c1(L). The quotient

Ȟ1(X,OX)

Ȟ1(M,ZX)
∼=
H0,1

∂̄
(X,C)

H1
sing(X,Z)

is a torus known as Pic0(X) or Jacobian of X; it is the subgroup of holomorphic line bundles
on X that are smoothly trivial but homomorphically non-trivial. For example, if X is a
compact Riemann surface of genus g, then

Pic0(X) =
Cg

Z2g

is a g-dimensional torus. For g = 0, Pic0(CP1) = 0 because every holomorphic line bundle is
tensor power of the tautological line bundle.

If we forget about the holomorphicity, a similar long exact sequence shows that every smooth
complex line bundle is uniquely determined by its first Chern class and every cohomology
class in H2

sing(X,Z) is the first Chern class of some complex line bundle. In the holomorphic
category, however, from the exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ H2
sing(X,Z) −→ H0,2

∂̄
(X,C),

we conclude that only if H0,2

∂̄
(X,C) = 0, then every element of H2

sing(X,Z) is the first chern
class of some holomorphic line bundle. Otherwise, there are (smooth) complex line bundles on
X that do not admit any holomorphic structure. If X is a Riemann-surface, for dimensional
reasons, H0,2

∂̄
(X,C) = 0. On the other hand, in complex dimension 2, there are interesting

complex manifolds with non-trivial H0,2

∂̄
(X,C). For instance a K3 surface is a simply con-

nected (Kähler) holomorphic surface X with c1(TX) = 0 and H0,2

∂̄
(X,C) ∼= C. All K3 surfaces

are smoothly identical (diffeomorphic). The complex line

C ∼= H0,2

∂̄
(X,C) ⊂ H2

dR(X,C) ∼= C22

defines a point in the projective space P(H2
dR(X,C)) ∼= CP21. This gives us a map

{The space of all K3 surfaces} −→ CP21

that helps us parametrize the “moduli space” of complex structures on K3 surfaces. The
image of the map above belongs to a 20-dimensional hypersurface.
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4 Hermitian metrics and Kähler structures

Definition 4.1. A Hermitian metric on a complex vector bundle E −→ X is a (smoothly
varying) fiber-wise bilinear map

h = 〈−,−〉 : E ⊗R E −→ C,

such that

(1) h is complex linear in the first input and anti-complex linear in the second input,

(2) (symmetry) h(u, v) = h(v, u),

(3) (positive definiteness) h(u, u) > 0 for all 0 6= u ∈ E.

For each fiber Ep and with respect to any trivialization Ep ∼= Cr, we have

h(u, v) = uTHv,

and H is an r × r matrix satisfying HT = H, with positive eigenvalues.

If we think of E as a real vector bundle and think of the complex multiplication by i as an
almost complex structure, we get

1

2
h = g − iω,

such that g is a Riemannian metric on the real vector space underlying E, and ω ∈ Λ2
RE
∗. Each

of h, g, and ω, will determine the rest. We will elaborate on this later in this section.

If X is a complex manifold, a Hermitian metric on X is a Hermitian metric on its complex
tangent bundle T X. Locally, with respect to a coordinate chart (z1, . . . , zn), we can write

h =
∑
i,j

hijdzi ⊗ dzj

for which
H = (hij)1≤i,j≤n. (4.1)

The so called fundamental real (1, 1)-form ω associated to h is given by

ω =
i

2

∑
i,j

hijdzi ∧ dzj ∈ Λ1,1(X,C) ∩ Λ2(X,R).

The 2n-form
1

n!
ωn

is nonzero everywhere and thus defines a volume form on X. Note that every complex manifold
is canonically oriented. We will use this volume form to define integration on X.

HW 4.2. Show that ω is indeed a real 2-form; i.e., when written in terms of dxi and dyi, all
the coefficients are real.

In terms of ω, the Condition (3) in Definition 4.1 is equivalent to the following.
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Definition 4.3. A 2-form ω ∈ Λ2(X,R)∩Λ1,1(X,C) on a complex manifold X is called positive
if −iω(u, u) > 0 for all 0 6= u ∈ T X. Equivalently, thinking of ω as a real 2-form in Λ2(X,R),
the positivity condition is equivalent to

ω(v, iv) > 0 ∀ 0 6= v ∈ TX,

where i : TX −→ TX is considered as an almost complex structure as in (2.2).

Definition 4.4. A Hermitian metric h on a complex manifold is called Kähler if dω = 0.

Since working with differential forms is easier than working with metrics, and ω and h carry
the same information, we usually work with ω and, if dω = 0, we say that ω is a Kähler
structure/form on X.

Example 4.5. The standard Kähler form on Cn is

ω =
i

2

∑
i

dzi ∧ dzi =
∑
i

dxi ∧ dyi.

with the standard volume form

1

n!
ωn = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

Example 4.6. Suppose X is a Riemann surface. Since every 2-form on X is closed, every
Hermitian metric on X is Kähler. Locally, in a coordinate chart z on X, we have

ω =
i

2
%(z)dz ∧ dz = %(x, y)dx ∧ dy

for some positive real-valued function %. If we write % = eϕ, then the scalar curvature of ω is
equal to

− %−1∆ ln % = −e−ϕ∆ϕ. (4.2)

For instance, the Poincare metric

ω =
dx ∧ dy

y2
=

i

2

1

Im(z)2
dz ∧ dz (4.3)

on the upper half plane H has the curvature

−%−1∆ ln % = 2y2∆ ln y = −2.

Note that the Gaussian curvature is half of the Scalar curvature.

Example 4.7. Let z = (z0, . . . , ẑi, . . . zn) be the affine coordinates on the open set Ui ⊂ CPn in
Example 2.9. The 2-forms

ωFS,i =
i

2
∂∂̄ ln(1 + |z|2) =

i

2

(1 + |z|2)
∑

dza ∧ dza − (
∑
zadza) ∧ (

∑
zadza)

(1 + |z|2)2
(4.4)

are compatible on the overlaps Ui ∩ Uj and define a Kähler structure ωFS on CPn called the
Fubini-Study metric/Kähler form. For n = 1, we have

ωFS =
i

2

dz ∧ dz

(1 + |z|2)2
=

dx ∧ dy

(1 + x2 + y2)2
=
rdr ∧ dθ

(1 + r2)2
.
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Therefore,∫
S2

ωFS = 2π

∫ ∞
0

rdr

(1 + r2)2
= π

∫ ∞
0

ds

(1 + s)2
= π

−1

1 + s
|∞0 = π(0− (−1)) = π. (4.5)

Also, using (4.2), we compute that the scalar curvature of this metric to be

2(1 + r2)2∆ ln(1 + r2) = 2(1 + r2)2
(∂2 ln(1 + r2)

∂r2
+

1

r

∂ ln(1 + r2)

∂r

)
= 8.

The metric above on S2 corresponds to the induced metric on the sphere of radius 1
2 in R3. That

explains the missing 4 in (4.5) and the extra factor of 4 in the scalar curvature.

If (X,ω) is a Kähler manifold and Y ⊂ X is a complex submanifold, then ω|Y defines an induced
Kähler structure on X. In conclusion, every smooth complex projective variety has a Kähler
structure. It also follows from the discussion above that the volume of Y is given by the integral

1

dimCY !

∫
Y
ωdimCY .

The fact that the volume of a complex submanifold Y of a complex manifold X is expressed as
the integral over Y of a globally defined differential form is quite different from what we have in
Riemannian geometry. Furthermore, by Stokes’ Theorem, if (X,ω) is Kähler, i.e. dω = 0, then
this integral only depends on the homology class [Y ] ∈ HdimRY (X,Z). If Y ⊂ X is a singular
variety, the singular locus Y sing ⊂ Y has at most real codimension 2. Therefore, similarly, the
integral ∫

Y
ωdimCY =

∫
Y−Y sing

ωdimCY

is defined and depends on the homology class [Y ] ∈ HdimRY (X,Z). The same applies to other
differential forms on X in the following sense.

Lemma 4.8. (Stokes’ Therem for analytic varieties) Suppose X is a complex manifold and
Y ⊂ X is an analytic subvariety of complex dimension k. For every differential (2k− 1)-form η
on X, the integral ∫

Y
dη =

∫
Y−Y sing

dη

is defined and is equal to 0. Consequently, for every closed (2k)-form η on X, the integral∫
Y
η =

∫
Y−Y sing

η

is defined and only depends on the homology class of Y .

In complex dimension 1, all compact Riemann surfaces are complex projective varieties. How-
ever, in complex dimension 2 and higher, there are Kähler manifolds that are not projective
varieties. Therefore, we have the hierarchy

Complex Manifolds ⊂ Kähler Manifolds ⊂ Smooth Complex Projective Varieties.

For example, as we mentioned at the end of previous section, there are simply connected complex
surfaces X known as K3 surfaces that are topologically characterized by c1(TX) ≡ 0. We
described a map

{The space of all K3 surfaces} −→ CP21
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that parametrizes the space of complex structures on K3 surfaces. The image of this map belongs
to a 20-dimensional hypersurface Q ⊂ CP21. While all K3 surfaces are Kähler, those that are
projective correspond to a union of 19-dimensional components in Q. Every quartic surface in
CP3, e.g. the Fermat quartic

X ≡ (x4
0 + x4

1 + x4
2 + x4

3 = 0) ⊂ CP3,

is a K3 surface.

Every Kähler form defines a cohomology class

[ω] ∈ H2
dR(X,R) ∩H1,1

∂̄
(X,C).

If X is compact, since
∫
X ω

dimCX = vol(X) 6= 0, the cohomology class of ω will be non-trivial.
A non-zero multiple of every Kähler form is a Kähler form. The set of all Kähler classes [ω] on
a compact complex manifold X (together with the zero-class) is an open convex cone Kah(X)
in

H2
dR(X,R) ∩H1,1

∂̄
(X,C).

The intersection above in the smoothly invariant group H2
dR(X,R) can change as we change

the complex structure on X. For example, in the example of K3 surfaces above, the inclusion
H2

dR(X,R) ∩H1,1

∂̄
(X,C) ⊂ H2

dR(X,R) specifies the complex structure on X.

Given a complex vector bundle E −→ X, a C-linear connection ∇ is an C-linear map

∇ : Λ0(X,E) = Γ(X,E) −→ Λ1(X,E)

that satisfies the Leibniz rule

∇(fζ) = f∇ζ + df ⊗ ζ ∀ f ∈ C∞(X,C), ζ ∈ Γ(X,E). (4.6)

With respect to any local trivialization E|U ∼= U × Cr, ∇ can be written as

∇ ..= d + Θ s.t. Θ ∈ Λ1(U,End(Cr)
)
; (4.7)

i.e. Θ is an (r × r) matrix of 1-forms. Changing one trivialization to another, with a change of
trivialization map

U × Cr −→ U × Cr, (x, v) −→ (x,Φ(x)v),

changes Θ to
Θ′ = dΦ ◦ Φ−1 + Φ ◦Θ ◦ Φ−1. (4.8)

Using a partition of unity, it is easy to show that every (smooth) vector bundle admits a plethora
of (smooth) connections.

HW 4.9. Show that if ∇ and ∇′ are two connections on E, then

∇−∇′ ∈ Λ1(X,End(E));

i.e. the difference of every two connections is a globally defined End(E)-valued 1-form.

By the homework above, the space of connections on E is an affine space with tangent space
Λ1(X,End(E)).
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Example 4.10. In (4.8), if E −→ X is a holomorphic line bundle, since Θ is a single 1-form
and Θ is a C∗-valued holomorphic function, we get

Θ′ −Θ =
dΦ

Φ
.

For any connection ∇, the expression

F∇(ζ1, ζ2)ξ = ∇ζ1∇ζ2ξ−∇ζ2∇ζ1ξ−∇[ζ1,ζ2]ξ, ∀ ζ1, ζ2 ∈ Γ(X,TX⊗RC), ξ ∈ Γ(X,E), (4.9)

is C∞(M,C)-linear in all three inputs. Hence it defines an element

F∇ ∈ Λ2(X,End(E)),

called the curvature of ∇. In terms of the local connection matrices Θ in (4.7), the End(E)-
valued 2-form F∇ has the form

F = dΘ−Θ ∧Θ. (4.10)

A connection ∇ can be seen as a way of extending the exterior derivative d to E-valued differ-
ential forms by

d∇ : Λk(X,E) −→ Λk+1(X,E), α = η ⊗ ζ −→ d∇α = dη ⊗ ζ + (−1)kη ⊗∇ζ.

for all k ≥ 0. Unlike the exterior derivative d, d∇ ◦ d∇ 6= 0; thinking of F∇ as a map

Λk(X,E) −→ Λk+2(X,E), α −→ F∇ ∧ α;

we have d∇ ◦d∇(α) = F∇∧α; so F∇ measures how much d∇ ◦d∇ deviates from being a cochain
map.

