11.1(a): 0.983

11.1(b): $\hat{y}=34.5+0.95 x$
11.1(d): $0.950=\$ 950$
11.1(e): $34.5=\$ 34500$
11.1(f): $45.9=\$ 45900$
11.1 $(\mathrm{g}): 40.2=\$ 40200$
11.1(h): (38.957, 41.443)
$11.1(i): t^{*}=10.82, t_{\alpha / 2, n-p}=t_{0.025,4}=2.776$, reject H_{0}, there is a significant linear relationship between years of experience and salary.
11.1(j): $2 P\left(t_{(n-p)}>\left|t^{*}\right|\right)=2 P\left(t_{(4)}>10.82\right)<$ 0.001 , significant linear relationship since the p-value is less than α.
11.1(k): 0.00042
11.1(l): $(0.706,1.194)$, significant linear relationship since the CI excludes 0 .
11.1 $(m):(31.94,37.06)$
11.1(n): Yes, since the CI for β_{0} excludes 40.
11.1(o): 96.7% of the variability in salaries is explained by the linear relationship with years of experience.

