(g) How large would the sample size n have to be for the power of the test against the alternative $\mu=44$ to be (at least) 95% ?

Using a similar calculation as above, it can be shown that $n=6.956^{2}=48.389$ which we round up to $n=49$. Verify this.

7.5 Exercises

$\boldsymbol{\nabla}=$ answers are provided beginning on page 229.
7.1 The longevity of truck tires (in months) has a normal distribution with mean μ months and standard deviation $\sigma=8.0$ months. Suppose $n=16$ tires are randomly selected and the sample mean longevity $\bar{x}=42.5$ months.
(a) Test $H_{0}: \mu=40$ versus $H_{a}: \mu \neq 40$ at the $\alpha=0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(b) Based upon your answer in 7.1(a), does the mean longevity μ significantly differ from 40? Why?
(c) Find a 90% CI for the mean longevity μ.
(d) Based upon your answer in 7.1(c), will the p-value for the test in 7.1(a) be less than α or greater than α ? Why?
(e) Find the p-value for the test in 7.1(a).
(f) Based upon your answer in 7.1 (c), does the mean longevity μ significantly differ from 55? Why?
(g) How many tires would be needed for $s e(\bar{x})$ to equal 1.0 ?
(h) Even though the sample size $n<30$, we were able to perform the above analysis. Why?
7.2 In reference to question 7.1 , suppose we wish to perform the one-sided test $H_{0}: \mu=48$ versus $H_{a}: \mu<48$ at the $\alpha=0.01$ significance level.
(a) Perform this test. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(b) Find the p-value for the test.
(c) Based upon your answer in $7.2(\mathrm{~b})$, is the mean longevity significantly less than 48 months? Why?
7.3 The diastolic blood pressure, X, of smokers follows a normal distribution with mean μ and standard deviation $\sigma=15$, i.e. $X \sim N(\mu, \sigma=15)$. The diastolic blood pressure of 3 randomly selected smokers was:

$$
\begin{array}{lll}
125 & 140 & 125
\end{array}
$$

(a) Find a 95% CI for the population mean diastolic blood pressure μ.
(b) Test $H_{0}: \mu=140$ vs. $H_{a}: \mu \neq 140$ at the $\alpha=0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(c) Find the p-value for the test in $7.3(\mathrm{~b})$.
(d) Based upon your answer in 7.3 (c), does the population mean diastolic blood pressure μ significantly differ from 140 ? Why?
(e) Based upon your answer in $7.3(\mathrm{a})$, does the population mean diastolic blood pressure μ significantly differ from 100? Why?
7.4 In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma=7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x}=10$.
(a) Find an approximate 95% confidence interval for μ.
(b) What is the margin of error at (95% confidence)?
(c) Suppose we want to test $H_{0}: \mu=12$ versus $H_{a}: \mu \neq 12$ at the $\alpha=0.05$ significance level. Based upon your answer in $7.4(\mathrm{a})$, is H_{0} rejected? Explain.
(d) Test $H_{0}: \mu=12$ versus $H_{a}: \mu \neq 12$ at the $\alpha=0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(e) Based upon your answer in $7.4(\mathrm{~d})$, will the p-value for the test be less than α or greater than α ? Why?
(f) Find the p-value for the test in $7.4(\mathrm{~d})$.
(g) Based upon your answer in $7.4(\mathrm{f})$, does the mean number of crossings μ significantly differ from 12 ? Why?
(h) How many drivers would be needed for the margin of error (at 95% confidence) to equal $0.686 ?$
(i) Could we perform the above analysis if the sample size $n<30$? Explain.
7.5 In reference to question 7.4 , suppose we wish to perform the one-sided test $H_{0}: \mu=9$ versus $H_{a}: \mu>9$ at the $\alpha=0.01$ significance level.
(a) Perform this test. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(b) Based upon your answer in $7.5(\mathrm{a})$, will the p-value for the test be less than α or greater than α ? Why?
(c) Find the p-value for the test in $7.5(\mathrm{a})$.
(d) Based upon your answer in $7.5(\mathrm{c})$, is the mean number of crossings μ significantly higher than 9? Why?
7.6 Suppose the weight of bags of M\&M's follow a normal distribution with mean μ ounces and standard deviation $\sigma=0.10$ ounces. A random sample of 4 bags had an average weight $\bar{x}=16.10$ ounces. Suppose we wish to test $H_{0}: \mu=16$ vs $H_{a}: \mu>16$ at the $\alpha=0.05$ significance level. What is the p-value for this test?
(a) What is the p-value for this test?
(b) Is the mean weight μ significantly more than 16 ounces? Why?
(c) Suppose the significance level $\alpha=0.01$. Is the mean weight μ significantly more than 16 ounces? Why?
7.7 The gain of a certain type of JFET transistor follows a normal distribution with mean μ and standard deviation σ. An electrical engineer randomly selected 7 transistors, and computed $\bar{x}=116.2$ and $s=7.8$.
(a) Find a 95% confidence interval for μ.
(b) If we were to test $H_{0}: \mu=125$ vs. $H_{a}: \mu \neq 125$ at the $\alpha=0.05$ significance level, would you reject H_{0} ? Why?
(c) Test $H_{0}: \mu=125$ vs. $H_{a}: \mu \neq 125$ at the $\alpha=0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(d) Find the p-value for the test in 7.7(c).
7.8 The amount of time per day (in hours) office workers spend working on a computer can be modeled by a normal distribution with mean μ and standard deviation σ. A manager wants to infer about the population mean μ, so he randomly selects 5 employees and observes their work habits. The raw data is:

$6.5,7.1,5.9,6.2,6.3$

(a) Compute the sample mean \bar{x} and the sample standard deviation s.
(b) Test $H_{0}: \mu=6$ vs. $H_{a}: \mu \neq 6$ at the $\alpha=0.01$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(c) Based upon your answer in $7.8(\mathrm{~b})$, does the population mean computer time μ significantly differ from 6 hours? Why?
(d) Find the p-value for the test in $7.8(\mathrm{~b})$.
(e) Find a 99% confidence interval for μ.
(f) Another manager wants to do the one-sided test $H_{0}: \mu=6$ vs. $H_{a}: \mu>6$ at the $\alpha=0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
7.9 Wood et. al (1988) studied the efficacy of diet for losing weight. The study, which lasted one year, involved only men. The weight loss for dieting men follows a normal distribution with mean μ and standard deviation σ. A group of $n=16$ dieting men lost an average of $\bar{x}=7.2$ pounds with standard deviation $s=4.4$ pounds. This problem will highlight the fact that a one-sided test has more statistical power than a two-sided test.
(a) Find a 90% confidence interval for μ.
(b) Based upon your answer in 7.9 (a), does the population mean weight loss μ significantly differ from 5.5 pounds? Why?
(c) Test $H_{0}: \mu=5.5$ vs. $H_{a}: \mu \neq 5.5$ at the $\alpha=0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(d) Approximate the p-value for the test in $7.9(\mathrm{c})$.
(e) Based upon your answer in $7.9(\mathrm{~d})$, does the population mean weight loss μ significantly differ from 5.5 pounds? Why?
(f) Test $H_{0}: \mu=5.5$ vs. $H_{a}: \mu>5.5$ at the $\alpha=0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(g) Approximate the p-value for the test in 7.9(f).
(h) Based upon your answer in $7.9(\mathrm{~g})$, is the population mean weight loss μ significantly more than 5.5 pounds? Why?
7.10 The amount of energy storage of certain type of capacitor (a small electronic device) has a distribution that is strongly skewed to the left with mean $\mu \mathrm{pF}$ (pico Farad) and standard deviation $\sigma=150 \mathrm{pF}$. An electrical engineer randomly selected 100 capacitors and determined the CI for μ is $(383,437) \mathrm{pF}$. What percent confidence interval is this?
7.11 Suppose cholesterol levels of athletes follow a $N(\mu, \sigma)$ distribution. The average cholesterol level of 31 randomly selected athletes was $\bar{x}=130.3726$ with standard deviation $s=12$. Suppose we wish to test $H_{0}: \mu=135$ versus $H_{a}: \mu<135$ at the $\alpha=0.01$ significance level.
(a) Find the p-value for this test.
(b) Is the mean cholesterol level μ significantly less than 135 ? Why?
(c) Suppose the significance level $\alpha=0.05$. Is the mean cholesterol level μ significantly less than 135 ? Why?
7.12 Suppose we wish to test $H_{0}: \mu=100$ versus $H_{a}: \mu \neq 100$ at the $\alpha=0.05$ significance level. Assume the population is normally distributed with mean μ and standard deviation σ (unknown). If the sample size $n=9$, the sample mean $\bar{x}=99.4$, and the p-value for the test is 0.02 , find the sample standard deviation s.
7.13 The gain of a certain type of MOSFET transistor follows a normal distribution with mean μ and standard deviation $\sigma=11$. An electrical engineer randomly selected 16 transistors, and determined a CI for μ to be (71.5, 81.5).
(a) What percent confidence interval is this?
(b) How large of a sample size n would be required for the margin of error to equal 2 at 95% confidence? Round your answer up to the next whole number.
7.14 Suppose a random sample of size 9 was obtained from a normal population with mean μ and standard deviation $\sigma=6.3$. It was determined that the p-value for the test $H_{0}: \mu=80$ versus $H_{a}: \mu \neq 80$ was 0.8336 .
(a) If $\bar{x}>\mu$, find a 95% confidence interval for μ.
(b) Approximately how large of a sample size n would be needed for the margin of error (at 95% confidence) to equal 2.0 ?
7.15 The resistance (in Ohms) of a certain type of resistor (an electronic device) follows a normal distribution with mean μ and standard deviation σ. A technician randomly selected 25 resistors; the mean resistance was $\bar{x}=971$ with standard deviation $s=68$.
(a) Find a 95% confidence interval for μ.
(b) Based upon your answer in $7.15(\mathrm{a})$, does the mean resistance μ significantly differ from 1,000 ? Why?
(c) Suppose we wish to test $H_{0}: \mu=1,000$ versus $H_{a}: \mu \neq 1,000$ at the $\alpha=0.05$ significance level. What is the p-value for the test?
(d) Based upon your answer in $7.15(\mathrm{c})$, does the mean resistance μ significantly differ from 1,000 ? Why?
(e) Suppose the significance level $\alpha=0.10$. Does the mean resistance μ significantly differ from 1,000 ? Why?
(f) Suppose the significance level $\alpha=0.01$. Does the mean resistance μ significantly differ from 1,000 ? Why?
$7.16 \vee$ A random sample of size 400 is obtained from a normal population with mean μ and standard deviation $\sigma=40$. We wish to test $H_{0}: \mu=25$ versus $H_{a}: \mu<25$ at the $\alpha=0.01$ significance level.
(a) For what values of \bar{x} do we reject H_{0} ?
(b) Find the probability of a type II error β against the alternative that $\mu=15$.
(c) Find the power of the test against the alternative that $\mu=15$.
(d) Find the power of the test against the alternative that $\mu=20$.
(e) How could we obtain more power in $7.16(\mathrm{~d})$?
7.17 A random sample of size 25 is obtained from a normal population with mean μ and standard deviation $\sigma=20$. We wish to test $H_{0}: \mu=100$ versus $H_{a}: \mu>100$ at the $\alpha=0.05$ significance level. It can be shown that we will reject H_{0} if $\bar{X}>106.58$ (there is no need to verify this). What is the power of this test against the alternative that $\mu=105.5$?
7.18 A random sample of size 25 is obtained from a normal population with mean μ and standard deviation $\sigma=20$. We wish to test $H_{0}: \mu=50$ versus $H_{a}: \mu<50$ at the $\alpha=0.05$ significance level. We will reject H_{0} if $\bar{X}<43.42$ (there is no need to verify this). What is the power of this test against the alternative that $\mu=40$?
7.19 A random sample of size 49 is obtained from a normal population with mean μ and standard deviation $\sigma=21$. An inexperienced researcher wishes to test $H_{0}: \mu=10$ versus $H_{a}: \mu>10$.
(a) If he simply rejects H_{0} when the sample mean $\bar{X}>12$, what is the probability that the researcher commits a type I error α ?
(b) If we want the probability of a type I error to equal 0.01 , for what values of \bar{X} should we reject H_{0} ?
7.20 A random sample of size 400 is obtained from a normal population with mean μ and standard deviation $\sigma=50$. An inexperienced researcher wishes to test $H_{0}: \mu=100$ versus $H_{a}: \mu<100$.
(a) The researcher simply decides to reject H_{0} if the sample mean $\bar{X}<95$. What is the probability that she commits a type I error α ?
(b) If we want the probability of a type I error to equal 0.05 , for what values of \bar{X} should we reject H_{0} ?
7.21 The discrete random variable X has two possible distributions, p_{0} and p_{1}.