If rankC E = 1, then Θ is an honest 2-form and Θ ∧ Θ = 0; thus, F defines a global closed
2-form on X such that the cohomology class

[
i

2π
F ] ∈ H2(X,C) (4.11)

is independent of the choice of ∇. This cohomology class is the deRham representative of c1(E).
More generally, If rankC(E) = r, the Chern classes of E, as de Rham cohomology classes, are
defined by

1 + tc1(E) + t2c2(E) + . . .+ trcr(E) = det(I +
it

2π
F ).

These cohomology classes are weighted by i
2π to become real-valued for suitable choice of ∇; see

below. In particular,

c1(E) = [
i

2π
trace(F )] ∈ H2

dR(M,R) and cr(E) = [
( i

2π

)r
det(F )] ∈ H2r

dR(M,R). (4.12)

Given a Hermitian metric h ≡ 〈−,−〉 on E, we say that a C-linear connection ∇ is compatible
with h if

d
〈
ξ, ζ
〉

=
〈
∇ξ, ζ

〉
+
〈
ξ,∇ζ

〉
. (4.13)
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There are plenty of connections that are compatible with a given h.

Now suppose X is a complex manifold and E is a holomorphic vector bundle. Then the exterior
derivative d and the matrix Θ in (4.7) decompose as

d + Θ = (∂ + Θ1,0) + (∂̄ + Θ0,1).

We denote the first and second summands on the righthand side by ∇1,0 and ∇0,1. We have

∇1,0 : Γ(X,E) −→ Λ1,0(X,E), and

∇0,1 : Γ(X,E) −→ Λ1,0(X,E).

We say ∇ is a connection compatible with the complex (holomorphic) structure, or a Chern
connection, if ∇0,1 = ∂̄, i.e. Θ0,1 ≡ 0 on each local chart.

Lemma 4.11. Suppose E −→ X is a holomorphic vector bundle with a Hermitian metric h.
Then, there exists a unique connection ∇ on E that is compatible with both the metric and the
complex structure.

Proof. Fix a local holomorphic trivialization E|U ∼= U × Cr. Let H = (hij) be the matrix of h
with respect to this trivialization as in (4.1). The equation (4.13) reads

dH = ΘTH +HΘ.

Since, by assumption, Θ = Θ1,0, we have

∂H = ΘTH and ∂̄H = HΘ.

We find that
Θ = (∂HH−1)T = H

−1
∂H. (4.14)

In the situation above, decomposing the curvature form(s) into different (p, q)-types,

F = F (2,0) + F (1,1) + F (0,2),

since ∇0,1 ◦ ∇0,1 = ∂̄2 = 0, we conclude that

F 0,2 ≡ 0 and F 2,0 = −(F 0,2)∗ = 0.

Therefore, F = F 1,1 is a matrix of (1, 1)-forms.

Example 4.12. Suppose L −→ X is a holomorphic vector bundle with a Hermitian metric h.
Therefore, with respect to any holomorphic trivialization L|U ∼= U ×C, given by a nowhere zero
section ζ ∈ Γ(U,L|U ), h is simply given by one real function

H = (h11(z)), H = h11 =
〈
ζ, ζ
〉

: U −→ R.

By the equation above, the connection 1-form Θ is given by

Θ =
∂H

H
= ∂ ln(H). (4.15)
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Furthermore, by (4.10) and (4.10),

F = dΘ = ∂̄∂ ln(H) (4.16)

is a global closed 2-form and

c1(L) = [
i

2π
∂̄∂ ln(H)] ∈ H2

dR(X,R) ∩H(1,1)

∂̄
(X,C).

Notice that there is a similarity between the equation above and (4.4) in the sense that both
2-forms are defined as ∂∂̄ or ∂̄∂ of some function.

Lemma 4.13. There is a Hermitian metric on the holomorphic line bundle O(1) −→ CPn such
that

i

2
F = ωFS.

Proof. We have O(1) = γ∗ and γ∗ ⊂ CPn × Cn+1. The restriction of the standard Hermitian
metric on CPn × Cn+1 to γ is the Hermitian metric

hγ
(
([x], x), ([x], x)

)
= |x|2.

In terms of the local affine coordinates z = (z0, . . . , ẑi, . . . , zn) on the open set Ui ⊂ CPn, and
the local trivialization γ|Ui ∼= Ui × C in Example 2.20, we have

hγ
(
(z, 1), (z, 1)) = 1 + |z|2.

Therefore, the induced metric on the dual bundle O(1) = γ∗ satisfies

hO(1)

(
(z, 1), (z, 1)) = (1 + |z|2)−1.

By (4.16),

i

2
F =

i

2
∂̄∂ ln

(
(1 + |z|2)−1

)
= − i

2
∂̄∂ ln

(
1 + |z|2

)
=

i

2
∂∂̄ ln

(
1 + |z|2

)
= ωFS.

Lemma 4.13 shows that the curvature of the Chen connection of some Hermitian metric on O(1)
is positive in the sense that

F (u, u) = −2iωFS(u, u) > 0 ∀ 0 6= u ∈ T X

The following is the positivity notion used in the Kodaira’s Embedding Theorem.

Definition 4.14. A holomorphic line bundle L −→ X is called positive, if it admits a Hermitian
metric h such that the curvature (1, 1)-form of the Chern connection of h is positive (i.e. iF is
a Kähler form on X). In other words, L is called positive if its first Chern class c1(L) = [ i

2πF ]
can be represented by a Kähler form. The last statement can also be rephrased as c1(L) belongs
to the Kähler cone of X(c1(L) ∈ Kah(X)).
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Thus, Theorem 2.25 reads: Let X be a compact complex manifold and L be a holomorphic line
bundle such that c1(L) ∈ Kal(X). Then there exists k0 > 0 such that for every k ≥ k0, the map
ιL⊗k corresponding to the line bundle L⊗k is an embedding.

There is an alternative description of complex vector bundles where we consider a real rank 2r
vector bundle E −→ X together with a real linear endomorphism J : E −→ E, covering the iden-
tity map on X, satisfying J2 = −id ∈ EndR(E); see Example 2.18. Then, the complexfication
E ⊗R C decomposes as a direct sum of complex vector bundles,

E ⊗R C ∼= E1,0 ⊗ E0,1,

such that E1,0 and E0,1 are the eigenspaces of the eigenvalues +i and −i of the action of J .
For instance, recall from Example 2.18 that if X is a complex manifold with local holomorphic
coordinates (z1 = x1 + iy1, . . . , zn = xn + iyn), then

• the real tangent bundle of X is denoted by TX and is generated by ∂
∂x1

, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn

,

• the complex tangent bundle of X is denoted by T X and is generated by ∂
∂z1

. . . ∂
∂zn

,

• J acts on TX by

J
∂

∂xa
=

∂

∂ya
and J

∂

∂ya
= − ∂

∂xa
,

• and
TX ⊗R C ∼= T 1,0X ⊕ T 0,1X

such that T X = T 1,0X.

In the situation above, there is a real linear isomorphism

E −→ E1,0, v −→ vC =
1

2
(v − iJv), (4.17)

that identifies the action of J on E with the complex multiplication by i on E1,0. Similarly, the
real linear isomorphism

E −→ E0,1, v −→ vC =
1

2
(v + iJv),

identifies the action of J on E with the complex multiplication by −i on E1,0. If h is a Hermitian
metric on E1,0, the identity

h̃(v1, v2) ..=
1

2
h
(
vC1 , v

C
2

)
(4.18)

defines a real bilinear map
h̃ : E ⊗ E −→ C

satisfying

(1) (Symmetry) h̃(v1, v2) = h̃(v2, v1);

(2) (Positive definiteness) h̃(v, v) > 0;

(3) (Compatibility with J) h̃(Jv1, v2) = −h̃(v1, Jv2) = ih̃(v1, v2).
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Conversely, such h̃ defines a hermitian metric h on E1,0. If we decompose h̃ as

h̃ = g − iω, (4.19)

then g is a Riemannian metric on E with respect to which J is orthogonal, and ω is the
fundamental 2-form of h studied above.

HW 4.15. Suppose g is a Riemannian metric on TX such that g(Jv1, Jv2) = g(v1, v2). Show
that ω defined by ω(u, v) = g(Ju, v) is a 2-form and

h̃ = g − iω

is a Hermitian metric in the sense of (1)-(3) above on (TX, J).

Now, suppose X is a complex manifold and h is a Hermitian metric on T X (we have not as-
sumed that (X,ω) is Kähler yet). Then Lemma (4.11) applies to the holomorphic vector bundle
T X −→ X and yields a unique complex linear connection ∇ satisfying ∇0,1 = ∂̄. On the other
hand, h induces a Riemannian metric g on TX as above and there is a unique torsion free
connection ∇`c on TX compatible with g, called the Levi-Civita connection. By the homework
above, each of h and g will uniquely specify the other one.

A natural question to ask is: under the real isomorphism TX −→ T X in (4.17), how does ∇
compare to ∇`c?

As we see below, the answer is: ∇ = ∇`c if and only if (X,ω) is Kähler. In other words, ∇`c is
complex linear (∇`cJ ≡ 0) if and only if dω = 0.

Lemma 4.16. Let X be a complex manifold with a Hermitian metric h and the associated
Riemannian metric g on TX as in (4.19). Under the real isomorphism (4.17), a Hermitian
connection ∇ on T X induces a Riemannian connection ∇R on TX.

Proof. The inverse of (4.17) is given by

vC ∈ T X = T 1,0X ⊂ TX ⊗ C −→ v = 2Re(vC) ∈ TX.

By assumption, for ζ1, ζ2 ∈ Γ(X, T X), we have

d h(ζ1, ζ2) = h(∇ζ1, ζ2) + h(ζ1,∇ζ2).

For ξ ∈ Γ(X,TX), define

∇Rξ = 2Re ∇ξC = 2Re ∇ξC.

For ξ1, ξ2 ∈ Γ(X,TX), we have

d g(ξ1, ξ2) = d
1

2
Re h(ξC1 , ξ

C
2 ) =

1

2
dh(ξC1 , ξ

C
2 ),

=
1

2

(
Re h(∇ξC1 , ξC2 ) + h(ξC1 ,∇ξC2 )

)
= g(2Re∇ξC1 , ξC2 ) + g(ξC1 , 2Re∇ξC2 )

= g(∇Rξ1, ξ2) + g(ξ1,∇ξ2).

We conclude that ∇R is compatible with g.
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The converse of this statement is not always correct; i.e., a Riemannian connection ∇R on TX
compatible with g does not necessarily define a Hermitian connection on T X compatible with h.

HW 4.17. Show that if ∇R is J-linear, then ∇R naturally induces a Hermitian connection on
T X compatible with h. Here, by ∇R being J-linear we mean ∇RJξ = J∇Rξ. Since, following
the product rule, the derivative ∇RJ of the endomorphism J is defined by

(∇RJ)ξ = ∇R(Jξ)− J∇Rξ,

the J-linearity of ∇R is the same as ∇RJ ≡ 0. When the latter happens for a tensor, we say
that tensor is parallel with respect to the connection.

Let ∇R be the Riemannian connection on TX induced by the Chern connection on T X as in
Lemma 4.16. In order to compare ∇R with ∇`c, we need to understand the torsion of ∇R.

Every connection D on TX induces a similarly denoted connection on T ∗X satisfyig

d(η(ξ)) = Dη(ξ) + η(Dξ) ∀ξ ∈ Γ(X,TX), η ∈ Γ(X,T ∗X).

This in turn induces a connection on Λk(X,R), for all k ≥ 1. The torsion of a connection D on
TX is the skew-symmetric (2, 1)-tensor

TD(ξ1, ξ2) = Dξ1ξ2 −Dξ2ξ1 − [ξ1, ξ2].

If locally write D = d + Θ as in (4.7), then

TD(ξ1, ξ2) = Θ(ξ1)ξ2 −Θ(ξ2)ξ1. (4.20)

We say D is torsion free if TD ≡ 0, i.e Dξ1ξ2 −Dξ2ξ1 = [ξ1, ξ2]. Note that the righthand side is
independent of the choice of any connection.

Lemma 4.18. For η ∈ Λk(X,R), if D is torsion free, we have

(dη)(ξ0, . . . , ξk) =
k∑
i=0

(−1)i(Dξiη)(ξ0, . . . , ξ̂i, . . . , ξk).

Proof. From the formula

(dη)(ξ0, . . . , ξk) =
k+1∑
i=1

(−1)iξi·η(ξ0, . . . , ξ̂i, . . . , ξk)+
∑

0≤i≤j≤k
(−1)i+jη([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk)

we obtain that

(dη)(ξ0, . . . , ξk) =
k∑
i=0

(−1)i(Dξiη)(ξ0, . . . , ξ̂i, . . . , ξk)+∑
0≤i≤j≤k

(−1)i+jη(TD(ξi, ξj), ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk).

