Defectives:	0	1	2
o_i :	110	75	15
e_i :	128	64	8

Test

$$H_0: X \sim Bin(n = 2, p = 0.2)$$

 $H_a: X \nsim Bin(n = 2, p = 0.2)$

at the $\alpha = 0.05$ significance level.

The expected counts are computed by noting that under H_0 (i.e. $X \sim Bin(n = 2, p = 0.2)$),

$$P(X=0) = \binom{n}{x} p^{x} (1-p)^{n-x} = \binom{2}{0} 0.2^{0} (1-0.2)^{2-0} = 0.64,$$

P(X = 1) = 0.32, and P(X = 2) = 0.04. Hence, out of the 200 packages, we expect $0.64 \times 200 = 128$ to have 0 defectives, $0.32 \times 200 = 64$ to have 1 defective, and $0.04 \times 200 = 8$ to have 2 defectives; thus $e_1 = 128$, $e_2 = 64$, and $e_3 = 8$. The test statistic is

$$\chi^{2*} = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} = \frac{(110 - 128)^2}{128} + \frac{(75 - 64)^2}{64} + \frac{(15 - 8)^2}{8} = 10.547$$

We have k = 3 "bins", so the degrees of freedom is k - 1 = 2. Thus, the p-value for the test is

$$p - \text{value} = P(\chi^2_{(k-1)} > \chi^{2*}) = P(\chi^2_{(2)} > 10.547) \in (0.005, 0.01)$$

The actual p-value is equal to 0.0051 (via computer). Since the p-value is less than α , reject H_0 . We have evidence that the number of defective bulbs per package does not have a Bin(n = 2, p = 0.2) distribution.

The R output for the above analysis is shown in **R 10.6** on page 188.

10.4 Exercises

 \mathbf{V} = answers are provided beginning on page 229.

10.1 \checkmark A researcher sought to summarize the relationship between migraine headaches and caffeine consumption (low, medium, high). A random sample of 135 people yielded the following contingency table.

	Caffeine Consumption			
	Low (L) Medium (M) High (
Migraine (Mig)	5	8	15	
No Migraine (Mig^c)	35	42	30	

- (a) What is the adverse outcome? What is the risk factor?
- (b) Find the risk of migraines for high caffeine consumers, i.e. find P(Mig|H).
- (c) Find the risk of migraines for low caffeine consumers.
- (d) Find the relative risk of migraines for high caffeine consumers versus low caffeine consumers. Interpret.

- (e) Find the increased risk. Interpret.
- (f) Find the odds of migraines for medium caffeine consumers.
- (g) Find the odds of migraines for low caffeine consumers.
- (h) Find the relative odds (odds ratio) of migraines for medium versus low caffeine consumers. Interpret.
- 10.2 A random sample of 50 musicians (M) had 10 with tinnitus (T) (tinnitus is a constant ringing in the ears), while 10 out of 100 randomly selected non-musicians (M^c) had tinnitus.
 - (a) What is the adverse outcome? What is the risk factor?
 - (b) What is the risk of tinnitus for musicians?
 - (c) What is the risk of tinnitus for non-musicians?
 - (d) What is the relative risk of tinnitus for musicians versus non-musicians? Interpret.
 - (e) What is the increased risk? Interpret.
 - (f) What is the odds of tinnitus for musicians?
 - (g) What is the odds of tinnitus for non-musicians?
 - (h) What is the relative odds (odds ratio) of tinnitus for musicians versus nonmusicians? Interpret.
- 10.3 Out of 300 randomly selected welders (W), 33 suffer from retinal damage (R). Out of 250 randomly selected non-welders (W^c) (adults that have never used a welder), 20 suffer from retinal damage (R).
 - (a) What is the relative risk of retinal damage (R) for welders (W) versus non-welders (W^c) ? Interpret.
 - (b) What is the relative odds (odds ratio) of retinal damage (R) for welders (W) versus non-welders (W^c) ? Interpret.
- 10.4 \checkmark In reference to question (10.1), suppose we wish to test H_0 : caffeine and migraines are independent versus H_a : caffeine and migraines are not independent at the $\alpha = 0.05$ significance level.
 - (a) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (b) Approximate the p-value for the test using the chi-square table.
 - (c) Use the χ^2 -Probability Applet at

http://www.stat.uiowa.edu/~mbognar/applets/chisq.html

to precisely determine the p-value for the test.

- (d) Based upon your analysis, is there a significant association between caffeine and migraines? Why?
- 10.5 A gas station wants to understand the relationship between the gender of its customers and their choice of gasoline. The following two-way table summarizes gender (male/female) and gasoline (regular/midgrade/premium) for 100 randomly selected customers.

