HOMEWORK BIOSTATISTICS (STAT:3510; BOGNAR)

1. The manufacturer of M&M's claims the following color breakdown: 24% blue, 20% orange, 16% green, 14% yellow, 13% red, and 13% brown. A randomly selected bag of M&M's had 103 candies and yielded the following colors.

	blue	orange	green	yellow	red	brown
o_i :	25	22	19	17	7	13
e_i :	24.72	20.60				

Test

 ${\cal H}_0$: the manufacturers color breakdown is correct

 H_a : the color breakdown is different than the manufacturers claim

at the $\alpha = 0.05$ significance level. Under H_0 (i.e. under the manufacturers claimed color proportions), the number of blues that we expect is $e_1 = 103 \times 0.24 = 24.72$, the expected number of oranges is $103 \times 0.20 = 20.60$, etc.

- (a) Determine the rest of the expected counts, e_3, \ldots, e_6 .
- (b) Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (c) Approximate the p-value for the test using the chi-square table.
- (d) Use the χ^2 -Probability Applet at

http://www.stat.uiowa.edu/~mbognar/applets/chisq.html

to precisely determine the p-value for the test.

(e) Based upon the p-value, do we have evidence that the color breakdown significantly differs from the manufactures claim? Why?