The lemma follows.

Corollary 4.19. Any D-parallel differential form η with respect to a torsion free connection D
is closed.
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Proposition 4.20. Suppose X is a complex manifold, h is a Hermitian metric on T X with the
real fundamental (1, 1)-form ω, and ∇ is the Chern connection of (X,h). Then ∇R = ∇`c if and
only if (X,ω) is Kähler (i.e. dω = 0).

Proof. If ∇R = ∇`c, then ∇R is torsion free. The fact that ∇ is compatible with h implies
∇Rω = 0. Then, by Lemma 4.18, dω = 0. Conversely, suppose dω = 0. By (4.14), the
connection matrix of Θ of ∇ in local coordinates z = (z1, . . . , zn) is given by

Θ = H
−1
∂H = (HT )−1∂HT = (hji)

−1(∂hji). (4.21)

On the other hand ω = i
2

∑
hijdzi ∧ dzj ; therefore,

dω = ∂ω + ∂̄ω = ∂ω + ∂ω, ∂ω =
i

2

∑
i<k,j

(∂hkj
∂zi

−
∂hij
∂zk

)
dzi ∧ dzk ∧ dzj .

Therefore, ω is closed iff
∂hkj
∂zi

=
∂hij
∂zk

∀ i, j, k.

From these, one can conclude that the righthand side of (4.20) is zero. Just note that the Θ in
(4.20) corresponds to ∇R and the Θ in (4.21) is for ∇. One first needs to write (4.20) in terms
of the Θ in (4.21).

From this rather long discussion, the reader should only keep in mind that the following theorem.

Theorem 4.21. Suppose X is a complex manifold and h is a Hermitian metric on T X. Let
∇ denote the Chern connection of h, g denote the Riemannian metric on TX induced by h,
∇`c denote the Levi-Civita connection of g on TX, J : TX −→ TX denote the endomorphism
corresponding to multiplication by i, and ∇R denote the Riemannian connection induced by ∇
on TX. Then the following statements are equivalent.

(1) ∇`cJ = 0;

(2) (X,ω) is Kähler;

(3) ∇R is torsion free;

(4) ∇R = ∇`c.

By this result, on a Kähler manifolds it is safe to denote all these connections by the same
symbol ∇ and do not distinguish them.

The following arguments give a rather direct description of torsion of Kähler condition. Let X
be a holomorphic manifold and h be a hermitian metric on T X. Locally, there is an orthonormal
coframe η1, . . . , ηn for T ∗X (depending smoothly on the coordinates z) such that

h =
n∑
i=1

ηi ⊗ ηi;

i.e. we can diagonalize the metric h. Then,

ω =
i

2

n∑
i=1

ηi ∧ ηi
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Lemma 4.22. There is a unique matrix of 1-forms Ψ such that ΨT + Ψ = 0,

dηi =
∑

Ψij ∧ ηj + τi, (4.22)

and τi are (2, 0)-forms.

Proof. Recall that while for a smooth function f we have a decomposition df = ∂f + ∂̄f , for
smooth sections of holomorphic vector bundles, such as the holomorphic cotangent bundle T ∗X,
only ∂̄ is well-defined. In order to extend the definition of∇ to the sections we need a connection.
Writing

Ψ = Ψ1,0 + Ψ0,1,

the equation (4.22) implies

∂̄ηi =
∑

Ψ0,1
ij ∧ ηj .

Since {ηi} is a co-frame, Ψ0,1 are uniquely determined. The equation ΨT + Ψ = 0 is equivalent
to

(Ψ1,0)T = −Ψ0,1.

So Ψ is uniquely determined. Then, the final conclusion that

dηi =
∑

Ψij ∧ ηj

has (2, 0)-type follows from the fact that the action of exterior derivative d and the Chern
connection ∇ on sections of T ∗X only differ at (2, 0)-level; see HW below.

HW 4.23. The action of the exterior derivative map d on smooth (1, 0)-forms decomposes as

d: Λ(1,0)(X,C) −→ Λ(1,1)(X,C)⊕ Λ(2,0)(X,C).

Also, the action of the Chern connection ∇ on smooth (1, 0)-forms decomposes as

∇ : Λ(1,0)(X,C) = Γ(X, T ∗X) −→ Λ1(X, T ∗X) ∼= Λ(1,1)(X,C)⊕ Λ(2,0)(X,C).

Show that ∇0,1 = ∂̄ implies that d and ∇ above have the same (1, 1)-part.

The (2, 0)-forms τ = (τ1, . . . , τn) in (4.22) are called the torsion. Up to a change of perspective,
the vector torsion form τ is the same as T∇R above. In other words, (X,h) is Kähler if and only
if τ ≡ 0.

For instance, the Poincare metric in (4.3) on H can be written as

h = η ⊗ η, η =
dz

Im(z)
.

Then,

∂η = − 1

y2
dy ∧ dz = −d ln(y) ∧ η.

Therefore,

τ ≡ 0, Ψ = −d ln(y), Ψ1,0 =
−dy + idx

2
= idz.

HW 4.24. Find the relation between Ψ and the connection matrix Θ = H−1∂̄H of ∇.
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5 Dualities

In this section, we will review and further learn various forms of dualities between different
cohomology groups. These dualities often arise from a pairing at a chain or cochain level that
descends to cohomology.

Poincare duality. Suppose X is an oriented manifold (without boundary) or real dimension
n. Let Λkc (X,R) denote the space of differential k-forms with compact support. The exterior
map d restricts to a map between the spaces of compactly supported forms and we denote the
resulting de Rham cohomology groups by Hk

c,dR(X,R). If X is closed, these are simply Λk(X,R)

and Hk(X,R). By Stokes’ Theorem, for each 0 ≤ k ≤ n, the pairing

〈−,−〉 : Λkc (M,R)× Λn−k(X,R) −→ R, (α, β) −→ 〈α, β〉 ..=

∫
X
α ∧ β. (5.1)

descends to a bilinear map

〈−,−〉 : Hk
c,dR(X,R)×Hn−k

dR (X,R) −→ R. (5.2)

Definition 5.1. An open cover {Uα}α∈I of an n-manifold X is called a good cover if every
nonempty finite intersection Uα0 ∩ · · · ∩ Uαp is diffeomorphic to Rn. A manifold which has a
finite good cover is said to be of finite type.

All compact manifolds are finite type but, for instance, an open Riemann surface with infinitely
many handles is not finite type.

If X is an oriented smooth n-manifold of finite type, it follows from Mayer-Vietoris long exact
sequence and induction that the pairing (5.2) is non-degenerate; therefore,

Hk
c,dR(X,R) ∼= Hn−k

dR (X,R)∗; (5.3)

see my Math6410 notes. If X is closed, (5.3) implies the symmetry

bk = dimRH
k
dR(X,R) = dimRH

n−k
dR (X,R) = bn−k. (5.4)

For smooth manifolds, singular homology, cellular homology, and simplicial homology are iden-
tical; we denote these homology groups by Hk(X,Z), Hk(X,R), or Hk(X,C) depending on what
the desired coefficient ring is. Again, let X be an oriented smooth manifold. Fix a triangulation
K of X. For each oriented k-simplex ∆ in K and every k-form η the pairing

〈η,∆〉 −→
∫

∆
η

is defined. Let Ck(K,R) denote the vector space of formal linear sums of k-simplices with
coefficients in R. The homology group Hk(X,R) is the degree k cohomology group of the chain
complex

0 −→ Cn(K,R) −→ Cn−1(K,R) −→ · · · −→ C0(K,R) −→ 0

where the boundary maps are obtained from signed formal sum of boundary of simplices. The
pairing above linearly extends to a pairing

〈−,−〉 : Λk(X,R)× Ck(K,R) −→ R.
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Again, by Stoke’s theorem, this pairing descends to a pairing

〈−,−〉 : Hk(M,R)×Hk(M,R) −→ R. (5.5)

If X has finite type, the pairing (5.5) is non-degenerate; therefore,

Hk
dR(M,R) ∼= Hk(M,R)∗. (5.6)

The proof of (5.6) also uses inductionsand Mayer-Vietoris long exact sequences.

If X is an oriented smooth n-manifold, combining the previous duality results over R and (3.4)
we have

Hn−k
c,dR(X,R)∗ ∼= Hk

dR(X,R) ∼= Ȟk(X,R) ∼= Hk
sing(X,R) ∼= Hk(X,R)∗

If X is closed, the first term above is just Hn−k
dR (X,R) and we can add one more term to right

to get

Hn−k
dR (X,R)∗ ∼= Hk

dR(X,R) ∼= Ȟk(X,R) ∼= Hk
sing(X,R) ∼= Hk(X,R)∗ = Hn−k(M,R).

The last isomorphism comes from the intersection pairing of k and (n − k) cycles in X and is
the reduced to R version of a stronger Poincare duality statement over Z in the following sense.

Theorem 5.2. (Poincare Duality) Suppose X is a closed oriented n-manifold. There is a well-
defined intersection pairing

Hk(X,Z)×Hn−k(X,Z) −→ Z (5.7)

that is unimodular; i.e., and linear functional Hn−k(X,Z) −→ Z is equal to taking intersection
with some homology class A ∈ Hk(X,Z), and the kernel of the surjective map

Hk(X,Z) −→ Hom(Hn−k(X,Z),Z)

is the subgroup HTor
k (X,Z) of torsion classes in Hk(X,Z). Furthermore, the torsion subgroups

of Hk(X,Z) and Hn−k−1(X,Z) are isomorphic.

Example 5.3. Some K3 surfaces Y admit a holomorphic involution (Z2-action) with no fixed
point. The quotient X = Y/Z2 is called an Enriques surface. All Enriques surfaces are projective
and smoothly identical. Homology groups of an Enrique surface are

H0(X,Z) = Z, H1(X,Z) = π1(X,Z) = Z2,

H2(X,Z) = Z2 ⊕ Z10, H3(X,Z) = 0, H4(X,Z) = Z;

in particular
HTor

1 (X,Z) ∼= HTor
2 (X,Z) ∼= Z2.

If X is a complex manifold of complex dimension n, every analytic subvariety Y ⊂ X of
complex dimension k defines an even-degree homology/cohomology class

[Y ] ∈ H2k(X,Z), PD(Y ) ∈ H2(n−k)(X,Z).

Note that the even degree homology/cohomology groups H2∗(X,Z)/H2∗(X,Z) of X form a
commutative subring of the entire homology/cohomology ring. For many interesting complex
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manifolds, such as CPn their homology/cohomology ring is entirely supported in even degrees.
For example,

H2k(CPn) ∼= H2k(CPn,Z) ∼= Z, Hodd(CPn) = 0.

Furthermore, H∗(CPn) is generated (as a ring) by the degree 2 cohomology class

h ..= PD(H) = c1(O(1)) = [ωFS/π].

where H ∼= CPn−1 ⊂ CPn is an hyperplane. For k ≥ 0, hk = h ∧ · · · ∧ k (k times) is the PD of
H1 ∩ · · · ∩Hk

∼= CPn−k ⊂ CPn.

Definition 5.4. The degree of a complex m-dimensional analytic subvariety Y ⊂ CPn is the
positive integer d > 0 such that [Y ]= d [CPm]∈H2m(CPn,Z), or equivalently PD(Y ) = dhn−m ∈
H2(n−m)(CPn,Z).

For instance, if Y ⊂ CPn is a hypersurface given as the zero of a homogenous polynomial P ,
then d = deg(P ).

Suppose X is a closed oriented manifold of real dimension m and Y,Z ⊂ X are transverse
oriented submanifolds of complementary dimension. Then, Y ∩Z is a finite set {p1, . . . pk} ⊂ X
of points and

TpaX
∼= TpaY ⊕ TpaZ

Each of the three tangent spaces above is oriented via the given orientation on the corresponding
manifold. We say pa is a positive intersection point and write ε(pa) = +1 iff the isomorphism
above is orientation preserving. Then, the homology intersection pairing in (5.7) between [Y ]
and [Z] is equal to

Y · Z ..= [Y ] · [Z] =

k∑
a=1

ε(pa) ∈ Z.

In the discussion above, if X is a compact complex manifold and Y,Z ⊂ X are complex sub-
manifolds, then they are all canonically oriented and ε(pa) > 0. Therefore,

Y · Z = k.