	Regular	Midgrade	Premium
Male	15	15	25
Female	25	15	5

They want to test H_0 : gender and gasoline are independent versus H_a : gender and gasoline are not independent at the $\alpha = 0.10$ significance level.

- (a) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (b) Based upon your answer in 10.5(a), is there a significant association between gender and gasoline? Why?
- (c) Approximate the p-value for the test using the chi-square table.
- (d) Use the χ^2 -Probability Applet at

```
http://www.stat.uiowa.edu/~mbognar/applets/chisq.html
```

to precisely determine the p-value for the test.

- (e) Based upon the *p*-value, is there a significant association between gender and gasoline? Why?
- (f) Based upon the p-value, do we have moderate, strong, or very strong evidence of a significant association?
- 10.6 Consider the following two-way table which summarizes gender and job position (manager, non-manager) for 100 randomly selected employees at a large company.

	Male	Female
Manager	30	10
Non-Manager	30	30

A researcher wishes to test H_0 : no association between gender and position versus H_a : association between gender and position at the $\alpha = 0.01$ significance level.

- (a) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (b) Approximate the p-value for the test using the chi-square table.
- (c) Use the χ^2 -Probability Applet at

http://www.stat.uiowa.edu/~mbognar/applets/chisq.html

to precisely determine the p-value for the test.

- (d) Based upon the *p*-value, is there a significant association between gender and position? Why?
- (e) At the $\alpha = 0.05$ significance level, is there a significant association between gender and position? Why?
- 10.7 In 2006, a random sample of 400 tax payers was collected. The following two-way table summarizes income level (low, medium, or high) versus being audited by the IRS. Note: if a person made less than \$30,000, then they were classified as low income, middle income was classified as between \$30,000 and \$80,000, and high income was classified as over \$80,000.

	Audited (A)	Not Audited (A^c)
Low Income (L)	5	150
Middle Income (M)	15	145
High Income (H)	15	70

- (a) Determine the relative risk of being audited for high income tax payers versus low income tax payers. Interpret.
- (b) We wish to test H_0 : income and audit are independent versus H_a : income and audit are not independent at the $\alpha = 0.10$ significance level. Find the *p*-value for this test using the chi-square table.
- (c) Use the χ^2 -Probability Applet at

http://www.stat.uiowa.edu/~mbognar/applets/chisq.html

to precisely determine the p-value for the test.

- (d) Based upon the p-value, do we have no evidence, moderate, strong, or very strong evidence of a significant association?
- 10.8 \checkmark In the game *Twister*, participants spin a spinner. The spinner can stop in a red, blue, yellow, or green section. The spinner is supposed to yield an equal probability for each color (i.e the probability for each color is supposed to be 1/4). Suppose 40 spins yielded

Spin:	Red	Blue	Yellow	Green
o_i :	6	11	10	13
e_i :	10	10	10	10

Test

 H_0 : the spinner is fair H_a : the spinner is not fair

at the $\alpha = 0.05$ significance level. Note that under H_0 (the spinner is fair), we expect the number of times the spinner lands in red to be $e_1 = 40 \times 1/4 = 10$. The other colors are the same, therefore $e_1 = \cdots = e_4 = 10$.

- (a) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (b) Approximate the p-value for the test using the chi-square table.
- (c) Use the χ^2 -Probability Applet at

http://www.stat.uiowa.edu/~mbognar/applets/chisq.html

to precisely determine the p-value for the test.

- (d) Based upon the p-value, is there evidence that the spinner is not fair? Why?
- 10.9 The manufacturer of M&M's claims the following color breakdown: 24% blue, 20% orange, 16% green, 14% yellow, 13% red, and 13% brown. A randomly selected bag of M&M's had 103 candies and yielded the following colors.

	blue	orange	green	yellow	red	brown
o_i :	25	22	19	17	7	13
e_i :	24.72	20.60				

Test

 H_0 : the manufacturers color breakdown is correct

 H_a : the color breakdown is different than the manufacturers claim

at the $\alpha = 0.05$ significance level. Under H_0 (i.e. under the manufacturers claimed color proportions), the number of blues that we expect is $e_1 = 103 \times 0.24 = 24.72$, the expected number of oranges is $103 \times 0.20 = 20.60$, etc.

- (a) Determine the rest of the expected counts, e_3, \ldots, e_6 .
- (b) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (c) Approximate the p-value for the test using the chi-square table.
- (d) Use the χ^2 -Probability Applet at

```
http://www.stat.uiowa.edu/~mbognar/applets/chisq.html
```

to precisely determine the p-value for the test.

(e) Based upon the *p*-value, do we have evidence that the color breakdown significantly differs from the manufactures claim? Why?