$x:$	0	1	2
$p_{0}:$	0.1	0.2	0.7
$p_{1}:$	0.6	0.3	0.1

We observe X one time. We wish to test $H_{0}: p_{0}$ is correct vs. $H_{a}: p_{1}$ is correct. A researcher decides to reject H_{0} if $X=0$ or 1 (and will not reject H_{0} if $X=2$).
(a) Determine the probability of a type I error α.
(b) Determine the probability of a type II error β.
(c) Determine the power of the test.
7.22 The discrete random variable X has two possible distributions, p_{0} and p_{1}.

$x:$	0	2	4	8
$p_{0}:$	0.5	0.3	0.1	0.1
$p_{1}:$	0.2	0.3	0.3	0.2

We observe X one time. We wish to test $H_{0}: p_{0}$ is correct vs. $H_{a}: p_{1}$ is correct. A researcher decides to reject H_{0} if $X>0$ (and will not reject H_{0} if $X=0$).
(a) Determine the probability of a type I error α.
(b) Determine the probability of a type II error β.
(c) Determine the power of the test.
$7.23 \vee$ We want to obtain a random sample of size n from a normal population with mean μ and standard deviation $\sigma=20$. We wish to test $H_{0}: \mu=50$ versus $H_{a}: \mu<50$ at the $\alpha=0.05$ significance level. How large would the sample size n have to be for the power of the test against the alternative $\mu=40$ to be (at least) 95% ?