The definition of the intersection number Y · Z generalizes to singular analytic subvarieties.
Note that Y sing ⊂ Y and Zsing ⊂ Z have complex codimension 1. We say Y and Z intersect
transversely if Y ∩ Z ⊂ Y − Y sing, Z − Zsing and the intersection (Y − Y sing) ∩ (Z − Zsing) is
transverse. Then Y · Z is simply the number of intersection points. Furthermore, this notion is
well-behaved under deformations of Y and Z among complex subvarieties because for a generic
1-parameter family {Yt}t∈[0,1], the overall singular locus {Y sing

t }t∈[0,1] has real dimension 1 less
than the real dimension of Y and thus would not intersect Z. We can relax the situation even
more by allowing Y and Z to intersect not transversely but still discretely in the following sense.

Suppose p ∈ Y ∩Z is an isolated intersection point of Y and Z. We can fix a polydisk coordinate
chart U = ∆n ⊂ Cn around p with local coordinates z = (z1, . . . , zk, zk+1, . . . , zn) such that p = 0
and

Y ∩ U = (zk+1 = 0) ∩ · · · ∩ (zn = 0) = ∆k × {0}n−k.

Since Y ∩ Z ∩ U = p, the restriction of the projection map

π : ∆n −→ {0}k ×∆n−k
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to Z gives Z the structure of a finite branched cover of ∆n−k. The multiplicity mp of intersection
between Y and Z at p is degree of the covering map

π|Z∩U : Z ∩ U −→ ∆n−k.

As we deform Y and Z, the intersection point p may bifurcate to a collection {p1, . . . , p`} of
intersection points but the weighted sum mp =

∑
impi remains the same. In conclusion, the

topological intersection number [Y ] · [Z] of (the homology classes of) two analytic subvarieties of
complementary dimension meeting in a finite set of points in a compact complex manifold X is
given by

Y · Z = Y ·X Z =
∑

p∈Y ∩Z
mp ≥ 0.

Each intersection number mp satisfies mp ≥ 1 with equality if and only if p is a transverse
intersection point.

HW 5.5. (1) Suppose X is a complex projective variety. Prove that b2k(X) > 0 for all k =
0, 1, . . . ,dimCX.

(2) Prove that any analytic subvariety of CPn that is homologous to a hyperplane is a hyper-
plane.

(3) Prove that any holomorphic automorphism of CPn is induced by a linear transformation of
Cn+1.

(4) Describe the involutions (i.e. automorphisms of order 2) on CPn.

(5) Show that an involution of CP3 has fixed points on any complex surface (= complex dimen-
sion 2=hypersurface) X ⊂ CP3.

If X is a connected compact holomorphic manifold of complex dimension n, the pairing (5.1)
breaks into a set of pairings

Λp,q(X,C)× Λn−p,n−q(X,C) −→ C, (α, β) −→
∫
X
α ∧ β. (5.8)

HW 5.6. Show that the pairing above descends to a pairing

Hp,q

∂̄
(X,C)×Hn−p,n−q

∂̄
(X,C) −→ C (5.9)

between the corresponding Dolbeaut cohomology groups.

As we will learn in the next section, the pairing (5.8) and thus (5.9) is non-degenerate; therefore,

Hp,q

∂̄
(X,C) ∼= Hn−p,n−q

∂̄
(X,C)∗.

In particular,

hp,q(X) ..= dimCH
p,q

∂̄
(X,C) = hn−p,n−q(X) ..= dimCH

n−p,n−q
∂̄

(X,C) (5.10)

and
Hn,n

∂̄
(X,C) ∼= C.

If X is Kähler, Hn,n

∂̄
(X,C) is generated by the cohomology class of ωn.
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The Hodge diamond of a complex n-dimensional holomorphic manifold X is the diamond-shaped
diagram

h0,0(X,C)

h1,0(X,C) h0,1(X,C)

h2,0(X,C) h1,1(X,C) h0,2(X,C)

...
...

...
...

...

hn,n−2(X,C) hn,n(X,C) hn−2,n(X,C)

hn,n−1(X,C) hn−1,n(X,C)

hn,n(X,C)

If X is Kähler, we will learn in Section ?? that the sum of the Dolbeaut cohomology groups in
each row is the complex valued de Rham comology group of the corresponding degree; i.e.,

Hk
dR(X,C) =

k∑
p=0

Hp,k−p
∂̄

(X,C).

Furthermore, by (5.4) and (5.10), the Hodge diamond is symmetric with respect to each of its
axes.

6 Divisors and Line bundles

Definition 6.1. A (integral) divisor D on an analytic variety X is a locally-finite formal linear
combination

D =
∑

aiYi

of irreducible analytic hypersurfaces Yi ⊂ X with the coefficients ai ∈ Z.

It is sometimes useful to also consider divisors with coefficients in R or Q. Note that to every
analytic hypersurface Y we can naturally associate a divisor D which is the sum of its irreducible
components. However, divisors are more general in the sense that the coefficients can be negative
and different components can appear with (different) multiplicities.

Definition 6.2. A divisor is called effective if ai ≥ 0 for all i. In this case we write D ≥ 0.

An effective divisor will intersect all curves (complex 1-dimensional subvarieties) in X non-
negatively. An irreducible hypersurafce Y can be locally reducible at certain points x ∈ Y . This
happens when a hypersurface has self-intersections. If Y is locally irreducible near x ∈ Y , it is
the zero set of an irreducible g ∈ OX,x. For every other meromorphic function f , the order of
vanishing of f along Y is defined in the following way.

Definition 6.3. Let f be a meromorphic function in a neighborhood of x ∈ X. Then, the
order of vanishing of f along Y (near x) is an integer k = ordY (f) ∈ Z such that f = gkh and
h|Y ∈ OY,x is a non-trivial holomorphic function.

By Corollary 1.27, the definition of the order above is well-defined; moreover, ordY (f1f2) =
ordY (f1) + ordY (f2).
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Definition 6.4. For every meromorphic function f : X −→ C, the principal divisor of f is

(f) ..=
∑
Y

ordY (f) · Y

where the sum is taken over all the irreducible components of f−1(0) and f−1(∞). By separating
the contributions of f−1(0) and f−1(∞) we have

(f) = Z(f)− P (f)

where Z(f) ..=
∑

Y⊂f−1(0) ordY (f) · Y and P (f) ..=
∑

Y⊂f−1(∞)−ordY (f) · Y are the effective
zero and polar divisors of f .

Remark 6.5. If k < 0, then f has a pole along Y ; i.e. poles should be thought of as zeros
of negative order. Zeros and Poles are interchangeable under f −→ 1/f . In Definition 2.3.5 of
Hybrecht’s book, the last condition on h is stated as h ∈ O∗X,x. In dimensions 2 and higher,
as explained in Remark 1.40, h may still be zero at x; so Hybrecht’s definition is not entirely
correct. In complex dimension 1, Y is a point and the last condition reads h(Y ) 6= 0, which in
turn implies h ∈ OX,x.

Example 6.6. In complex dimension one, i.e. when X is a Riemann surface, a divisor is simply
a finite formal linear combination points D =

∑
aipi. In complex dimension 2, hypersurfaces

(codimension 1) are the same as curves (dimension 1). Therefore, if X is a compact complex
surface, every two divisors D =

∑
aiYi and D′ =

∑
a′iY

′
i have a well-defined intersection number

D ·D′ =
∑
i,j

aia
′
j Yi · Y ′j .

Whenever Y 6= Y ′, the intersection number Y ·Y ′ is non-negative, however, as we will see in the
example of blowup below, the self-intersection number Y · Y can be negative. The unimodular
quadratic form H2(X,Z) × H2(X,Z) −→ Z plays a great role in the classification of compact
complex surfaces and other smooth 4-manifolds.

HW 6.7. Find the unimodular quadratic intersection form of X = CP1 × CP1.

Remark 6.8. In complex algebraic geometry, there are two different notions of divisor that are
the same if the ambient spaceX is smooth but might be different ifX is a singular variety. A Weil
divisor is a formal linear combination of hypersurfaces. In a singular variety, a hypersurface, i.e.
complex codimension 1 subvariety may not (locally) be the zero set of a holomorphic function.
A divisor is called Cartier if every hypersurface involved in the divisor is indeed defined (locally)
as the zero set of a holomorphic function. In this course, we will mostly be working with smooth
target manifolds X, so the two notions are the same and we simply call them divisors.

Suppose L −→ X is a holomorphic line bundle and s : X −→ L is a meromorphic section. Locally
around every point on X, there exists an open neighborhood U such that L|U ∼= U×C and s|U is
defined by a meromorphic function. Moreover, different local trivializations L|U and L|U ′ differ
by a non-zero holomorphic functions ϕ : U ∩ U ′ −→ C∗. Therefore, just as in Definition 6.4, a
section s define a divisor

Div(s) ..=
∑
Y

ordY (s) · Y

where on each open set U as above ordY (s) is the order of the meromorphic function s|U .
Definition 6.4 is a special case where L is the trivial holomorphic line bundle L = X × C. In
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general, if s and s′ are two meromorphic sections of a holomorphic line bundle L, the s′ = fs
for some meromorphic function f on X, and therefore

Div(s′)−Div(s) = (f). (6.1)

If the difference of two divisors D and D′ is a principal divisor, we say D and D′ are linearly
equivalent and write D ∼ D′. The equations above show that Div(s′) and Div(s) are linearly
equivalent.

In conclusion, there is a well-defined map

Pic(X) −→ Div(X)/Div0(X)

where Div(X) is the group of divisors on X and Div0(X) is the subgroup of principal divisors.
The following lemma shows that the map above is an isomorphism coming from a short exact
sequence

0 −→ Div0(X) −→ Div(X) −→ Pic(X) −→ 0.

For the surjectivity of Div(X) −→ Pic(X), we are assuming that every holomorphic line bundle
on X has a non-trivial meromorphic section; otherwise, the sequence is not exact at right. We
will prove that the assumption is true for all complex projective varieties.

Lemma 6.9. Corresponding to every divisor D∈Div(X), there exists a naturally defined holo-
morphic line bundle OX(D) and a meromorphic section s, well-defined up to scaling, such that
Div(s) = D. For D,D′ ∈ Div(X), O(D+D′) = O(D)⊗O(D′); i.e the map Div(X) −→ Pic(X)
above is a group homomorphism.

Proof. Let {Uα}α∈I be an atlas for X such that D ∩ Uα is the principal divisor of some local
meromorphic function fα : Uα −→ C. For each α, β ∈ I, let

ϕα,β = fβ/fα : Uαβ −→ C∗.

By definition,
ϕα,β · ϕβ,γ · ϕγ,α = 1 ∀α, β, γ ∈ I.

Therefore, the transition maps {ϕαβ}α,β∈I define a holomorphic line bundle OX(D). Since
ϕαβfα = fβ, the meromorphic functions {fα}α∈I define a section of OX(D). The last claim
obviously follows from the construction of transition functions.

Remark 6.10. We have c1(OX(D)) = PD(D) ∈ H2(X,Z).

HW 6.11. Suppose L −→ X is a holomorphic line bundle. Show that L has a holomorphic
section if and only if L = OX(D) for some effective divisors D.

Definition 6.12. If D is an effective divisor, the complete linear system |D| is the set of all
effective divisors D′ that are linearly equivalent to D.

If L = OX(D) for some effective divisor D, then we will also write |L| for |D|.

HW 6.13. If D is effective, show that |D| = P(Ȟ0(X,OX(D))); i.e., |D| is the projectivization
of the vector space of non-trivial holomorphic sections of the line bundle OX(D). Therefore,
dimC |D| = dimC Ȟ

0(X,OX(D))− 1. For a hyperplane divisor H ⊂ CPn, what is |H|?
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Definition 6.14. Any linear subspace of |D| is called a linear system. A linear system of
complex dimension 1 (i.e. isomorphic to P1) is called a pencil.

HW 6.15. Show every pencil is of the form

{Dλ = Div(λ0s0 + λ1s1)}λ=[λ0,λ1]∈P1

where s0, s1 are two different holomorphic sections of a holomorphic line bundle L.

For any linear system {Dλ}λ∈Pr ⊂ |D|, if λ0, · · · , λr ∈ Pr are r + 1 linearly independent points,
then

Dλ0 ∩ · · · ∩Dλr =
⋂
λ∈Pr

Dλ.

The intersection above is called the base-locus of the linear system L. It is the largest analytic
subvariety of X such that every holomorphic section corresponding to L vanishes on that.

Theorem 6.16. (Bertini’s Theorem) If D is an effective divisor, a generic element of any linear
system {Dλ}λ∈Pr ⊂ |D| is a hypersurface that is smooth away from the base-locus of the system.

In particular, it is easy to see that any pencil {Dλ}λ∈P1 ⊂ |D| with base locus B ⊂ X gives a
holomorphic map

X −B −→ P1. (6.2)

Then, Bertini’s Theorem is a refinement of Sard’s theorem for this map.

HW 6.17. Consider the pencil {Dλ}λ∈P1 ⊂ |OCP2(1)| generated by the holomorphic sections
x0 and x1; c.f. HW 2.21. What is the base locus B of this pencil? What is the map

CP2 −B −→ CP1?

