Homework — Inference for μ (σ unknown) Prob. and Stat. for Eng. (STAT:2020; Bognar)

- 1. The time, X (in minutes), it takes a robot to weld steel beams can be modeled by a $X \sim N(\mu, \sigma^2)$ distribution. A worker observed the welding times for 18 randomly selected beams and found the sample mean welding time was $\bar{x} = 140.2$ minutes with sample standard deviation s = 8.5 minutes.
 - (a) Test $H_0: \mu = 145$ versus $H_a: \mu \neq 145$ at the $\alpha = 0.01$ significance level using a 3-step test.
 - (b) Based upon your answer in part (a), does μ significantly differ from 145? Why?
 - (c) Approximate the p-value for the test in part (a).
 - (d) Based upon your answer in part (c), does μ significantly differ from 145? Why?
 - (e) Find a 99% confidence interval for μ .
 - (f) Based upon your answer in part (e), does μ significantly differ from 145? Why?
 - (g) If the times were not normally distributed, could we still do inference for μ ? Why?
- 2. The time, X (in minutes), it takes a person to weld steel beams can be modeled by a $X \sim N(\mu, \sigma^2)$ distribution. A worker was timed when welding 16 randomly selected beams; the sample mean welding time was $\bar{x} = 175.4$ minutes with sample standard deviation s = 18.1 minutes.
 - (a) Test $H_0: \mu = 160$ versus $H_a: \mu > 160$ at the $\alpha = 0.05$ significance level using a 3-step test.
 - (b) Based upon your answer in part (a), is μ significantly greater than 160? Why?
 - (c) Approximate the p-value for the test in part (a).
 - (d) Based upon your answer in part (c), is μ significantly greater than 160? Why?