Repeat this for the pencil {Dλ}λ∈CP1 ⊂ |OCP2(3)| generated by the holomorphic sections x3
0 +

x3
1 + x3

2 and x0x1x2. For which λ ∈ CP1, Dλ is a smooth cubic curve?

Proof. It is enough to assume that r = 1 because if r = 0, then the base locus B is the entire
single divisor in the linear system and if r > 1, then if a generic element of the linear system is
singular away from B, then the same holds for a generic pencil contained in the system (why?).
Suppose {Dλ}λ∈P1 ⊂ |D| is pencil. By HW 6.15, locally around every point of X we have a

Dλ =
(
f0(z1, . . . , zn) + λf1(z1, . . . , zn) = 0

)
, λ ∈ P1,

where f0, f1 are two different (i.e. f1 is not a constant multiple of f0) holomorphic functions on
the chosen neighborhood U . For generic λ 6= 0,∞, if pλ is a singular point of Dλ ∩U in X −B,
then

f0(pλ) + λf1(pλ) = 0,

∂f0

∂zi
(pλ) + λ

∂f1

∂zi
(pλ) = 0 ∀ i = 1, . . . , n,

but f0(pλ), f1(pλ) 6= 0. Substituting λ in the second equation by λ = −f0(pλ)/f1(pλ) we obtain

∂f0

∂zi
(pλ)− f0(pλ)

f1(pλ)

∂f1

∂zi
(pλ) = 0

which implies
∂

∂zi

(f0

f1

)
(pλ) = 0 ∀ λ 6= 0, i = 1, . . . , n. (6.3)
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The union over λ of the singular points above in U×C∗ is itself a subset of the analytic subvariety

S = {(z, λ) ∈ U × C∗ : f0(z) + λf1(z) = 0,
∂f0

∂zi
(z) + λ

∂f1

∂zi
(z) = 0}

cut out by n + 1 equations. Let S denote the image/projection of S in U ; S is an analytic
subvariety of U . By (6.3), the function f0/f1 is constant on each connected component of S−B.
Note that each Dλ is a level set of f0/f1 outside B. Therefore, since the number of connected
components of S −B is finite, S −B can intersect only finitely many Dλ.

Remark 6.18. Suppose D is an effective divisor on X. Note that the map

ιOX(D) : X −→ PN

in (2.4) is defined if and only if the complete linear system |D| is base-point free. Otherwise,
only

ιOX(D) : X −B −→ PN

is defined.

The next lemma that relates the normal bundle of a smooth hypersurface/divisor D ⊂ X to the
line bundle OX(D) is very useful in many applications.

Lemma 6.19. Suppose D ⊂ X is a smooth hypersurafce. Then

OX(D)|D = NXD =
T X|D
T D

.

Proof. The equality above is the same as

OX(D)|D ⊗NXD∗ ∼= OD ..= D × C.

The co-normal bundle NXD∗ is a sub-bundle of T ∗X|D consisting of cotangent vectors on X
along D that are zero on T D. Suppose D is locally defined by (fα = 0) ⊂ Uα. Then, the line
bundle OX(D) is given by transition functions ϕαβ = fβ/fα; thus, its dual OX(−D) is given
by transition functions ϕ−1

αβ = fα/fβ. Since fα|D∩Uα ≡ 0, the differential dfα is a section of the
co-normal bundle NXD. Since D is smooth, dfα is non-zero everywhere. Finally, on Uα ∩ Uβ,

dfβ|D = d(ϕαβfα)|D =
(
dϕα,β · fα + ϕα,βdfα

)
|D =

(
ϕαβdfα

)
|D

Therefore, the local sections dfα define a nowhere-zero global section of NXD∗ ⊗ OX(D)|D,
which implies NXD∗ ⊗OX(D)|D ∼= OD.

Example 6.20. Let Σ ⊂ CP2 be a Riemann surface of degree d. Along Σ, TCP2 smoothly
decomposes as a direct sum of complex line bundles

TCP2|Σ = T Σ⊕NCP2Σ. (6.4)

By the lemma above,
TCP2|Σ = T Σ⊕OCP2(Σ)|Σ.

We have
c1(TP2) = 3h, h ..= PD(H) ∈ H2(CP2,Z) ∼= Z,
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and
c1(OCP2(Σ)) = c1(OCP2(3H)) = 3h.

Therefore,

deg(TCP2|Σ) =

∫
Σ
c1(TCP2) = c1(TCP2) · dh = 3h · dh = 3d =

deg(T Σ) + deg(OCP2(Σ)|Σ) = deg(T Σ) + dh · dh = deg(T Σ) + d2.

Therefore,
deg(T Σ) = d(3− d).

Since deg(T Σ) = χ(Σ) = 2− 2g, we get

g =
d(d− 3)− 2

2
=

(d− 1)(d− 2)

2
.

For every complex manifold X, its canonical bundle KX is the line bundle

KX = ΛtopT ∗X;

i.e. KX is the top exterior power of the complex cotangent bundle locally generated by

dz1 ∧ · · · ∧ dzn.

Note that for a Riemann surface Σ we simply have KΣ = T ∗Σ with deg(KΣ) = 2g−2. If D ⊂ X
is a smooth analytic hypersurface, generalizing (6.4), we have

TX|D ∼= T D ⊕NXD.

Therefore,
KX |D ∼= KD ⊗NXD∗ = KD ⊗OX(−D)|D.

Moving the last term to the left we get

KD = (KX ⊗OX(D))|D. (6.5)

The canonical bundle is the complex version of the orientation line bundle in the smooth cate-
gory and plays an important role in the classification of complex manifolds. It will also appear
in the Serre duality between Dolbeaut cohomology groups of holomorphic vector bundles.

In (6.2), if the Pencil {Dλ}λ∈P1 is generated by two holomorphic sections s0 and s1 of the holo-
morphic line bundle L = OX(Dλ), and the fibration (6.2) is simply the meromorphic function
f = s0/s1 : X − B −→ P1. Along B, we have a 0/0 situation and the function does not extend
continuously/homomorphically. Suppose, for simplicity, that B is a smooth subvariety of X,
D0 = s−1

0 (0) and D∞ = s−1
1 (0) are smooth along B, and they intersect transversely along B.

These conditions show that there are local coordinates (z1, . . . , zn) along every point of B such
thatD0 = (z1 = 0) andD∞ = (z2 = 0). Then, the process described below, called blowup, allows
us to change X along B to a larger complex manifold X̃ such that projection f : X −B −→ P1

extends to a holomorphic map f̃ : X̃ −→ P1 whose fibers are Dλ. Moreover, there is a holomor-
phic map π : X̃ −→ X that is the identity map over X − B and π : E = π−1(B) −→ B is a
P1-bundle.
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We first describe the blowup at the origin of Cn. Let (z1, . . . , zn) denote the affine coordinates
on Cn and [x1, . . . , xn] denote the projective coordinates on CPn−1 = P(Cn). Then the blowup
of Cn at the origin is the complex manifold (we will see why it is indeed a manifold)

Cn × CPn−1 ⊃ B0Cn = {(z, [x]) : zixj = zjxi ∀ i, j = 1, . . . , n} (6.6)

The equation above is homogenous in xi and thus is well-defined. Abstractly speaking, if W is
a complex vector space, then P(W ) is the space of lines ` in W and

W × P(W ) ⊃ B0W = {(v, `) : v ∈ `}.

Let
π : B0W −→W and π′ : B0W −→ P(W )

denote the restrictions to B0W of the projection maps to first and second factors, respectively.
Then, it is clear from the definition that π′ : B0W −→ P(W ) identifies B0W with the total space
of the tautological line bundle γ. For every v ∈W−{0}, the line ` containing v is unique. There-
fore, π : B0W − π−1(0) −→ W − {0} is a biholomorphism. Furthermore, E = π−1(0) = P(W )
is a hypersurface in B0W that is the space of all directions in W at 0. The hypersurface E is
called the exceptional divisor.

Since blowup does not change the geometry away from the blowup locus, if X is a complex
manifold and x ∈ X, then the blowup X̃ of X at x can be defined as above by working in a
coordinate chart around x.

The blown up local model B0Cn in (6.6) can itself be covered by n charts Ũi which are the
pre-images in γ = B0Cn of the standard n charts covering CPn−1. More precisely, let

B0Cn ⊃ Ũi = {(z, [x]) : xi 6= 0} ∀ i = 1, . . . , n, (6.7)

and
ui,j = xj/xi ∀ j = 1, . . . , n.

Then, (zi, (ui,j)j 6=i) are local coordinates on Ũi with

(z1, . . . , zn) = π(zi, (ui,j)j 6=i) = (ui,jzi)
n
j=1.

In the coordinate system above we have E ∩ Ũi = (zi = 0).

HW 6.21. If X is an n-dimensional complex manifold and X̃ is the blowup of X at x with the
exceptional divisor E ∼= Pn−1, prove that

K
X̃
∼= π∗KX ⊗OX̃

(
(n− 1)E

)
. (6.8)

Generalizing the construction above, suppose X is a complex manifold and Y ⊂ X is a complex
manifold of complex codimension r. Then the blowup X̃ = BYX of X along Y can also be
defined and has the following properties. There is a holomorphic map π : X̃ −→ X that is the
identity map over X − Y and π : E = π−1(Y ) −→ Y is the Pr−1-bundle E = P(NXY ). Around
every point of Y , there exists an open neighborhood U with local coordinates (z1, . . . , zn) such
that

Y ∩ U =
r⋂
i=1

(zi = 0).
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Then π−1(U) ⊂ X̃ is the blowup manifold with respect to the first r coordinates

U × CPr−1 ⊃ Ũ = {(z, [x]) : zixj = zjxi ∀ i, j = 1, . . . , r}.

By the homework below, the local description of X̃ is independent of the choice of the local
coordinates used in the construction.

HW 6.22. Show that if U and U ′ are two overlapping open sets with coordinates z = (z1, . . . , zn)
and z′ = (z′1, . . . , z

′
n) as above, the change of coordinate biholomorphism z −→ z′ on U ∩ U ′

naturally lifts to a biholomorphic identification between Ũ and Ũ ′ along Ũ ∩ Ũ ′ = π−1(U ∩U ′).

As in the case of one-point blowup, the normal line bundle N
X̃
E of E in X̃ = BYX is the

tautological line bundle of E = P(NXY ).

Remark 6.23. The blowup process is only non-trivial if dimCX > 1 and codimCY > 1. In
particular, if X is a complex surface, we will only have blowup at points of X.

Blow up is very useful for de-singularizing singular analytic sub-varities of a complex manifold
X. In fact, by a celebrated theorem of Hironaka (1964), given a singular sub-variety Y ⊂ X ,
there is a sequence of blowups of X such that the “proper-transform” of Y to the final blown
up space is smooth. We explain this statement through a basic example.

The irreducible complex curve

Y = (z2
1 − z3

2 = 0) ⊂ X = C2

has a cusp singularity at 0 = (0, 0). Let

X̃ = B0X.

The proper transform of Y to X̃ is the analytic sub-variety

Ỹ = π−1(Y − {0}). (6.9)

In other words, Ỹ is the closure of the pre-image of Y − {0} in X̃. Note that, X̃ − E is bi-
holomorphic to X −{0}; therefore, the pre-image of Y −{0} in X̃ is biholomorphic to Y −{0}.
However, as we show below, taking closure of Y −{0} in X̃ yields a different result than Y . We
describe Ỹ using the local charts Ũi in (6.7).

Here X̃ is covered by Ũ1 and Ũ2. The local coordinates on the former are (z1, u1,2), the local
coordinates on the latter are (z2, u2,1), and the change of coordinate map on the overlap is

(z1, u1,2) −→ (z2 = z1 · u1,2, u2,1 = 1/u1,2).

The projection map to X = C2 on each chart is given by

(z1, u1,2) −→ (z1, z2) = (z1, z1u1,2) and (z2, u2,1) −→ (z1, z2) = (z2u2,1, z1).

Therefore, in terms of the coordinates on Ũ1, the equation of Y can be written as

z2
1 − z3

2 = z2
1 − z3

1u
3
1,2 = z2

1(1− z1u
3
1,2) = 0.

However, the zero set of z2
1 is E∩ Ũ1 and does not contribute to (6.9) because (E∩ Ũ1) ⊂ π−1(0).

Therefore,
Ỹ ∩ Ũ1 = (1− z1u

3
1,2 = 0).
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HW 6.24. Confirm that the hypersurface cutout by the equation above is smooth.

Note that Ỹ ∩ Ũ1 ∩ E = ∅; i.e. Ỹ has no intersection point with E inside Ũ1.

Similarly, in terms of the coordinates on Ũ2, the equation of Y can be written as

z2
1 − z3

2 = z2
2u

2
2,1 − z3

2 = z2
2(u2

2,1 − z2) = 0.

As before, the zero set of z2
2 is E ∩ Ũ2 and does not contribute to (6.9). Therefore,

Ỹ ∩ Ũ2 = (z2 − u2
2,1 = 0),

which is a smooth complex parabola. Moreover,

Ỹ ∩ Ũ2 ∩ E = (0, 0) = [1, 0] ∈ E ∼= P1[x0, x1]

and the contact order of E and Y at this point is 2; i.e. they are tangent to each other. We
conclude that Ỹ is a smooth complex curve in X̃ and Ỹ · E = 2. Figure 1 illustrates this
de-singularization.

Figure 1: Resolving a cusp singularity

HW 6.25. What would happen to Ỹ , E, and their intersection, if further blowup X̃ at the
intersection point of Ỹ and E?

Blowing up X at a point changes the topology of X in the following way. The Poincare dual
of the exceptional divisor E and its higher exterior powers give us new generators for the even
dimensional cohomology groups of X̃, i.e.

H2k(X̃,Z) = π∗H2k(X,Z)⊕ Z · PD(E)k ∀ k = 1, 2, . . . ,dimCX − 1.

For k = 2n, assuming X is connected, we will still have H2n(X̃,Z) = Z and PD(E)n = −1. The
last identity follows from

N
X̃
E = γ = OPn−1(−1).

In particular, if X is a complex surface, then the self-intersection number of E is E · E = −1.
The last identity implies that E does not admit any holomorphic deformation, i.e. the only
holomorphic curve in X̃ homologous to E is E itself. If X is simply connected, X̃ will be simply
connected as well.
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HW 6.26. How does blowup along a higher dimensional sub-variety Y ⊂ X affects the coho-
mology groups?

Proposition 6.27. If X is Kähler/projective any blowup X̃ of X will be Kähler/projective as
well.

Proof. Here is the proof for blowup at a point x ∈ X. The general case is done similarly. We
show that there is a Hermitian metric on O

X̃
(−E) whose curvature F is supported in a suffi-

ciently small neighborhood of E, iF is non-negative, and strictly positive on TE. Moreover, if ω
is a Kähler form on X, for k sufficiently large, ω̃ = iF +kπ∗ω is a Kähler form on X̃. Therefore,
if X is Kähler then X̃ is Kähler as well. If X is projective, then there is a positive line bun-
dle L on X such that ω is the curvature of L. Therefore, ω̃ is the curvature of O

X̃
(−E)⊗ π∗L

which shows X̃ admits a positive line bundle. By Kodaira Embedding Theorem, X̃ is projective.

We construct a metric h on O
X̃

(E) as follows. A neighborhood of x ∈ X can be identified with

a ball of radius ε around the origin 0 ∈ Uε ⊂ Cn. The blowup Ũε of Uε at 0 is the manifold

Ũε = {(`, z) ∈ CPn−1 × Cn : z ∈ `, |z| < ε}.

Using the projection map π1 : Ũε −→ CPn−1, we can think of Ũε as a disk bundle inside the
tautological line bundle γ −→ CPn−1. Furthermore,

O
X̃

(E)|
Ũε

= π∗1γ

and
(`, z) −→ z

is a local section of O
X̃

(E)|
Ũε

that corresponds to the constant local section 1 of

O
X̃

(E)|
X̃−E

∼= (X̃ − E)× C.

In other words, the local section z of O
X̃

(E)|
Ũε

and the local constant section 1 of O
X̃

(E)|
X̃−E

paste together to define a global section s of O
X̃

(E) with s−1(0) = E.

The standard metric on γ, obtained from the embedding γ ⊂ CPn−1 × Cn, induces a metric h1

on O
X̃

(E)|
Ũε

= π∗1γ for which

‖s(z)|
Ũε
‖2 = |z|2.

On the other hand, we have the standard product metric h2 on O
X̃

(E)|
X̃−E

∼= (X̃ −E)×C for
which

‖s(z)|
X̃−E‖

2 = 1.

Since h1 and h2 are different on the overlap, we consider a partition of unity {ρ1, ρ2} for the
open cover {Ũε, X̃ − Ũε/2} and define

h = ρ1h1 + ρ2h2.

Using the metric h above, by (4.16), we have

F = ∂̄∂ ln(h), F |
X̃−Ũε ≡ 0.
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Therefore, F is supported in Ũε. Moreover, restricted to Ũε/2, we have

iF |
Ũε/2

= −2π∗1ωFS

where ωFS is the Fubini study Kähler form on E ∼= CPn−1; see Lemma 4.13. We conclude that
−iF is a non-negative (1, 1)-form on Ũε/2 and its restriction to TE is strictly positive.

Summing up, if we define ω−E = − i
2F , where−F is the curvature of the dual metric onO

X̃
(−E),

we have

ω−E =


0 on X̃ − Ũε
≥ 0 on Ũε/2

> 0 on TE ⊂ TX̃|E .

Now, if ω is a Kähler form on X, then π∗ω is a non-negative (1, 1)-form on X̃ such that

π∗ω =


> 0 on X̃ − E
≥ 0 on X̃

= 0 on TE ⊂ TX̃|E .

Therefore, for k sufficiently large,
ω̃ ..= ω−E + kπ∗ω.

is Kähler form on X̃.

7 Kodaira Vanishing Theorem

The main ingredient of the proof of Kodaira Embedding Theorem and several other homological
calculations is the following vanishing result for positive line bundles.

Theorem 7.1. (Kodaira Vanishing Theorem) If L −→ X is a positive line bundle, then

Hq(X,Ωp
X(L)) = 0 ∀ p+ q > n = dimCX.

Remark 7.2. Recall that Ωp
X is the sheaf of holomorphic p-forms; it is the sheaf of holomorphic

sections of the tensor bundle Λp,0X
..= ΛpC(T ∗X). Then, Ωp

X(L) is the sheaf of holomorphic p-
forms taking values in L. The cohomology group above can be both seen as the cech cohomology
group of the sheaf Ωp

X(L) or the Dolbeaut cohomology group of the corresponding holomorphic

vector bundle Hq

∂̄
(X,Λp,0X ⊗ L). When L = OX , we simply get the (p, q) cohomology groups

of X.

In order to prove this theorem, we need to briefly discuss the star operator and Harmonic forms.
Suppose E −→ X is a holomorphic vector bundle.

Let X be a compact complex manifold with a Hermitian metric h on T X. The metric h induces
a similarly denoted metric on T ∗X and all other tensor bundles over X. If η1, . . . , ηn is a local
orthonormal frame for T ∗X, then every

η ∈ Λp,q(X,C) = Γ(X,ΛpT ∗X ∧ ΛqT ∗X)
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can be written as

η =
∑
I,J

|I|=p,|J |=q

aI,JηI ∧ ηJ , ηI = ηi1 ∧ · · · ∧ ηik ∀ I = (i1, . . . , ik),

with the convention
ησ(I) = (−1)sign(σ)ηI ∀ σ ∈ Sk

The point-wise Hermitian inner product of η, η′ ∈ Λp,q(X,C) is defined by〈
η, η′

〉
=

∑
I,J

|I|=p,|J |=q

aI,Ja′I,J .

In particular, the point-wise L2-norm of η is defined to be the function

|η|2 = 〈η, η〉 =
∑
I,J

|aI,J |2.

Remark 7.3. In Griffiths-Harris, |η|2 is defined to be

|η|2 = 2p+q
∑
I,J

|aI,J |2

because the norm of dzi with respect to the Riemannian metric corresponding to the standard
Hermitian metric on Cn is 2. However, by our convention in (4.18), there is no need for this
extra factor.

The volume form of X is given by

Ω =
1

n!
ωn = (−1)(

n
2)
( i

2

)n
η1 ∧ · · · ∧ ηn ∧ η1 ∧ · · · ∧ ηn.

The metric h allows us to define a complex linear (Hodge) star duality operator

∗ : Λp,q(X,C) −→ Λn−q,n−p(X,C),

satisfying
η ∧ ∗η′ =

〈
η, η′

〉
Ω.

Note that ∗ ∗ η = (−1)deg(η)η and

∗ : Λp,q(X,C) −→ Λn−p,n−q(X,C), ∗(η) = ∗η, (7.1)

is an anti C-linear operator. Since X is compact, the integral

(η, η′) =

∫
X
η ∧ ∗(η′) =

∫
X

〈
η, η′

〉
Ω

is defined and defines a hermitian inner product on each Λp,q(X,C).

More generally, if E −→ X is a complex vector bundle equipped with a hermitian metric hE ,
every η ∈ Λp,q(X, E) can be expanded as

η =
∑
I,J

|I|=p,|J |=q

aI,J,αηI ∧ ηJ ⊗ eα,
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where {eα} is a unitary frame for E . The metric hE identifies E∗ with E and we have a wedge
product

Λp,q(X, E)⊗ Λp
′,q′(X, E∗) −→ Λp+p

′,q+q′(X,C).

Similarly to (7.1) we have a complex linear operator

∗E : Λp,q(X, E) −→ Λn−p,n−q(X, E∗) = Λn−p,n−q(X, E) (7.2)

and a pairing

(η, η′) =

∫
X
η ∧ ∗E(η′) =

∫
X

〈
η, η′

〉
Ω (7.3)

The adjoint of the ∂̄-operator

∂̄ : Λp,q(X, E) −→ Λp,q+1(X, E)

with respect to the pairing above is given by

∂̄∗ = −∗E ◦ ∂̄ ◦ ∗E : Λp,q(X, E) −→ Λp,q−1(X, E).

Finally, the ∂̄-laplacian is defined by

∆ = ∂̄∂̄∗ + ∂̄∗∂̄ : Λp,q(X, E) −→ Λp,q(X, E).

An E-valued (p, q)-form η is called Harmonic if ∆η = 0. Let Hp,q(X, E) denote the space of
harmonic E-valued (p, q)-forms. The main results of Hodge theory are the followings statements.

• Hp,q(X, E) is finite dimensional.

• Let H denotes the orthogonal projection Λp,q(X, E) −→ Hp,q(X, E); there exists an operator
G : Λp,q(X, E) −→ Λp,q(X, E) such that (i) G(Hp,q(X, E)) = 0, (ii) G commutes with ∂̄ and
∂̄∗, and (iii) I = H+ ∆G.

• Consequently, the natural inclusion

Hp,q(X, E) −→ Hp,q

∂̄
(X, E) ..= Hq

∂̄
(X,Ωp

X(E))

is an isomorphism; i.e. every cohomology class has a unique harmonic representative.

• The ∗ operator gives an isomorphism

Hp,q

∂̄
(X, E) ∼= Hn−p,n−q

∂̄
(X, E∗)∗.

For p = 0, the last isomorphism reads

Hq

∂̄
(X, E) ∼= Hn−q

∂̄
(X,Ωn

X(E∗))∗ = Hn−q
∂̄

(X,KX ⊗ E∗)∗.

This isomorphism, relating the cohomology classes of E to that of KX⊗E∗ is called Serre Duality.
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Example 7.4. In Example 3.3, for X = P1 and E = O(m) we found that

dimC H0
∂̄(P1,O(m)) ∼=

{
m+ 1 if m ≥ 0

0 if m ≤ −1
, dimC H1

∂̄(P1,O(m)) ∼=

{
0 if m ≥ 0

−(m+ 1) if m ≤ −1 .

As it is evident from these calculations,

dimCH
0
∂̄(P1,O(m)) = dimCH

1
∂̄(P1,O(2−m))

which follows from Serre duality because KP1 = O(−2).

For every holomorphic line bundle L on a genus g Riemann surface Σ we have

• deg(KΣ) = 2g − 2 (because Euler characteristic is 2− 2g) ;

• (Serre duality) dimCH
0
∂̄
(Σ,L) = dimCH

1
∂̄
(Σ,KΣ ⊗ L∗);

• (Riemann Roch) dimCH
0
∂̄
(Σ,L)− dimCH

1
∂̄
(Σ,L) = deg(L) + (1− g).

Combining the last two identities we get

dimCH
0
∂̄(Σ,L)− dimCH

0
∂̄(Σ,KΣ ⊗ L∗) = deg(L) + (1− g).

A holomorphic line bundle of negative degree can not have any holomorphic sections therefore
(assuming g > 0)

• if deg(L) > 2g − 2, then the second term on left is zero and consequently

dimCH
0
∂̄(Σ,L) = deg(L) + (1− g) ≥ g;

• if deg(L) < 0, then the first term on left is zero and consequently

dimCH
1
∂̄(Σ,L) = −deg(L) + g − 1 ≥ g;

• if 0 ≤ deg(L) ≤ 2g− 2, then depending on the choice of L the two cohomology groups can be
both non-trivial.

With notation as before, if (X,ω) is a Kähler manifold, wedging with ω gives us the so-called
Lefschetz operator

L : Λp,q(X, E) −→ Λp+1,q+1(X, E)

with the adjoint operator

Λ = L∗ : Λp,q(X, E) −→ Λp−1,q−1(X, E).

Putting E = OX we get these operators at the level of (p, q)-forms only, where both ∂̄ and ∂ are
defined and d = ∂ + ∂̄. In the presence of a non-trivial vector bundle E , only ∂̄ is defined.

Proposition 7.5. (Prp 1.2.6 and Prp 3.1.12 in Huybrecht: Kähler identities) Suppose X is a
compact Kähler manifold of complex dimension n. For L and Λ acting on (p, q)-forms we have

(1) [∂̄, L] = [∂, L] = 0 and [∂̄∗,Λ] = [∂∗,Λ] = 0.

(2) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄ and [Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗.
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(3) [L,Λ] = H, [H,L] = 2L, and [H,Λ] = −2Λ, where H is the diagonal operator of multiplica-
tion by (k − n) on k-forms.

(4) ∆∂̄ = ∆∂ = 1
2∆, and they commute with ∗, ∂, ∂̄, ∂∗, ∂̄∗, L, Λ. In particular, L and Λ

descend to maps between harmonic forms and thus to

L : Hp,q(X,C) −→ Hp+1,q+1(X,C) and Λ: Hp,q(X,C) −→ Hp−1,q−1(X,C);

where at the cohomology level, the maps only depend on the cohomology class of ω.

Theorem 7.6. (Hard Lefschetz Theorem) Suppose X is a compact Kähler manifold of complex
dimension n. Then, for all (p, q) with k = p+ q ≤ n, the map

Ln−k : Hp,q(X,C) ⊂ Hk(X,C) −→ Hp+n−k,q+n−k(X,C) ⊂ H2n−k(X,C)

is an isomorphism and

Hp,q(X,C) =
⊕
i≥0

Li(Hp−i,q−i(X,C)prim),

Hp,q(X,C)prim
..= Ker(Λ: Hp,q(X,C) −→ Hp−1,q−1(X,C))

= Ker(Ln−k+1 : Hp,q(X,C) −→ Hp+n−k+1,q+n−k+1(X,C)).

(7.4)

The proof of this theorem uses representation theory. The actions of L, Λ, and H on H∗(X,C)
generate an sl(2,C) representation. The Lie algebras sl(2,C) and sl(2,R) are generated by

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
, and H =

[
1 0
0 −1

]
satisfying

[X,Y ] = XY − Y X = H, [H,X] = 2X, [H,Y ]− 2Y.

For each n ≥ 1, there is a unique n-dimensional irreducible representations of sl(2,C) which is
Symn(C2). The definition of the tensor product representation is the following. If V and W are
representations of a Lie group g, v ∈ V , w ∈W , and g ∈ g, then g · (v⊗w) = g ·v⊗w+v⊗g ·w.
The latter naturally extends to higher tensor product and symmetric tensor product.

Example 7.7. Describe H∗(CPn,C) as an irreducible representation of sl(2,C). Explicitly
describe the actions of L and Λ. More precisely, show that H∗(CPn,C) ∼= Symn(C2).

Proposition 7.8. (Hodge-Riemann bilinear relations) Let (X,ω) be a compact Kähler manifold
of complex dimension n. Then, for each 0 6= α ∈ Hp,q(X,C)prim we have

ip−q(−1)(
p+q
2 )
∫
X
α ∧ α ∧ ωn−(p+q) > 0.

One of the most interesting cases of this result is when p+ q = n and n = 2m is even. Then,

ip−q(−1)(
p+q
2 ) = (−1)(p−m)(−1)m = (−1)p. (7.5)

Using this, (7.4), and symmetries of hodge diamond we can show that the symmetric bilinear
pairing

Hn(X,R)⊗Hn(X,R) −→ R, (α, β) −→
∫
X
α ∧ β
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has signature

σ(X) =
2m∑
p,q=0

(−1)php,q(X).

For instance, if m = 1, i.e. if (X,ω) is a compact Kähler surface, then

σ(X) = 2h0,0(X) + 2h2,0(X)− h1,1(X) = 2h2,0(X) + 2− h1,1(X).

More precisely, we have the following statement known as Hodge Index Theorem.

Proposition 7.9. (Hodge Index Theorem) Suppose (X,ω) is a compact Kähler surface. Then,
the intersection pairing

H2(X,R)×H2(X,R) −→ R, (α, β) −→
∫
X
α ∧ β

has index (2h2,0(X) + 1, h1,1(X)− 1). Restricted to H1,1(X,R), it is of index (1, h1,1(X)− 1).

Proof. We have

H2(X,R) =
(

(H2,0(X,C)⊕H0,2(X,C)) ∩H2(X,R)
)
⊕H1,1(X,R).

For degree reasons, any class in H2,0(X,C) ⊕ H2,0(X,C) is primitive. Therefore, by (7.5),
intersection pairing is positive definite on the first summand. By Lefschetz decomposition (7.4),
the second summand further orthogonally decomposes as

H1,1(X,R) = R · ω ⊕H1,1(X,R)prim.

Clearly, the intersection pairing is positive definite on R · ω. By (7.5), it is negative definite on
H1,1(X,R)prim.

Using Hodge Index Theorem, we can exclude many compact smooth four-dimensional manifolds
from the list of manifolds that admit a Kähler structure. First, if X is a closed oriented smooth
manifold, then the intersection pairing

H2(X,Z)×H2(X,Z) −→ Z

is a symmetric unimodular form (by Poincare duality). A unimodular pairing Q is called even if
Q(x, x) ≡ 0 mod 2 for all x. Otherwise, it is called odd. By Hodge Index Theorem, we know that
definite forms do not arise among Kähler manifolds unless h1,1(X) = 1. Indefinite unimodular
forms Q are classified in the following way:

• If Q is odd, then Q = Im ⊕ (−In) for some m,n ≥ 0;

• If Q is even, then Q = mU ⊕ nE8 for some m,n ≥ 0, where

U =

[
0 1
1 0

]
and 

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.
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Remark 7.10. The intersection forms E8 and U are related by E8 ⊕−E8 = 8U .

Theorem 7.11. For each integral symmetric bilinear unimodular form Q, there exists a closed
oriented simply-connected 4-manifold X with Q as its intersection form. If Q is even, then X is
C0-unique. If Q is odd, there are two C0-classes at least one of which is not C1. The manifold
corresponding to E8 is not C1. (Rokhlin:) If X is smooth then 16 | σ(X). (Donaldson:) If X is
smooth and Q is definite then Q = ±Im.

Remark 7.12. Changing the orientation of an oriented smooth manifold X changes its inter-
section Q to −Q. For instance, if CP2 is CP2 with the opposite orientation, then QCP2 = (−1).

Remark 7.13. If X is the connect sum of closed oriented 4-manifolds Y and Z, then QX =
QY ⊕QZ . In the smooth category, any blowup X̃ of a compact complex surface X at k points
is the same as the connect sum X#kCP2 of X with k copies of CP2.

Examples. By the last sentence above, the intersection form of CP2 blown up at k points is
the indefinite odd form I1 ⊕ −Ik. The intersection form of CP1 × CP1 is U . Generalizing the
last example, corresponding to the degree d holomorphic line bundle O(d) −→ CP1, we obtain
a complex surface Xd = P(O(d)⊕O) that is a CP1 bundle over CP1 with two disjoint sections
of self-intersection d and −d. The second homology of Xd is generated by the fiber class F and
either of the sections. Therefore, the intersection form of Xd is

Qd =

[
0 1
1 d

]
HW 7.14. For d ≡ d′ mod 2, show that there is an integral change of basis that transforms Qd
to Qd′ .

In fact, if d ≡ d′ mod 2, then Xd and Xd′ are diffeomorphic.

Recall that a K3 surface is a simply connected compact Kähler surface X with KX
∼= OX .

Therefore, the Hodge diamond of a K3 surface is of the form

1

0 0

1 h1,1(X,C) 1

0 0

1

Since all K3 surfaces are diffeomorphic, by calculating the Euler characteristic of a quartic K3
surface in CP3 we find that h1,1(X,C) = 20. In fact, H2(X,Z) ∼= Z22. By Hodge Index Theorem,
the index the intersection form on K3 has index (2h2,0(X) + 1, h1,1(X)− 1) = (3, 19). It turns
out that the quadratic form of K3 surface is −2E8 ⊕ 3U .

Going back to the discussion of the operators L, Λ, ∂̄, and ∂̄∗ on a hermitian holomorphic
vector bundle E −→ X, the analogue of Proposition 7.5.(2) is the following. Let ∇ be the chern
connection on E , i.e. a complex linear hermitian connection with ∇0,1 = ∂̄.
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Lemma 7.15. (Nakano identity) Suppose E −→ X is a hermitian holomorphic vector bundle
over a compact Kähler manifold. For L and Λ acting on E-valued (p, q)-forms we have

[∂̄∗, L] = i∇1,0 and [Λ, ∂̄] = −i(∇1,0)∗.

We need the following lemma to prove the Kodaira Vanishing Theorem.

Lemma 7.16. Suppose E −→ X is a hermitian holomorphic vector bundle over a compact
Kähler manifold. Then, for the curvature (1, 1)-form F∇ of the Chern connection ∇ and an
arbitrary harmonic form α ∈ Hp,q(X, E) we have:

(i)(iF∇Λ(α), α) ≤ 0, (ii)(iΛF∇(α), α) ≥ 0,

where (−,−) is the inner product (7.3).

Proof. As an operator, F∇ is given by

F∇ = ∇ ◦∇ = (∇1,0 + ∂̄) ◦ (∇1,0 + ∂̄) = ∇1,0 ◦ ∂̄ + ∂̄ ◦ ∇1,0.

Using ∂̄α = 0, ∂̄∗α = 0, and Nakano identity, we obtain

(iF∇Λ(α), α) = i(∇1,0 ◦ ∂̄ ◦ Λ(α), α) + i(∂̄ ◦ ∇1,0 ◦ Λ(α), α)

= i(∂̄ ◦ Λ(α), (∇1,0)∗α) + i(∇1,0 ◦ Λ(α), ∂̄∗α)

= (∂̄ ◦ Λ(α),−i(∇1,0)∗α) + 0

= (∂̄Λα, [Λ, ∂̄]α)

= (∂̄Λα,−∂̄Λα) ≤ 0 .

The other inequality is proved similarly.

Proof of Kodaira Vanishing Theorem. By the positivity assumption, there is a hermitian
metric on E such that ω = iF∇ is a Kähler form on X. Therefore, with respect to ω, the operator
L is the same as iF∇. Since [L,Λ] = H, for any α ∈ Hp,q(X, E), by the Lemma above, we obtain

0 ≤ ([Λ, iF∇]α, α) = ([Λ, L]α, α) = (−Hα,α) = (n− (p+ q))‖α‖2.

Therefore, Hp,q(X, E) = 0 whenever p+ q > n.

Remark 7.17. A similar proof shows that if L −→ X is a positive line bundle and E −→ X is
an arbitrary holomorphic vector bundle, there exists m0 ∈ N such that

(Serre’s Vanishing Theorem) Hq(X,L⊗m ⊗ E) = 0 ∀ m ≥ m0, q > 0. (7.6)

HW 7.18. Use Serre’s Vanishing Theorem to show that every holomorphic vector bundle on
CP1 is a direct sum of holomorphic line bundles.

The next result is very useful in understanding the topology of hyperplane sections of a complex
projective variety.

Theorem 7.19. (Lefschetz Hyperplane Theorem/Weak Lefschetz Theorem) Suppose X is a
compact kähler manifold of complex dimension n and Y ⊂ X is a smooth complex hypersur-
face/divisor such that OX(Y ) is a positive line bundle. Then the canonical restriction map

Hk(X,C) −→ Hk(Y,C)

is an isomorphism for k ≤ n− 2 and it is injective for k = n− 1.

65



Proof. It is enough to prove the statement for

Hp,q(X,C) −→ Hp,q(Y,C).

The proof below relies on two short exact sequences (of sheaves)

0 −→ OX(−Y ) −→ OX −→ OY −→ 0

and
0 −→ NXY ∗ −→ ΩX |Y −→ ΩY −→ 0;

where Ω = Ω1 denotes the sheaf of holomorphic 1-forms and NXY ∗ is the (sheaf of sections of
the) conormal bundle of Y in X. In the first exact sequence, the first map is tensoring with a
section of OX(Y ) vanishing along Y . Twisting/tensoring the first exact sequence with Ωp

X yields

0 −→ Ωp
X(−Y ) −→ Ωp

X −→ Ωp
X |Y −→ 0. (7.7)

Here, Ωp
X(−Y ) is the sheaf of OX(−Y )-valued p-forms.

HW 7.20. Show that any short exact sequence of holomorphic vector bundles

0 −→ L −→ E −→ F −→ 0

where L is a line bundle, induces short exact sequences of the form

0 −→ L⊗ Λi−1F −→ ΛiE −→ ΛiF −→ 0.

By the exercise above, taking the p-th exterior power of the second sequence yields

0 −→ NXY ∗ ⊗ Ωp−1
Y −→ Ωp

X |Y −→ Ωp
Y −→ 0

Then, from Serre duality, the fact that

(Ωp
X)∗ ⊗KX

∼= Ωn−p
X ,

and Kodaira Vanishing we obtain that

Hq(X,Ωp
X(−Y )) ∼= Hn−q(X,KX ⊗ Ωp

X(−Y )∗)∗ = Hn−q(X,Ωn−p
X ⊗OX(Y ))∗ = 0

whenever n− p+ n− q > n =⇒ p+ q < n.

The long-exact sequence corresponding to the short-exact sequence (7.7) reads

· · · −→ Hq(X,Ωp
X(−Y )) −→ Hq(X,Ωp

X) −→ Hq(Y,Ωp
Y ) −→ Hq+1(X,Ωp

X(−Y )) −→ · · ·

For p+ q + 1 < n, by the vanishing statement above we have

Hp,q(X,C) = Hq(X,Ωp
X) ∼= Hq(Y,Ωp

X |Y ).

For p+ q = n, we have

0 −→ Hq(X,Ωp
X) −→ Hq(Y,Ωp

X |Y ) −→ Hq+1(X,Ωp
X(−Y ))

which shows that Hq(X,Ωp
X) −→ Hq(Y,Ωp

X |Y ) is injective.
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Finally, we need to compose these identifications/injections with the natural restriction map

Hq(Y,Ωp
X |Y ) −→ Hq(Y,Ωp

Y ),

whose kernel and cokernel are contained are contained in the cohomology groups ofNXY ∗⊗Ωp−1
Y .

Since the restriction of OX(Y ) to Y is a positive line bundle, the Kodaira Vanishing shows that

Hq(Y,Ωp
X |Y ) −→ Hq(Y,Ωp

Y )

is an isomorphism for p+ q < n and an injection for p+ q = n.

Example 7.21. Let X be a smooth degree 5 hypersurface in CP4. By (6.5),

KX = (KCP4 ⊗O(5))|X = OX .

Therefore, X is a Calabi-Yau 3-fold. By Lefschetz Hyperplane Theorem

hp,q(X,C) = hp,q(P4,C) ∀ p+ q ≤ 2.

Therefore, the upper-half of the Hodge diamond of X has the form

1

0 0

0 1 0

1 h2,1 h1,2 1

In order to find h2,1 = h1,2, we compute the Euler characteristic of X in two ways. First, we
have

χ(X) =
6∑
i=0

(−1)i hi(X,C) = 2− 2h2,1.

On the other hand,

χ(X) =

∫
X
ctop(TX).

Using the adjunction formula

T CP4|X ∼= T X ⊕OCP4(5)|X

and
c(T CP4) = (1 + h)5, h = PD(H) = c1(O(1)) ∈ H2(P4,Z),

we find that

c(T X) =
(1 + h)5

1 + 5h
=
(

1 + 5h+ 10h2 + 10h3
)(

1− 5h+ 25h2 − 125h3 + · · ·
)
.

Therefore,

χ(X) =

∫
X

(−125 + 125− 50 + 10)h3 = −40h3 · (5h) = −200.

It follows that
h2,1 = 101.
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Remark 7.22. The now famous Mirror Symmetry conjecture predicts that for most Calabi-Yau
3-folds X, there is a dual Calabi-Yau 3-fold X̌ with h2,1(X) = h1,1(X̌) and h1,1(X) = h2,1(X̌).
Therefore, the mirror of the quintic Calabi-Yau 3-fold above should have Hodge numbers

1

0 0

0 101 0

1 1 1 1

i.e. it must have a very large Kähler cone and a relatively small middle cohomology. In
practice, X̌ is usually constructed by first taking a discrete quotient of X and then resolving its
singularities.

There is a different proof of Lefschetz Hyperplane Theorem using Morse theory which goes as
follows.

By the positivity assumption, there is a hermitian metric h on OX(Y ) such that ω = iF∇ is a
Kähler form on X. Here, F∇ is the curvature (1, 1)-form of the Chern connection associated
to h. Also, by construction, restricted to X − Y , the holomorphic line bundle OX(Y )|X−Y is
trivial. With respect to a trivialization

OX(Y )|X−Y ⊗ (X − Y )× C

we can think of h|X−Y as a real valued positive function h|X−Y : X − Y −→ R>0 and

ω = i ∂̄∂ ln(h) (7.8)

see (4.16). The hermitian metric can be chosen in a way such that h|X−Y : X − Y −→ R>0 is
Morse with finitely many critical points. Since OX(Y ) has a holomorphic section that vanishes
along Y , it follows that limx→Y h(x) = 0. Therefore, as t −→∞, the sub-level sets

X≤t = {x ∈ X − Y : − lnh(x) ≤ t}

give an exhaustion of X − Y whose topology stabilizes after t ≥ T , for some sufficiently large
T . Now, the key observation is that, because of (7.8), for every critical point p ∈ X − Y of the
Morse function − lnh, its Hessian/second-derivative matrix has at most n = dimCX negative
eigenvalues. Therefore, by Morse theory, as far as homotopy type of X is concerned, X is
obtained from Y by attaching cells of dimension at least n. In other words, X −Y is build from
k-handles with k ≤ n. This yields Lefschetz Hyperplane Theorem on the stronger homotopy
level and homology with Z-coefficients.

HW 7.23. Suppose f : Cn −→ R>0 is a smooth function with a non-degenerate critical point
at the origin. Show that if i ∂̄∂ ln(f) is positive at the origin, then its Hessian/second-derivative
matrix has at least n negative eigenvalues (Hint: Relate second derivative and ∂̄∂).

8 Proof of Kodaira Embedding Theorem

Suppose L −→ X is a holomorphic line bundle. By abuse of notation, we also let L denote the
sheaf of holomorphic sections of L. For every x ∈ X, evaluation at x yields an exact sequence
of sheaves

0 −→ Ix(L) ..= Ix ⊗ L −→ L −→ Lx ..= L|x ∼= C −→ 0,
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where
Ix ⊂ OX

is the sub-sheaf of holomorphic functions vanishing at x (i.e. ideal sheaf of x ∈ X). In other
words Ix⊗L is a sub-sheaf of L consisting of sections vanishing at x. There is a derivative map

Ix(L)
dx−→ T ∗x X ⊗ Lx

defined in the following way. Locally around x, a section of Ix ⊗ L has the form f ⊗ ζ where
f is a holomorphic function vanishing at x and ζ is a local section of L. Then, dx maps f ⊗ ζ
to dxf ⊗ ζ (recall that the derivative of a section of a vector bundle is well-defined along the
zero locus and does not require a connection to be defined). The kernel of the derivative map
dx above is I2

x(L) ..= I2
x ⊗ L. Thus, we get a short exact sequence

0 −→ I2
x(L) −→ Ix(L)

dx−→ T ∗x X ⊗ Lx.

HW 8.1. Show that Ix/I2
x is canonically isomorphic to T ∗x X.

Now, suppose L is a positive line bundle and X is compact. In order to prove the Kodaira
Embedding Theorem, we need to show that for k sufficiently large,

(1) the map

H0(X,L⊗k) rx⊕ry−→ L⊗kx ⊕ L⊗ky
is surjective for all x 6= y ∈ X;

(2) and, the derivative map

H0(X, Ix(L⊗k)) dx−→ T ∗x X ⊗ L⊗kx
is surjective for all x ∈ X.

The first condition above implies both that (?) the map ιL⊗k : X → PN is defined and is one-to-
one. The second condition implies that ιL⊗k is an immersion.

If dimCX > 1, then Ix is not the sheaf of sections of a holomorphic vector bundle. In order
to use the cohomology theories developed for vector bundles in the earlier sections, the trick is
to blowup X at x to replace x with a divisor. In this process, one needs to compare the space
of global sections before and after the blowup. More precisely, the long-exact sequence of cech
cohomologies corresponding to the short-exact sequence

0 −→ Ix,y(L⊗k) −→ L⊗k −→ L⊗kx ⊕ L⊗ky −→ 0

yields
0 −→ Ȟ0(X, Ix,y(L⊗k)) −→ Ȟ0(X,L⊗k) −→ Ȟ0(X,L⊗kx ⊕ L⊗ky ) −→
−→ Ȟ1(X, Ix,y(L⊗k)) −→ Ȟ1(X,L⊗k) −→ 0.

Therefore, in order to prove (1) above, we need to show that Ȟ1(X, Ix,y(L⊗k)) = 0 for k suffi-
ciently large. Similarly, in order to prove (2), we need to show that Ȟ1(X, I2

x(L⊗k)) = 0 for k
sufficiently large. If Ix was the sheaf of section of a holomorphic line bundle, these would have
been followed from Serre Vanishing Theorem (7.6). Using blowup, we will reduce the argument
to a similar vanishing argument for vector bundles.
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In order to prove (1), let
π : X̃ = Bx,yX −→ X

denote the blowup of X at both x and y with exceptional divisors Ex and Ey, respectively. Let

E = Ex + Ey and L̃ = π∗L. Pullback by π gives an injective homomorphism

π∗ : Ȟ0(X,L⊗k) −→ Ȟ0(X̃, L̃⊗k).

On the other hand, since X̃−E = X−{x, y}, every section of L̃⊗k gives a section of L⊗k|X−{x,y}
which, by2 Hartog’s theorem, extends uniquely to the entire X. Therefore, the pullback homo-
morphism above is an isomorphism. Furthermore, by definition,

L̃|Ex ∼= Ex × Lx and L̃|Ey ∼= Ey × Ly;

therefore,
Ȟ0(E, L̃⊗k|E) = L⊗kx ⊕ L⊗ky ∼= C2.

In conclusion, we need to show that

Ȟ0(X̃, L̃⊗k) −→ Ȟ0(E, L̃⊗k|E) (8.1)

is surjective. Now, on X̃, we get an exact sequence of sheaves

0 −→ L̃⊗k ⊗O
X̃

(−E) −→ L̃⊗k −→ L̃⊗k|E −→ 0. (8.2)

In other words, exchanging x, y for the divisor E, changes Ix,y with the sheaf of holomorphic

functions on X̃ vanishing along E that is isomorphic to the sheaf of holomorphic sections of
O
X̃

(−nE). Recall from the proof of Proposition 6.27 that for k sufficiently large, the line

bundle L̃⊗k⊗O
X̃

(−E) is positive. Also, for k sufficiently large L⊗k⊗K∗X is positive. Therefore,
π∗(L⊗k ⊗K∗X) is non-negative and, for k1, k2 sufficiently large ,the line bundle

L̃⊗k2 ⊗O
X̃

(−E)⊗ π∗(L⊗k1 ⊗K∗X)

is positive. For k = k1 + k2, by (6.8) and Kodaira Vanishing Theorem, we have

Ȟ1(X̃, L̃⊗k ⊗O
X̃

(−E)) = Ȟ1(X̃,Ωn
X̃

(L̃⊗k ⊗K∗
X̃
⊗O

X̃
(−E)))

= Ȟn,1(X̃, L̃⊗k ⊗K∗
X̃
⊗O

X̃
(−E))

= Ȟn,1(X̃, π∗(L⊗k1 ⊗KX)⊗ L̃⊗k2 ⊗O
X̃

(−nE)) = 0.

It follows from the long-exact sequence

0 −→ Ȟ0(X̃, L̃⊗k ⊗O
X̃

(−E)) −→ Ȟ0(X̃, L̃⊗k) −→ Ȟ0(E, L̃⊗k|E) −→

−→ Ȟ1(X̃, L̃⊗k ⊗O
X̃

(−E)) −→ · · ·

that (8.1) is injective.

Part (2) follows from a similar argument with X̃ = BxX, E = Ex, and

0 −→ L̃⊗k ⊗O
X̃

(−2E) −→ L̃⊗k ⊗O
X̃

(−E) −→
(
L̃⊗k ⊗O

X̃
(−E)

)
|E −→ 0

instead of (8.2). Note that after the blowup, T ∗x X ⊗L⊗kx changes to O
X̃

(−E)⊗ L̃⊗k|E because
T ∗x X which is the co-normal bundle of x lifts to the co-normal bundle of E that is O

X̃
(−E).

2We may assume dimC X > 1; otherwise, X̃ = X
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